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Abstract

Background: The nucleus accumbens (NAc) has a well established role in reward processing. Yet, there is growing
evidence showing that NAc function, and its connections to other parts of the brain, is also critically involved in the
emergence of chronic back pain (CBP). Pain patients are known to perform abnormally in reward-related tasks,
which suggests an intriguing link between pain, NAc connectivity, and reward behavior. In the present study, we
compared performance on a gambling task (indicating willingness to risk losing money) between healthy pain-free
controls (CON) and individuals with CBP. We then measured modular connectivity of each participants’ NAc with
resting state functional MRI to investigate how connectivity accounts for reward behavior in the presence and
absence of pain.

Results: We found gain sensitivity was significantly higher in CBP patients. These scores were significantly
correlated to connectivity within the NAc module defined by CON subjects ( which had strong connections to the
frontal cortex), but not within that defined by CBP patients ( which was more strongly connected to subcortical
areas). An important part of our study was based on the precedence that a range of behaviors, from simple to
complex, can be predicted from brain activity during rest. Thus, to corroborate our results we compared them
closely to an independent study correlating the same connectivity metric to impulsive behaviors in healthy
participants. We found that our CBP patients were highly similarin connectivity to this study’s highly-impulsive
healthy subjects, strengthening the notion that there is an important link between the brain systems that support
chronic pain and reward processing.

Conclusions: Our results support previous findings that chronic back pain is accompanied by altered connectivity
of the NAc. This lends itself to riskier behavior in these patients, a finding which establishes a potential cognitive
consequence or co-morbidity of long-term pain and provides a behavioral link to growing research showing that
chronic pain is related to abnormal changes in the dopaminergic system.

Keywords: Nucleus accumbens, Connectivity, Resting state, Monetary risk, Chronic back pain
* Correspondence: a-apkarian@northwestern.edu
†Equal contributors
1Department of Physiology, Northwestern University, Feinberg School of
Medicine, 300 E. Superior St, 60611 Chicago, IL, USA
3Departments of Anesthesia and Surgery, Northwestern University, Feinberg
School of Medicine, 300 E. Superior St, 60611 Chicago, IL, USA
Full list of author information is available at the end of the article

© 2014 Berger et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

mailto:a-apkarian@northwestern.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Berger et al. BMC Research Notes 2014, 7:739 Page 2 of 14
http://www.biomedcentral.com/1756-0500/7/739
Background
The mesolimbic system, and the NAc in particular, has
traditionally been viewed as the brain’s primary reward
circuitry, and is commonly framed in terms of its
functions regarding motivation, reward-valuation, and
pleasure-seeking. However, a growing body of literature
now suggests that this system has roles which expand
beyond monovalent hedonic processing to also encom-
pass aversive learning, including in the contexts of fear,
anxiety, and pain [1-3]. Recent research has shown va-
rious changes in the reward circuitry, specifically in con-
nections to/from the NAc of individuals with chronic
back pain (CBP) [4,5]. CBP patients exhibit NAc activity
that is distinct from healthy subjects with the offset of
an acute painful stimulus [6]. Additionally, we and
others have identified altered structural and functional
abnormalities within this circuitry in these patients, in
particular in the connectivity between NAc and pre-
frontal regions [5,7,8]. The medial prefrontal cortex
(MPFC) is known to have increased activity in CBP pa-
tients [9], and the synchronous activity between this area
and the accumbens is highly predictive of transition
from a subacute to a chronic pain state one year later.
Additionally, people with a variety of chronic pain
conditions are known to perform abnormally in tasks
designed to engage reward-valuation, motivation, and
decision-making circuitry [10-12]. It is unclear, however,
how pain-related alterations in these systems factor into
reward-behavior. Here, we provide insight into this
question by examining the link between reward-oriented
decision making, functional brain connectivity, and CBP.
To study decision-making in the context of reward, we

use a well-established loss aversion monetary gambling
task. Loss aversion is the phenomenon described in pro-
spect theory by which losses have the tendency to have a
greater hedonic impact than comparable gains in mixed
gambles [13-16]. On average, healthy individuals are
roughly two times as subjectively sensitive to losses as
they are to gains, such that they would need a potential
gain of at least $100 to make up for a potential loss of
$50 [14]. This aversion has been robustly demonstrated
for a variety of factors – including money and amounts
of objects – and has also been found to be stable within
subjects across both risky and riskless contexts. [13].
Additionally, being less loss averse – that is, having
lower sensitivity to losses and/or increased sensitivity to
gains - has been associated with a variety of behavioral
and neuropsychiatric disorders , as well as with a general
increased probability for risk-seeking and impulsive
actions [13,14,17,18]. Thus, performance on this task is
thought to be indicative of a person’s likelihood to
take risks.
To investigate the relationship between risk behavior

and neural activity, we then compare functional brain
activity between groups during the gambling task. As a
growing body of evidence supports the notion that res-
ting brain activity (which is a measure of synchronous
activity between different brain regions during a task-
free state) predicts a variety of simple and complex be-
haviors, we also correlate our subjects’ behavior during
this task to their resting state brain connectivity. Because
the task scan results showed no differences in activity
despite the behavioral differences (refer to Results sec-
tion), we concentrate primarily on group disimilarities in
resting state connectivity. The advantages to measuring
resting as opposed to task-based activity is that (1) it is
robust and has been shown to be reproducible within
and between subjects [19,20] and (2) it may be viewed as
a baseline – that is, the brain’s intrinsic functional reper-
toire in the absence of an external task or event which
reflects a person’s accumulation of experiences and
learned behaviors [10,19,21-23]. We are interested in the
extent to which this baseline might indicate one’s mon-
etary risk-taking tendencies and since chronic pain is as-
sociated with a pervasive alteration in resting brain
activity [24-26], we suspect that these differences in
“baseline” activity will correspond to chronic pain pa-
tients’ behaviors. Given that primary targets of func-
tional and structural reorganization in CBP lie within
reward-processing circuitry (in particular the NAc), and
aberrant decision-making in the context of reward has
already been demonstrated in chronic pain conditions,
we hypothesize that CBP patients will perform diffe-
rently (i.e., make riskier decisions) in the loss-aversion
task than their healthy counterparts. Moreover, since
resting activity has been shown to be not only sculpted
by individual experience [23,27] but also reflective and
even predictive of an individual’s decisions in various
contexts (including risk and reward) [20,22,28], dif-
ferences in task behavior should correlate to differences
seen in the resting state functional connectivity of the
reward circuitry in our participants.
To corroborate our results, we closely compared them

to an independent study using an identical brain con-
nectivity metric that predicted impulsive tendencies in
healthy subjects (which we refer to as the “Davis study”
[29]). In this study, resting state modular connectivity
(which isthe functional grouping of many brain regions
based on their synchronicity) was used to measure how
different areas of the brain interact with each other over
the length of a scan. Although grouped in the same fa-
mily of functional connectivity metrics such as inde-
pendent component analysis, seed-based connectivity,
and a wealth of graph-theoretic measures, modular con-
nectivity used here was advantageous in that it allowed
for many brain regions to be grouped together as a
single network without setting arbitrary correlation thre-
sholds. The Davis study found modular connectivity was
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highly correlated with impulsivity, with the most im-
pulsive individuals exhibiting relatively less connectivity
between the NAc and midline prefrontal regions [29].
As NAc-frontal cortex connectivity is of particular im-
portance in CBP, we were interested in how the NAc
modules of our CBP patients compared to those of
healthy individuals across the impulsivity spectrum.
Figure 1 Monetary decision making is more impulsive in CBP relative
depiction of the task is given. When the stimulus offer was shown, particip
was worth possibly losing the amount in red. Each trial lasted 12.5 seconds
matrices are shown for 2 subjects. Notice the CBP patient was more likely to a
at the highest potential gain. c) Gain and loss sensitivity curves are shown for
an offer withr each potential gain or loss. The number “m” is the slope of the
matrices for each group are shown. The right-most matrix is the difference be
acceptance for higher gains in CBP. The color bar expresses a different range
acceptance in CON, and positive values indicate higher probability for CBP. e)
The error bar represents the standard error. Only gain sensitivity is significantl
monetary offers when larger potential gains are involved. f) Regions with sign
with Z-statistic thresholded at 2.3 (shown here >3.0) and results whole-brain c
activations for CONs and CBPs was empty, even before correction for multiple
Results
Overall, CBP patients were more likely to accept offers
with higher potential gains during the loss-aversion task,
which is visually explained in Figure 1a-c. This can be seen
in the group mean decision matrices in Figure 1d. Of the
three scores compared, only gain sensitivity was signifi-
cantly different between CBP and CON groups (p < 0.05,
to CON, seen in behavior but not in task brain activity. a) A
ants decided whether the possibility of winning the amount in green
, with an inter-trial interval of 10 to 12.5 seconds. b) Loss-aversion
ccept a monetary offer than the CON subject, with complete acceptance
the same 2 subjects. Each point represents the probability of accepting
fitted line, indicating their gain or loss sensitivity. d) Mean loss aversion
tween the group means, highlighting the higher probability of
of probabilities, where negative values indicate a higher probability of
The bar plots show each group’s mean gain and loss sensitivity scores.
y different (p < 0.05), with CBPs exhibiting a higher likelihood of accepting
ificant activation for task versus baseline for CON and CBP are shown,
luster corrected at p < 0.05. The statistical contrast map between
comparisons.
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Figure 1e). CBPs (3.11 × 10−2 ± 6.11 × 10−3) had higher
gain scores than CONs (2.53 × 10−2 ± 6.79 × 10−3). The
group difference remained stable (p < 0.05) for the smaller
subset of participants who had the entire set of imaging
data (CBPs: 3.05 × 10−2 ± 7.18 × 10−3 and CONs: 2.45 ×
10−2 ± 6.47 × 10−3). The result indicates a greater likeli-
hood that CBP patients would accept offers with larger
potential monetary gains even if they could potentially lose
larger amounts of money. This difference in behavior
could not be attributed to pain during performance, as
there was no correlation between gain scores and pain rat-
ings on the day of the task (r = 0.058, p = 0.882). Average
reaction times during the task were also not significantly
different between groups (CBPs: 479.12 ± 93.3 ms and
CONs: 485.24 ± 103.8 ms; p = 0.88).

Connectivity
Our initial imaging analysis was focused on brain activity
related to the task, using a general linear model to ge-
nerate a group contrast between CBP and CON partici-
pants. After creating activation maps showing significant
increases in activity during the task versus during inter-
trial intervals for each group (Figure 1f ), we compared
the two group maps. Nothing survived correction for
multiple comparisons, nor were there significant dif-
ferences in activity before this correction – the contrast
map was empty in both instances.
We therefore turned our focus to resting state con-

nectivity. Note, from here on out, we use the terms
“connectivity” and “modular connectivity” interchange-
ably. Our goal was to determine how modular con-
nectivity of the NAc was related to impulsive monetary
behavior, and whether this relationship was altered in
CBP. We designate the nomenclature of modules accor-
ding to a previous study examining modular connectivity
and impulsive behavior [29]. In that study, for their “inter-
mediate” impulsive participants, “module 1” consisted
primarily of visual processing regions; “module 2” was
mostly somatosensory, motor, and auditory; “module 3”
(also labeled “subcortical drive 1”) was the NAc module,
but also contained frontal and temporal lobe regions; and
“module 4” (also labeled “subcortical drive 2”) consisted
mostly of medial temporal lobe structures including the
amygdala and hippocampus. As modularity algorithms
assign numbers to modules arbitrarily, we re-labeled our
modules to best fit this structure. Further, for the re-
mainder of the paper, we refer to module 3 as the “NAc
module”, as it is our main focus. Figure 2a illustrates the
modularity of the mean connectivity matrix for each
group, showing in general that the CON group followed
the whole-brain modular structure mentioned above,
while the CBP deviated in the NAc module and module 4.
The CBP NAc module integrated more subcortical re-
gions, including the hippocampus and amygdala, but it
was segregated from the frontal regions included in the
CON group. Module 4 was also quite different from that
of the CON group, consisting mainly of frontal and pa-
rietal regions with essentially no medial temporal regions.
Table 1 provides the modular designation of each brain re-
gion for both groups. The main finding here is that the
CBP NAc module was more integrated with other subcor-
tical structures, and less with frontal regions – the oppo-
site of the CON group. The total number of modules in
the brain was not significantly different between groups
(CBP = 3.68 ± 0.57, CON= 3.55 ± 0.59).
Figure 2b illustrates the percentage of participants that

integrate each brain region into the NAc module. The
CON group has roughly 15% – 20% more participants
than CBP that include prefrontal, temporal lobe, and
midline cortical structures into the NAc module. Inte-
gration of medial temporal and subcortical structures
into the NAc module, on the other hand, was 20% to
30% higher in CBP. A visual depiction of this is shown
in the inset of Figure 2c, where regions shown in blue
are common members of the NAc module in both
groups – determined by each group’s average connecti-
vity matrix. Those shown in gray and black are exclusive
to either CON or CBP, respectively. Further, here we see
that the mean connectivity across blue regions, and bet-
ween blue and gray regions, is significantly negatively
correlated to gain sensitivity (p < 0.05). This is not the
case with connectivity between blue and black regions
(p = 0.11). In other words, all our participants’ gain sensi-
tivity scores can be accounted for by NAc connectivity,
if we define that connectivity using only our healthy sub-
jects. This is not the case if we define NAC connectivity
with only our CBP patients. This is a key finding in our
study, and suggests that the connectivity the CBP group
lacks (to the frontal areas) may influence impulsive
behavior.
Given the findings so far, we questioned whether our

CBP participants’ brains were similar to healthy individ-
uals with impulsive tendencies. As our healthy controls
exhibited lower monetary risk in general, we tested the
similaritybetween our participants and those of an inde-
pendent study (the Davis study) examining modular
connectivity and impulsivity in a healthy population
[29]. Using the modules from subjects deemed “low”,
“intermediate”, or “high” impulsivity in [29] as templates
(from here on out referred to as Davis templates), we
measured the mutual information between these tem-
plates and the modular structures from each of our par-
ticipants. Mutual information ranges from 0 to 1, with a
“1” meaning that modular structure between 2 brains is
identical. ANOVA on ranks determined mutual informa-
tion was not different between CON and CBP groups.
However, mutual information with the high-impulsivity
Davis template was most different between groups, with



Figure 2 NAc modular connectivity includes more subcortical regions in CBP and more frontal regions in controls. a) The biggest
difference in modular structure of the group mean connectivity matrices lies between modules 3 (the NAc module) and 4. Connectivity matrices
are labeled as they best align to those previously defined [29]. Shown are the lateral and medial views of the brain. For CON, the NAc module
integrates more frontal regions, while module 4 is primarily subcortical. In contrast, for CBP, the NAc module integrates subcortical structures,
while moduIe 4 includes mostly frontal and parietal regions. b) Each brain region (see Table 1) is assigned its likelihood of membership with the
NAc module based on the percentage of participants including that region with this module. The bar plot shows the difference between the
groups. A greater percentage of CBPs integrated subcortical and medial temporal regions with the NAc, while more controls integrated midline
cortical, temporal lobe, and prefrontal regions. c) The NAc module is divided into shared and exclusive regions. Mean connectivity across these
regions are correlated to gain sensitivity scores. The inset plot indicates regions that both CON and CBP integrate into the NAc module (blue
nodes), based on each groups’ mean connectivity matrix. Gray nodes indicate those regions that are exclusively integrated to the CON’s NAc
module, while black nodes are exclusive to CBP. Scatter plots illustrate the Pearson correlation between gain sensitivity scores and the mean
connectivity between all nodes within each group of regions. The only plot that is not significantly correlated is with the blue to black nodes,
suggesting the fully integrated NAc module in CBP cannot account for gain sensitivity, whereas that of controls can. Black lines in all maps
indicate functional links between regions thresholded at a whole-brain link density of 0.2.
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CBP exhibiting 0.35 ± 0.21 and CON exhibiting 0.25 ± 0.22
mutual information. Additionally, our CON partici-
pants showed the least similarity to the high-impulsivity
template. Although not significant, the mean difference
indicates CBP patients tend to have general modular
connectivity that is more similar to highly impulsive indi-
viduals compared to our CON participants (Figure 3a).
When we examined the NAc module alone, we found

that CBPs were more similar to the highly impulsive Davis
participants. CONs, on the other hand, were more similar
to the intermediately impulsive individuals. Figure 3b
depicts this in 2 ways. First, similar to Figure 2b, we deter-
mined the percentage of participants that integrated each
brain region into their own the NAc module. The color
plot is a narrowed-down version of Figure 2b, including
only brain regions that were within the NAc modules of
all Davis templates (all regions spanning the NAc modules
of low, intermediate, and high templates). One can see the
NAc modules of CBP patients were more similar to those
of the highly impulsive Davis participants. On the other
hand, our CON participants had NAc modules that were
more similar to those of the intermediate- and low-



Table 1 List of ordered brain regions in Figure 2b

Region CBP CON

Prefrontal Frontal_Pole* 4 3

Insular_Cortex 2 2

Superior_Frontal_Gyrus 4 3

Middle_Frontal_Gyrus 4 3

Inferior_Frontal_Gyrus_pars_triangularis 4 3

Inferior_Frontal_Gyrus_pars_opercularis 4 2

Precentral_Gyrus 2 2

Temporal lobe Temporal_Pole 3 4

Superior_Temporal_Gyrus_anterior_division 2 2

Superior_Temporal_Gyrus_posterior_division 2 2

Middle_Temporal_Gyrus_anterior_division 4 3

Middle_Temporal_Gyrus_posterior_division* 4 3

Middle_Temporal_Gyrus_temporooccipital_part 4 2

Parietal/visual Inferior_Temporal_Gyrus_temporooccipital_part 4 1

Postcentral_Gyrus 2 2

Superior_Parietal_Lobule* 2 2

Supramarginal_Gyrus_anterior_division 2 2

Supramarginal_Gyrus_posterior_division 4 2

Angular_Gyrus 4 2

Lateral_Occipital_Cortex_superoir_division 1 1

Lateral_Occipital_Cortex_inferior_division 1 1

Intracalcarine_Cortex 1 1

Midline cortical Frontal_Medial_Cortex 4 3

Juxtapositionalobule_Cortex 2 2

Subcallosal_Cortex 3 3

Paracingulate_Gyrus* 4 3

Cingulate_Gyrus_anterior_division 4 3

Cingulate_Gyrus_posterior_division 1 1

Precuneous_Cortex 1 1

Cuneal_Cortex 1 1

Frontal_Orbital_Cortex 4 3

Medial temporal Parahippocampal_Gyrus_anterior_division 3 4

Parahippocampal_Gyrus_posterior_division 3 4

Lingual_Gyrus 1 1

Temporal_Fusiform_Cortex_anterior_division* 3 4

Temporal_Fusiform_Cortex_posterior_division* 3 4

Temporal_Occipital_Fusiform_Cortex 1 1

Occipital_Fusiform_Gyrus 1 1

Frontal_Operculum_Cortex* 4 2

Operculum/auditory Central_Opercular_Cortex 2 2

Parietal_Operculum_Cortex 2 2

Planum_Polare 2 2

Heschls_Gyrus_(includes_H1_and_H2) 2 2

Planum_Temporale 2 2
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Table 1 List of ordered brain regions in Figure 2b (Continued)

Supracalcarine_Cortex 1 1

Occipital_Pole 1 1

Subcortical Thalamus* 3 3

Caudate 3 3

Putamen 3 3

Pallidum 3 3

Hippocampus* 3 4

Amygdala 3 4

Accumbens 3 3

Numbers on the right indicate to which module each region belonged based of the average connectivity matrix for each group, and correspond to those shown
in Figure 2a. Notice, modules 1 and 2 are mostly matched across regions. Modules 3 (NAc module) and 4 are the most different. Regions are listed in the order
they appear in the Harvard-Oxford atlas, and divisions placed between them are simply to illustrate under which category most of them fit. Bolded regions with
asterisks indicate areas that are significantly different (p < 0.05) between CBPs and CONs in their % membership with module 3 (NAc module) as shown
in Figure 2b.
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impulsivity Davis participants. The bar plot to the right
illustrates the number of participants in each group that
had the greatest overlap with the Davis NAc modules. The
distribution of the bar plot shows that CBP participants
tended to have NAc modules more similar to high impul-
sivity individuals, followed by intermediate, then low. On
the other hand, CONs were most similar to the inter-
mediate, followed by low, then high. Overall, this result
Figure 3 Brain modular connectivity in CBP matches that observed in
structure of each participant and those previously described (“Davis template
behavior. Although mutual information between CON and CBP participants w
structure to highly impulsive individuals. Bars indicate group mean, error bars
region with their NAc module (established from the union of NAc modules fo
spectrum indicate a greater percentage of CBPs included a specific region in
percentage of CONs; white indicates that a region was not part of that specif
impulsivity template, there was a greater percentage of CBPs with the same r
integrated the intermediate regions into their NAc. The bar plot shows the nu
NAc module, illustrating the same results as the color plot. c) Using modules
matrix indicates the Pearson correlation of gain sensitivity to the mean conne
are those that take the NAc module connectivity into account. Asterisks are si
plots of the significant correlations from C are shown. Only gain sensitivity an
significantly correlated (p < 0.05).
suggests that the connectivity of the NAc in CBPs is very
similar to that of highly impulsive individuals, whereas
our CONs have similar connectivity to individuals with
intermediate impulsivity.
The Davis study highlights that impulsivity was corre-

lated to connectivity across modules, rather than within
modules. We wanted to test this in a similar fashion by
correlating our gain sensitivity scores to cross-module
high impulsivity. a) Mutual information between whole-brain modular
s”, [29]) for healthy individuals with high, intermediate, and low-impulsive
as not significantly different, CBP expressed a more similar modular
are standard error. b) The percentage of participants that integrated each
r all Davis templates) is shown. Colors toward the red end of the
their NAc module, whereas those toward the blue end indicate a greater
ic template. For regions that were part of the NAc module in the high
egions in their NAc modules, whereas a higher percentage of CONs
mber of subjects whose NAc module overlaps the most with each Davis
delineated by the intermediate-impulsivity template, the correlation
ctivity across modules. The most extreme correlations, outlined in black,
gnificant (p < 0.05), and correspond to the plots shown in D. d) Scatter
d connectivity of the NAc module to itself and to module 4 were
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connectivity. For the sake of consistency with the Davis
study, we defined our modules identically to theirs. Be-
cause most of our participants modules were most simi-
lar to those of the intermediate Davis participants, we
concentrated on that template. The correlation matrix is
shown in Figure 3c, where correlations with the NAc
module are outlined in black. Only the connectivities of
the NAc module to itself and to module 4 were signifi-
cantly correlated to gain sensitivity (p < 0.05). Figure 3d
demonstrates a negative relationship, suggesting that the
more tightly the nodes of the modules are integrated
(which includes prefrontal, NAc, and amygdala), the less
gain sensitive the individual. Overall, we show that 1)
the modular connectivity of the brain in our CBP pa-
tients is similar to highly impulsive individuals, whereas
our CON participants are more similar to intermediately
impulsive individuals, 2) the connectivity within and
across modules (specifically with those involving the
NAc) correlates to reward behavior, and 3) these correla-
tions are stable whether modular structure is determined
by our data or a completely independent data set. For all
connectivity analyses, regressing out age and sex did not
change our results.

Discussion
Here we show that monetary reward behavior in CBP
patients differs from healthy individuals. Whereas both
groups demonstrate equal sensitivity to monetary loss
and thus have an equal sensitivity to aversive conse-
quences, CBP patients are significantly more sensitive to
monetary gains, and in turn are likely to take greater
risks when the opportunity for receiving larger sums of
money presents itself or when a big enough reward is of-
fered. We show further that the resting brains of these
two groups differ in their modular connectivity, notably
in regions that are integrated with the NAc. Healthy par-
ticipants tended to have more connectivity between the
NAc and frontal regions, while the NAc of CBP patients
was more connected to subcortical structures. Moreover,
when we compared the modular connectivity of our par-
ticipants’ brains to those of another study with a range
of impulsive subjects, we found that CBP patients re-
sembled those highly-impulsive subjects, while our
CON participants were more similar to intermediately-
impulsive subjects. Finally, we showed connectivity bet-
ween the NAc and frontal regions was more correlated
to reward behavior than connectivity between the NAc
and subcortical structures. We thus propose that the
lower gain sensitivity of our healthy participants is likely
due to functional NAc-frontal connections that are lac-
king in CBP patients.
These results fit well with current literature regarding

risk, reward evaluation, and decision making. The steps
leading up to a decision may involve minimizing and
negotiating consequences, problem solving, or control-
ling one’s emotions in order to think more clearly. All of
these processes involve top-down modulation of subcor-
tical reward and emotion centers by the brain’s reflective
and executive systems including the frontal, anterior cin-
gulate, and insular cortices [28,30,31]. Simultaneously,
subcortical areas (e.g., the NAc, amygdala, and hippo-
campus) can also exert bottom-up influences on this
process, generating strong positive or negative emotional
states which also act to bias or steer the decision [28].
Many neuropsychological and behavioral disorders that
involve a lesion between frontal and subcortical circuitry
or an impairment in the functioning of these regions
(e.g., Attention Deficit Hyperactivity Disorder (ADHD),
pathological gambling, trichotillomania (TTM), specific
focal brain injuries, and drug addiction) often present with
symptoms that encompass a greater difficulty in making
decisions and include a lack in premeditative skills and a
decreased suppression of automatic thoughts [30,32-36].
These differences and/or changes in decision-making
often lead to risk-taking and impulsivity, behaviors and
traits that these conditions are known for. For example,
individuals with ventromedial PFC (vmPFC) damage often
exhibit altered decision-making processes in the presence
of financial risk, such that they become more attentive to
rewards and gains and less attentive to potential losses,
[30,33]. People with various kinds of substance abuse dis-
orders have also been shown to act more impulsively, per-
forming very similarly to vmPFC patients in a variety of
gambling tasks [37], and functional neuroimaging has
shown that substance abuse is also associated with
changes in activity in and between frontal and subcortical
limbic areas [30,37]. Importantly, changes in resting state
functional connectivity within the mesolimbic circuitry
have also been shown to be anticorrelated to impulsivity
[29,38], and activation of the mPFC during risky decisions
has been shown to be negatively correlated to a healthy
person’s individual risk preference [39,40]. All of these
findings can help explain why we see a negative cor-
relation between NAc-frontal connectivity and gain sen-
sitivity in our study – what they suggest is that more
connections from frontal regions to the NAc allow for
more inhibition of riskier tendencies and in turn make the
person less sensitive to monetary gains.
Loss aversion is a complicated phenomenon involving

the interplay of many brain systems. Thus, while we
focus primarily on the relationship between prefrontal
regions and the ventral striatum in loss aversion, the
roles of other areas like the amygdala, insula, and hippo-
campus (all of which help to detect and plan for risks)
should not be ignored. The amygdala in particular has a
role in aberrant risk-taking and loss perception. Many
forms of impulsivity (monetary and otherwise) in drug
addicts [30,38,41], pathological gamblers [42], people
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with TTM [32], and healthy subjects [43] have been
linked to amygdala activity, volume [44], and/or con-
nectivity from amygdala to striatum or frontal regions
[45]. Amygdala differences have also been directly tied
to monetary risk – in one study, subjects who had struc-
tural damage to the amygdala, experienced an eli-
mination of behavioral loss-aversion and increased their
selection of monetary gains [46]. These findings may
help explain why our CBP patients’ NAc module was
more integrated to subcortical regions including the
amygdala, than was that of our CONs. Our results pro-
vide solid evidence that amygdala connectivity is altered
in CBPs, and specifically point to a relationship between
gain sensitivity and its connections to the NAc. How-
ever, the details of its connections to the whole brain
and how this corresponds to risk-taking is not fully
covered in this study. A focused examination relating
amygdala function/structure to impulsivity and chronic
pain would be of high interest.
The extent to which our results suggest an inability to

process monetary risk specifically, and in turn reflect a
dysfunctional reward system in CBP, needs discussion.
This is because reward perception and action may also
be altered by an overall lack of or difference in emo-
tional awareness during decisions [47] or by changes in
attentional mechanisms [48,49]. Importantly, both of
these alternatives might be due to our participants either
having a history of chronic pain, which would affect the
brain’s circuitry, and/or having a presence of pain while
they are performing the task, which might change their
scores. Regarding the first possibility, changes in func-
tional connectivity between the regions discussed here
have also been implicated in disorders characterized by
intense apathy, defined as an “absence or lack of feeling,
emotion, interest, or concern”, a “lack of motivation”,
and in turn, a “reduction of voluntary, goal-directed be-
haviors” [50]. For example, individuals with these clinical
conditions (which included athymormia and a subset of
Parkinson’s patients) who score highly on measurements
of apathy have been shown to have disruptions in the
connectivity between either orbital-medial PFC and
basal ganglia or between their dorsolateral PFC and
basal ganglia, depending upon how their apathy affects
their daily lives [50]. It could be that for CBP patients,
being in constant pain for many years has changed how
they process emotions in general (as opposed to those
dealing specifically with reward), and this in turn has
influenced their response to decisions and contexts in-
volving risk or high emotions. These studies suggest
disconnections between frontal and striatal areas dull re-
sponses to monetary scenarios (that is, no preference is
shown to either avoid losses or seek gains); this, how-
ever, is not the case in our CBP patients, who clearly
preferred higher potential monetary gains no matter the
corresponding monetary loss amounts. Thus, while there
certainly seems to be a relationship between reduced
connectivity and blunted emotional awareness, it is un-
clear as to whether the results presented here support
this finding.
This leads us to the second possibility mentioned

above – that changes in attentional mechanisms or re-
sources might be contributing to changes in connectivity
and differences in behavior. Due to the overlap in the
network regions involved in both chronic pain and re-
ward, it is possible that the cognitive demand of the
ongoing background pain may alter CBP patients’ ability
to attend to the task (in this case, to attend to both
losses and gains equally) [48,49], and in turn this may be
reflected in our neuroimaging findings. Previous results
have shown that CBP patients do not appear to have def-
icits in other types of tasks, including those measuring
attention and short-term memory [10]. However, the in-
tensity of the chronic pain experienced by these patients
has been shown to correlate negatively with their per-
formance in a different monetary gambling task (Iowa
Gambling Task), such that the more pain they were in
on the day of the task, the lower their score was (and
the riskier they behaved) [10]. Importantly, this relation-
ship between pain intensity and task was not present in
our current behavioral results – there was no correlation
between gain scores and pain ratings on the day of the
task. What these previous findings suggest is that our
current behavioral results point to a more specific cogni-
tive deficit related to reward valuation (as opposed to a
more general cognitive impairment related to pain’s
effect on attention or emotion). More specifically, our
results put forward the idea that CBP may not be a
deficit of loss aversion per se, as patients did not demon-
strate a reduced sensitivity to aversive consequences;
rather, CBP’s effect on the reward system may impact
gain-seeking specifically, in that patients displayed an in-
creased sensitivity to rewarding consequences, which
could also lead to increased risky or impulsive behavior.
Because of its stability across scanning sessions, resting

state scans are commonly viewed as measure of ‘base-
line’ brain activity, and thus in some respect are anala-
gous to fingerprints or genetic profiles of an individual.
Our choice to correlate resting activity to behavior grew
out of the idea that decision-making is a stable charac-
teristic of personality, is a constant process that pervades
daily life, and it requires many brain systems. It should
thus be reflected in baseline activity. This type of ana-
lysis is not uncommon, and it has been shown that rest-
ing brain activity correlates to behavior and performance
in simple cognitive and perceptual tasks [29,51-55].
Further testament to this idea might also be seen in the
growing number of studies indicating altered resting
state activity in diseases associated with abnormal
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behavior such as Alzheimers, Schizophrenia, and chronic
pain [25,56-59]. In the case of our paper, resting state
connectivity also provided us with an alternative method
to link brain activity with behavior, since we were unable
to do so with our task-based scan. Some possible rea-
sons why our GLM analysis failed to bring out dif-
ferences in task activity during the scan could be due to
the set up of the task itself. Limitations include that
there may not have been enough trials to be able to get
a high enough sensitivity for regions of increased
activation (since previous studies have used upwards of
256 trials compared to our 64 [14]). Additionally, the
accept/reject binary response option may not have been
nuanced enough to capture group differences in brain
activation, and instead the utilization of a likert scale on
top of their response (to indicate how strongly or weakly
they accepted or rejected the offer) would have brought
out more subtle differences in neural activity [14].

Conclusions
Here we show that monetary decision making in CBP
patients is more impulsive than healthy individuals. We
demonstrate this behavior is reflected in their baseline
brain connectivity, with CBP patients lacking connec-
tions between the NAc and frontal regions, but exhi-
biting stronger connections to subcortical structures.
Our results are in alignment with a completely inde-
pendent study, and we show that CBP brains are similar
to those belonging to highly-impulsive individuals. We
propose that the higher amount of gain sensitivity
present in our CBP patients, a finding indicative of an
increased likelihood of both risk-taking and impulsivity,
is likely due to a lack of NAc-frontal functional connec-
tions that are present in healthy participants. This find-
ing is important because it establishes a behavioral link
to growing research showing that chronic pain is related
to abnormal functional and structural properties –
including connectivity - in the dopaminergic system.

Methods
Subjects
Twenty-one CON participants (8 females, 36.6 ± 6.94 y.o.)
and 22 CBP patients (10 females, 45.9 + − 7.8 y.o.) en-
rolled in the neuroimaging study. For various reasons, not
everyone could complete the full study; all 21 CONs and
13 CBP patients (6 females, 44.2 ± 7.13 y.o.) performed
the loss-aversion task scan and a subset of these in-
dividuals also received the resting fMRI scan and a T1
anatomical scan as part of the full neuroimaging study
(CON N= 18 (5 females), 35.3 ± 5.6 y.o. and CBP N = 9
(5 females, 46.7 ± 6.0 y.o.). The main behavioral analysis
was done on the entire cohort of subjects who had com-
pleted the behavioral task scan and data were used to ver-
ify the consistency of the results in the smaller cohort who
had the full battery of scans; all neuroimaging analyses
were done on this subset of participants with both the
resting state and task-based scans. CBP patients had pain
for > 1 year with no other pain co-morbidities, and CON
participants had no history of pain. All subjects provided
informed consent to procedures that were approved by
the Northwestern University Institutional Review Board.

Loss-aversion task
In the scanner, participants performed a task, which was
adapted from a published report [14], to measure their
behavior in making monetary decisions. A visual descrip-
tion of the task can be seen in Figure 1a. In order to best
emulate a gambling experience with real monetary pen-
alties (and in turn a real element of risk), we wanted
people to feel as if they were actually winning or losing
money during the task; thus, participants were given $30
in cash at 1–2 weeks before testing and told that it was
theirs to keep but that some of this money may be going
toward the future gambling task. This approach is simi-
lar to that established in previous studies[14,60] and at-
tempts to minimize the type of risk-seeking that can
happen when people receive “free money” or feel as if
they are “playing with the house money”[61]. Stimuli
were presented using Presentation software, version 14,
via a screen attached to the back of the scanner. Trials
began with a red dot (2.5 seconds) followed by a display
where a monetary offer was presented to them. The offer
showed 2 numbers in 2 colors: green indicated the
amount of money they could potentially win (a monetary
gain) if they accepted the offer, and red indicated the
amount of money they potentially could lose (a monet-
ary loss) if they accepted the offer. Participants were told
that they had a 50/50 chance for gaining or losing
money on all offers, and they were asked to think about
whether they would like to take the chance of winning
the amount of money in green with the risk of losing the
amount of money in red. After 2.5 seconds, the option
disappeared and the red dot re-appeared for 5 seconds
(decision-making interval). When this red dot switched
to green, participants were asked to press a button indi-
cating their decision to “accept” or “reject” the offer
(decision-action interval). Participants had 2.5 seconds
to press the button, giving them 10 total seconds from
presentation of the offer to make their decision. After
the decision period, trials were separated with random
inter-trial intervals ranging from 10 to 12.5 seconds. De-
cisions that were made either before the green dot ap-
peared (too early) or after the 2.5 second button press
period (too late) were discarded. Potential gains ranged
from $10 to $38 in $4 increments and potential losses
ranged from $5 to $19 in $2 increments. These values
were chosen based on existing literature suggesting that
people are about twice as sensitive to monetary losses as
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they are to monetary gains [14]. Each offer was pre-
sented 8 times in different combinations such that no
combination was repeated, resulting in 64 monetary
offers total, divided over 2 sets of 32 trials, with all
combinations presented in a random (as opposed to
continuous) order. To make the consequences of the
participants’ decisions as realistic as possible, we ran-
domly chose one of their offers and paid them according
to their decision. For example, after the offer was ran-
domly chosen, we flipped a coin – if it came up heads,
the subject was paid the amount of money in green in
addition to their participation reimbursement; if it was
tails, the amount of money in red was subtracted from
their reimbursement. If they had previously rejected the
randomly chosen offer, they received or lost no extra
money. Thus subjects could win up to an extra $38, or
receive up to $19 less for their participation.
Decision matrices were generated by calculating the

probability of accepting each offer (i.e., how many times
out of the 8 presentations of each offer did the partici-
pant choose to “accept”), creating an 8×8 matrix for each
subject. Matrices were then down-sampled to a 4×4
matrix by doubling the increments of potential gains
and losses and averaging the probability within each
matrix element. Thus, each element in the 4×4 matrix is
composed of the average probability from the cor-
responding elements of the original 8×8 matrix. An
identical approach was taken in [14]. Example decision
matrices are shown in Figure 1b.
To calculate behavioral loss aversion, each participant’s

data (probability of accepting an offer as a function of
potential gain or loss) was fit with a straight line. The
resulting regression coefficients served as individual
measures of a person’s loss and gain sensitivity (an
example is shown in Figure 1c). Although similar to pro-
spect theory, this calculation makes the assumptions of
(1) a linear rather than curvilinear function and (2) iden-
tical decision weights for choices involving a 50% chance
of either winning or losing money; this approach is iden-
tical to those used in previous studies [14,46]. The over-
all behavioral loss aversion (λ, lambda) score for each
participant was calculated as the ratio of the (absolute)
loss sensitivity to the gain sensitivity (loss/gain). All fits,
coefficients, and behavioral scores were calculated using
MATLAB version R2010b (MathWorks). Gain sensi-
tivity, loss sensitivity, and lambda scores were each aver-
aged over groups and compared with an unpaired t-test.

fMRI acquisition
Whole-brain functional MRI data were acquired with a
3 T Siemens TIM Trio whole-body scanner with echo-
planar imaging (EPI) capability, using an 8-channel head
coil. The following parameters were used to collect multi-
slice T2*-weighted echo-planar resting state images:
TR= 2.5 s, echo time TE = 30 ms, flip angle = 90°, slice
thickness = 3 mm, in-plane resolution = 3.475 × 3.475 mm2,
number of slices = 36, number of volumes = 244. Resting
scans lasted 10 minutes, during which time participants
were asked simply to keep their eyes open. Gambling task
functional scans were collected described in a previous re-
port [7]; the only differences from resting state parameters
were FOV = 256 mm, in-plane resolution = 86 × 72 mm2,
number of slices = 40, number of volumes = 281. Each
subject underwent two consecutive scans like this (lasting
about 12 minutes each).

Anatomical scans
T1-weighted anatomical MRI image were acquired for
each subject to aid in registering brain images to standard
MNI 2 mm space. Images were collected with the follo-
wing parameters: TR = 2.3 s, TE = 4.38 ms, flip angle = 8°,
FOV = 256 mm, slice thickness = 1 mm, in-plane reso-
lution = 1.00 × 1.00 mm2 and number of axial slices = 160.

fMRI data preprocessing
Functional MRI data were preprocessed using FSL FEAT
(FMRI Expert Analysis Tool). Resting state images were
subjected to skull extraction, slice-timing correction, bulk
head motion correction, spatial smoothing (Gaussian ker-
nel of full-width-half-maximum 5 mm), and a high-pass
(150 sec) temporal filter. Bulk head motion was < 3 mm
for all subjects. Images were further corrected for motion,
cerebrospinal fluid, and white matter using independent
component analysis, performed with MELODIC. These
artifacts were identified based on their component spatial
maps and time courses, and their time courses were then
regressed out of the BOLD signal, voxel-wise. Global
mean correction was also performed by linear regression
of the average time series of all brain voxels from the
BOLD signal at each voxel. Task imaging data were pre-
processed similarly to resting data with the only difference
being application of a high-pass temporal filter of 50 s.
Again, after preprocessing, the same sources of noise
mentioned above were removed through linear regression.

Task-based GLM analysis
Task scans were first registered to the subject’s indi-
vidual T1 structural image and then into standard MNI
space. Whole-brain statistical analysis was performed
with FSL’s FMRI Expert Analysis (FEAT) tool using a
multi-staged approach before final contrast between
groups was made. Statistical modeling was first per-
formed separately for the gambling task runs (split bet-
ween two scans). Although there are many ways we
could have approached the analysis for this task (for ex-
ample, breaking it down into parameters such as gains
versus losses, accepts versus rejects, difficulty of deci-
sions, etc. [14]), we were primarily interested in resting
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state functional connectivity in relation to decision mak-
ing, and therefore kept this analysis simple, choosing to
study overall task-related activation. After applying a
high pass temporal filter (50 sec), the regressor of in-
terest was made by convolving a canonical (gamma)
hemodynamic response function with a binary vector
(created in Matlab) that represented each trial’s onset
and duration (+1) and all intertrial intervals (0). The task
positive contrasts were obtained for each person for
each of the two scans, and the runs were combined in a
fixed-effects model for each participant.
A higher-level analysis was executed that combined all

sessions for all participants in a given cohort using FSL’s
FLAME (FMRIB Local Analysis of Mixed Effects) tool,
treating participants as a random effect. Here, a one-
sample t-test was performed at each voxel for the
contrast. Z (Gaussianised T) statistic images were thre-
sholded using clusters determined by Z > 2.3 and a
whole-brain corrected cluster significance threshold of
p <0.05. An unpaired two-sample t-test was constructed
with FSL’s General Linear Model (GLM) interface to
compare positive activity maps between CBPs and
CONs, with each cohort represented as an independent
event, again using FLAME as described above. Age and
sex were regressed, and results were corrected for mul-
tiple comparisons with FSL’s “easythresh” command,
a cluster Z threshold >2.3, and a cluster probability
threshold of p < 0.01.

Resting state connectivity analysis
To assess differences in connectivity between CON and
CBP participants, we measured modular connectivity of
the brain using Matlab scripts from the Brain Connectivity
Toolbox [62]. Modular connectivity is a measure of con-
nectivity which essentially clusters regions together based
off their direct connections and those of their neighbors.
It divides a connectivity matrix into subdivisions (or
modules) such that the number of within-module links is
maximized, and the number of across-module links is min-
imized. The resultant modular structure that is extracted
from this calculation thus informs which groups of brain
regions are most strongly connected to each other overall.
As we are focused specifically on the NAc in this study, we
use modular connectivity as a tool to narrow down which
of all brain regions are most likely functionally related to it.
We first registered functional images to standard MNI

space using FSL FLIRT [63], and extracted the mean
BOLD time series from 110 anatomical regions of interest
(ROI) defined by the FSL Harvard-Oxford cortical and
subcortical atlases (excluding the brain stem and anterior/
posterior inferior temporal gyrus due to lack of consistent
scan coverage across participants). BOLD signals from
homologous ROIs were averaged across hemispheres,
resulting in 53 total BOLD time series for each subject.
BOLD time series were band-pass filtered (0.01 to
0.08 Hz) with a 4th order butterworth filter. Connectivity
matrices were then generated for each subject by calcu-
lating the pair-wise Pearson correlation between each ROI
and performing a Fisher’s z transform, resulting in a
53×53 connectivity matrix. Matrices were then z-scored
(to account for overall differences in mean connectivity
between subjects). Modular connectivity for weighted
matrices was then calculated on each connectivity matrix.
As modular connectivity can vary slightly from run to run
due to heuristics in the toolbox algorithm, the Louvian
modularity of each connectivity matrix was calculated
1000 times, each iteration with an additional Kernighan-
Lin fine-tuning to refine the modular structure [64]. The
modular structure that appeared most often out of all iter-
ations was chosen to represent the modular connectivity
of each participant’s connectivity matrix. Subsequent ana-
lyses focused only on the module containing the NAc.
To compare the difference in each region’s membership

within the NAc module between groups, we used a non-
parametric permutation test similar to ones found in pre-
vious literature [65]. The difference between the number
of participants who incorporated a given ROI into the
NAc module (module 3) was calculated as the actual
group difference for that ROI. Then the combined pool of
the groups was resampled into two new groups and the
mean of these new groups was calculated; this process
was repeated for 50,000 iterations in order to create a ran-
dom null distribution of the difference of the group
means. The p-value for the actual group differences for
each region was calculated as the percentile in the gene-
rated null distribution (p-values <0.05 were considered
statistically significant). These values were not corrected
for multiple comparisons.
To compare the modular structure of our subjects’

brains to that of another impulsivity study [29], we cal-
culated mutual information (defined by the Brain Con-
nectivity Toolbox), and overlap. Mutual information,
ranging from 0 to 1, is a measure that calculates the simi-
larity of the modular divisions across different brains,
where a “1” would indicate they are identical. Here, ‘over-
lap’ is defined as follows: let A = regions in module A, let
B = regions in module B, then overlap = [# of regions in
A∩B]/[# regions in A U B]. We designate the nomencla-
ture of modules according to the Davis study and follow
the labeling of their “intermediate” impulsive subjects. In
that study, “module 1” consisted primarily of visual pro-
cessing regions; “module 2” was mostly somatosensory,
motor, and auditory; “module 3” (also labeled “subcortical
drive 1”) was the NAc module, but also contained frontal
and temporal lobe regions; and “module 4” (also labeled
“subcortical drive 2”) consisted mostly of medial temporal
lobe structures including the amygdala and hippocampus.
For a complete description, see the study cited above.
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