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Abstract

Background: The genetic composition of the bacterium causing whooping cough, Bordetella pertussis, has been
investigated using microarray studies in order to examine potential genetic contributors to the disease re-emergence
in the past decade. Regions of difference (RDs) have been previously identified as clusters of genes flanked by insertion
sequences which are variably present in different sets of isolates, and have also been shown to be potential markers of
B. pertussis evolution.
This study used microarray data to identify and select a panel of RDs; primers and probes for these RDs were then
designed to test for the presence or absence of these regions in a novel and less expensive multiplex PCR-based
reverse line blot (mPCR/RLB) assay. By comparing the presence or absence of RDs, we aimed to determine the genomic
variability of a diverse collection of B. pertussis strains and how they have changed over time.

Results: A B. pertussis specific mPCR/RLB using 43 genes representing 30 RDs, was developed and used to characterise
a set of 42 B. pertussis isolates. When mapped against the previously identified evolutionary relationships of the strains,
the losses of two RDs - BP0910A - BP00930 and BP1948-BP1962 - were found to be associated with significant events
in B. pertussis history: the loss of BP0910A - BP00930 coincided with introduction of whole cell vaccines in the 1950s
while that of BP1948-BP1962 occurred after the introduction of acellular vaccines. The loss of BP1948-BP1962 also
coincided with expansion of the most recent B. pertussis strains.

Conclusions: The mPCR/RLB assay offers an inexpensive and fast method of determining the gene content of
B. pertussis strains and also confirms that gene losses are an ongoing feature of B. pertussis evolution.
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Background
Bordetella pertussis is a highly homogenous organism
which diverged from a Bordetella bronchiseptica-like
ancestor 0.7-3.5 million years ago [1]. Although a high
degree of sequence similarity exists between B. pertussis,
B. bronchiseptica and Bordetella parapertussis, it has been
recognised that significant losses of groups of genes,
termed regions of difference (RDs), have occurred during
B. pertussis evolution [2]. Comprehensive studies using
comparative genome hybridisation (CGH) microarray
experiments have investigated such changes to the B.
pertussis genome and correlated the emergence of
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currently circulating isolates with the absence of specific
RDs [3-5].
While CGH is a method that allows genome compari-

son amongst large numbers of isolates, it is costly and
labour-intensive when screening large numbers of samples.
In contrast, multiplex PCR (mPCR)-based reverse line blot
(RLB) assay is an established method with diverse range of
applications in pathogen detection and typing [6]. The RLB
used in this assay is a DNA macroarray, which relies on
attachment of biotinylated PCR-amplified products to
specific amine-labeled DNA probes. The assay allows
multiple isolates to be processed in a single blot and, by
using a multiplex approach, more that 40 targets can be
probed simultaneously without increasing the number of
individual PCRs [6]. This technique has been successfully
applied to genotyping of bacterial pathogens of public
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health importance, such as Streptococcus agalactiae [7],
Streptococcus pneumoniae [8], uropathogenic Escherichia
coli [9], Staphylococcus aureus [10], methicillin resistant
Staphylococcus aureus [11] as well as different viral patho-
gens including human papilloma virus (HPV) [12] and
human adenoviruses [13].
We previously used single nucleotide polymorphisms

(SNPs) to characterise an international collection of over
300 B. pertussis isolates. These isolates were differentiated
into 42 unique SNP profiles (SPs) and six distinct clusters
(clusters I to VI) [14], with recently emerging isolates in
cluster I. In this study, we used representative isolates of
each of the 42 SPs to develop an inexpensive specific
mPCR/RLB to further determine the genome variation
in B. pertussis. The presence or absence of previously
determined RDs as revealed by the mPCR/RLB was
compared against and used in conjunction with previous
SNP typing to observe genomic variability of B. pertussis
through time.

Results and discussion
Development and application of multiplex PCR/ reverse
line blot to detect selected regions of difference
In this study, multiple PCR targets were combined in
an mPCR/RLB assay to simultaneously identify and
differentiate B. pertussis isolates based on patterns of
gene loss. An initial mPCR/RLB was performed using
B. pertussis Tohama I because it is a completely sequenced
and well-annotated historic isolate collected in 1954 [2]
which has been often used as a vaccine production
strain. Therefore, it was expected that all selected genes
would be present. 32 genes combined into 5 multiplex
reactions and representing 24 RDs are presented in
Table 1. IS481, an insertion sequence commonly used
for B. pertussis detection, was included in one of the
mPCR as an internal positive control and was amplified
in all isolates. The 42 isolates representing the SNP pro-
files of B. pertussis evolution were then typed using the
5-plex mPCR/RLB assay and the RDs for each isolate
were recorded as present or absent. A representative
blot showing positive signals and the absence of product
binding is shown in Figure 1.
Only 10 of the 24 RDs studied varied between isolates

in the current set of 42. Two RDs were most frequently
absent. BP0910A - BP00930 (represented by BP0919) was
absent from the majority (37/42) of isolates and BP1948-
BP1966 (represented by BP1948, BP1954 and BP1962)
was absent from 7 of the 42 isolates. Other genes, which
were absent from at least one isolate, were BP0330,
BP1553, BP1664, BP1669, BP1673, BP2102, BP2627,
BP2825, BP3107, BP3319, BP3322, which collectively
represent 10 RDs (Figure 2). Not all genes within an
RD were always absent. For example, two isolates (L655
and L685) had lost only one gene, BP1669 from
BP1663-BP1674/77, whereas all three representative
genes were absent from two other isolates (L1022 and
L567) (Figure 2). Similarly, in in isolates L477, L1034 and
L669 only one gene (either BP3319 or BP3322) from
BP3314-BP3322 was absent, while both representative
genes were lost from L1022.

Relationships between RD absences and B. pertussis
SNP evolution
To determine whether the presence of RD or absence was
linked with the evolution of B. pertussis, the results of the
mPCR/RLB assay were plotted against the SNP-based
phylogenetic tree as previously determined by Octavia
et al. [14] and shown in Figure 2. BP0910A- BP0930 was
found only in isolates with SPs in cluster VI, which con-
sists of isolates from the pre-vaccination era. In contrast,
BP1948-BP1966 was detected in all isolates with SPs in all
clusters except cluster I.
The association of these two RDs and SNP clusters

could, potentially, be explained by carry-over (or hitch-
hiking) of gene losses in fitter B. pertussis strains [15].
Genetic hitchhiking, also known as selective sweeps, refer
to genetic changes in neighboring genes that get fixed
as a result of linkage with genes carrying advantageous
mutations which are selected for, but these genetic
changes may not necessarily contribute to the fitness of
the organism. In B. pertussis, genetic hitchhiking is most
clearly observed with the two RD losses. The loss of
BP910A-BP930 is associated with the potentially advanta-
geous change to ptxA2 which arose when the whole cell
vaccine was introduced, while the loss of BP1948-1966 is
associated with changes to prn2 and ptxP3 in cluster I,
which may be driven by selection pressure from the
acellular vaccine as discussed previously [14]. The loss
of BP1948-1966 may also be driven by immune selection
pressure against BP1948 which encodes an immunogenic
protein as discussed below.
Apart from these two major RD absences that corre-

lated with specific SNP clustering, the majority of gene
losses occurred independently in a ‘mosaic’ pattern, and
were not associated with the introduction of vaccination
or change in antigen alleles [16]. Even within clusters I
and II, which are generally highly homogeneous, patterns
of gene loss differed; BP1553 and BP3322 each absent
from 2 of 7 isolates in cluster I and similarly, BP2825
and BP1553 absent from 1 and 2 isolates respectively,
in cluster II.
A limitation of this study is that only single representa-

tives of each SP were used and interpretation of sporadic
gene losses from this collection of isolates is difficult
without performing additional investigations with more
isolates from SP clusters. However, in-depth analyses of
French, Finnish, Dutch and Swedish B. pertussis isolates
demonstrated that correlations could be also made



Table 1 Details of genes within selected regions of difference (RD) for this study and comparison to RD in other
studies

Genes within RDs* Representative gene
for this study

Gene function King et al.
(2010) [5]

Brinig et al.
(2006) [16]

Heikkinen et al.
(2007) [19]

Caro et al.
(2006) [3]

BP0024- BP0030 MaoC family protein RD1

BP0393- BP0396 Hypothetical protein RD2

BP0502- BP0511 Hypothetical protein RD3-RD4 RD1

BP0513- BP0516 N/A

BP0612- BP0644 N/A RD6

BP0593 N/A RD7

BP0712- BP0715 BP0711/BP0712 Putative phosopholipase RD9 RD2

BP0910A- BP0934 BP0919 Putative succinate-semialdehyde
dehydrogenase [NADP+]

RD13 RD3 L1 RD-1

BP0930 Putative CoA ligase

BP1131-BP1141 BP1136 Heme uptake regulator RD15-RD16 RD4-RD5 L2 RD-2

BP1158-BP1176 BP1170 Putative exported protein RD17 RD6 RD-3

BP1225 N/A RD19

BP1553 BP1553 Putative exported protein RD24

BP1638-BP1639 BP1638 Hypothetical protein RD25 RD7

BP1663-BP1674/77 BP1664 Glutathione S-transferase RD27 RD8

BP1669 Lactate dehydrogenase

BP1676-BP1677 N/A RD28 RD9

BP1698 N/A RD30

BP1948-BP1966 BP1948 Branched-chain amino acid-binding protein RD33 RD10 L3 RD-4

BP1954 Probable oxidoreductase

BP1962 Putative ferrisiderophore receptor

BP2088-BP2103 BP2102 lysR family transcriptional regulator RD35 L4

BP2133-BP2134 N/A RD37

BP2136-BP2139 N/A RD38-RD39 RD-5

BP2167-BP2180 BP2167 Putative integral membrane protein RD40

BP2272-BP2274 BP2273 Putative periplasmic protein RD41 RD11 RD-6

BP2517-BP2518 BP2518 Sarcosine oxidase beta subunit RD43 RD12

BP2519-BP2523 BP2522 FolD bifunctional protein RD44

BP2627-BP2629 BP2627 Pseudogene RD45 RD13 RD-7

BP2670-BP2671 BP2671 Hypothetical protein RD46 RD14

BP2822-BP2839 BP2825 GntR family transcriptional regulator RD48

BP2883 N/A - RD-8

BP2921-BP2924 BP2921 Hypothetical protein RD50 RD15

BP3104-BP3110/3 BP3107 Putative gamma-glutamyltranspeptidase
(exported protein)

RD52-RD54 RD16-RD17 RD-9

BP3113 Pseudogene

BP3188-BP3202 N/A RD55

BP3314-BP3322 BP3319 Putative IclR-family transcriptional regulator RD56 RD18 RD-10

BP3322 Putative binding-protein-dependent
transport protein

BP3352-BP3390 BP3384 Putative phage terminase RD57-RD59 RD19

BP3477 N/A RD60
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Table 1 Details of genes within selected regions of difference (RD) for this study and comparison to RD in other
studies (Continued)

BP3840-BP3861 BP3842 Hypothetical protein RD63-RD64 RD20

BP3853 Conserved hypothetical protein

*Gene nomenclature in this column is based on the numbering of genes in Tohama I (NC_002929).
N/A- RDs for which either primers or probes could not be selected for efficient mPCR/ RLB or which could not be amplified during mPCR and were subsequently
left out of analysis.

Lam et al. BMC Research Notes 2014, 7:727 Page 4 of 8
http://www.biomedcentral.com/1756-0500/7/727
between RD losses, specific pulse-field gel electrophor-
esis (PFGE) profiles and antigen alleles [3,4,17,18]. The
absence of BP1948-BP1966 in cluster I isolates in this
study, in particular, can be likened to the same RD loss
in Finnish isolates collected since 1999 which belong to
PFGE Group IVβ [20]. As these isolates have only
emerged recently, a strong temporal relationship with
BP1948-BP1966 could be made. In addition, given the
highly homogeneous nature of B. pertussis populations,
it is likely that isolates within this PFGE profile are
identical to cluster I isolates in this study. Previous
reports of RD losses and virulence-associated alleles
by King et al. [4,5] showed a definitive relationship
between BP1948-BP1966 loss and isolates carrying the
ptxP3 allele. All cluster I isolates in this study and
additional isolates not included in this study carried
the ptxP3 allele in addition to prn2, a non-ACV allele
[21]. Thus, the RD was lost in current, globally circulating
isolates that have expanded over time from a single clone.
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Functional significance of gene losses from regions of
difference
The RD encompassing BP910A-BP934 was absent from
most isolates analysed by several other studies [4,5,19,22]
as well as this one. The defining feature of isolates, which
had retained this RD, was the fact that all were collected
before the introduction of whole cell vaccines. Within
this RD, the majority of genes in BP910A-BP934 encode
hypothetical proteins or transcriptional regulators. Genes of
known function include a putative succinate-demialdehyde
dehydrogenase and a citrate utilization protein.
The second major RD loss was BP1948-BP1966, which

was absent from seven, all very recent, isolates of the 42
selected. RD BP1948-BP1966 is 22.7 kb in size and consists
of 18 genes, the majority of which are involved in energy
metabolism, transport or binding or are pseudogenes [3].
Interestingly, BP1948, which encodes a 44 kDa branched
chain amino acid binding protein involved in membrane
transport, has been identified as immunogenic by Tefon
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Figure 2 Correlation between the losses of regions of difference (RDs) and single nucleotide polymorphism (SNP)-based evolution of
Bordetella pertussis. RDs which were variable across 42 B. pertussis isolates from unique SNP profiles (SP) were plotted against the evolution of
B. pertussis as determined previously by SNP typing. Grey boxes indicate the presence of a gene whereas white boxes indicate the absence of a gene.
In total 16 genes were variable, representing 10 RDs. Genes representing RDs which were present in all strains were not included in this Figure. Roman
numerals represent B. pertussis clusters determined by SNP typing [14] and ‘UC’ denotes isolates that were not assigned to a specific SNP cluster.
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et al. and the deletion of this region may potentially
be advantageous to B. pertussis if its loss decreases overall
immunogenicity and herd immunity in a population [23].
Other genes of interest within variably absent RDs

included copper resistance proteins within the RD
BP3314-BP3322 (represented by BP3319 and BP3322)
[16]. BP3322 was absent from three B. pertussis strains,
two of which belong to the predominant SPs (SP13 and
SP14) in SNP cluster I, whereas BP3319 was absent from
L669 and both BP3319 and BP3322 were absent from
L1022- two cluster VI strains. The regulation of copper
concentrations is tightly controlled to prevent toxicity
within the cell [3], although the exact effects of these gene
losses have not been determined. The absence of the
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whole RD from earlier strains compared with individual
gene losses from SP13 and SP14 indicate that some of
these more recent losses occurred independently.

Conclusions
The losses of RDs or RD-associated genes shown in this
study demonstrate that genome changes, particularly
genome reduction, are an ongoing process in B. pertussis.
Most of the individual RD-associated gene losses have
occurred randomly, except that the loss of two RDs was
each shown to be temporally associated with an evolution-
ary event, as shown by a change in SNP cluster. However,
these events are not likely to have been directly due to
selection pressure but instead could be explained by
“genetic hitchhiking” [15] in fitter B. pertussis variants as a
result of selection somewhere else in the genome. We also
demonstrated that an mPCR/RLB method can be used as
a rapid method to detect presence or absence of RDs.

Methods
Bacterial isolates
Based on previous SNP typing of a diverse range of B.
pertussis by Octavia et al. [14], one B. pertussis isolate
from each of the 42 unique SNP profiles was selected to
represent the evolution of B. pertussis since the 1920s.
Where possible, isolates were selected to be most represen-
tative of their SP in terms of year and region of isolation.
Bacterial isolates were grown on Bordet-Gengou agar (BD)
supplemented with 10% defibrinated horse blood (Oxoid)
for 3–5 days at 37°C. DNA was extracted using the phenol/
chloroform method and used for mPCR.

Identification and selection of regions of difference
RDs were previously defined by Cummings et al. [24] as
two or more adjacent array elements not detected in at
least 3 strains of B. pertussis. However, further studies
identified additional RDs consisting of either single genes
or two consecutive genes, which were variably present
in different isolate collections [3-5,16,19]. For this study,
previously identified RDs were considered suitable for
analysis if there was at least one gene, which had been
shown to be variably absent from previously studied B.
pertussis populations. The prevalence of each RD loss was
also calculated and RDs present in more than 98% of the
B. pertussis population from each study were not studied.
To avoid confusion, specific RDs are referred to in this
study by the corresponding genes on either side of the
RDs. A total of 35 RDs met the criteria and were used for
further analysis. Larger RDs and RDs which had been
shown to be most variable, had more than one gene
selected to represent the RD. Six RDs met these criteria
and therefore had more than one representative gene
(Table 1).
Primer and probe design
B. pertussis Tohama I, a completely sequenced reference
strain (NC_002929) [2], was used as the basis for design-
ing PCR primers and probes for each of the selected
RDs. All primers were 18–24 bp in length and amplified
regions with similar G + C content for efficient multi-
plexing. Primer interactions and dimer formation within
mPCRs were analysed using Autodimer software [25].
Amplicons were 150–300 bp with annealing tempera-
tures between 50-60°C, from regions within selected
RDs, in order to allow simultaneous amplification in a
multiplex reaction.
Corresponding RLB probes for each of the selected

genes were also designed using Tohama I genome as a
reference to ensure specific binding. Each probe was
designed to be 20–22 bp in length and complementary
to individual PCR products. Each probe was labelled at
the 5’ end with an amine group to allow binding to the
nylon membrane. The sequences of forward and reverse
primers, expected PCR product size, corresponding RD
probes and the function of each gene of interest are
listed in Additional file 1: Table S1. The selected genes
from each RD were each individually tested by single-
plex PCR on a subset of strains and confirmed on 2%
agarose gel to determine whether the selected regions/
genes were absent before combining primer sets into a
multiplex-PCR.

Multiplex PCR
Each mPCR was optimised to contain at least 8–9 targets
as it had not been possible to include all targets in one
mPCR. Each reaction mixture consisted of 8–9 primer
pairs at a concentration of 10 μmol each, ~30 ng genomic
DNA, 2U Taq polymerase (Biotium), 0.25 mM each of
dATP, dTTP, dGTP (Bioline) and 0.125 mM each of bio-
tinylated/non-biotinylated dCTP (Roche), 3.5 mM MgCl2
and 1 M betaine (Sigma-Aldrich). Thermocycling condi-
tions included a touchdown step and were as follows:
initial denaturation at 96°C for 2 min; 35 cycles of 96°C
for 30 sec, 55°C for 30 sec, 72°C for 15 sec; and final
extension at 72°C for 7 min. Individual PCR confirmation
was then carried out to determine the reliability of mPCR
in amplifying desired products and whether any mis-
amplification or primer dimer formation occurred.

Reverse line blot assay
The reverse line blot assay was carried out according to
Kong et al. [6]. Briefly, a Biodyne C membrane was acti-
vated with 16% (w/v) 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDAC) for 20 min and rinsed with sterile
milliQ water. The membrane was placed in a Miniblotter®
(Immunetics) and specific 5’ amine labeled oligonucleotide
probes were then bound to the membrane and fixed with
0.1 M NaOH. The membrane was then removed, rotated
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90° and placed back into the Miniblotter. Products from
the five mPCR were combined and boiled for 5 min before
being applied to the membrane perpendicular to the
bound probes. The membrane was then incubated at 55°C
for 1 hr before washing in 1× SSPE (150 mM sodium
chloride, 10 mM sodium phosphate and 1 mM EDTA)/
0.1% SDS solution. A streptavidin-peroxidase conjugate
(Roche) was then added and the membrane further
incubated at 42°C for 1 hr before washing and exposing
with enhanced chemiluminescence (ECL) detection kit
(GE LifeSciences). Chemiluminescence was detected using
LAS3000 Imager (Fujifilm).
A clear hybridisation signal was interpreted as the pres-

ence of the corresponding gene, whereas the lack of signal
was interpreted as the absence of a gene. Faint or indis-
tinct hybridisations deemed ambiguous were confirmed
using individual PCR and agarose gel electrophoresis.
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