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Abstract

Background: Approximately one-third of the AIDS cases in the United States have been attributed to the use of
injected drugs, frequently involving the abuse of opioids. Consequently, it is critical to address whether opioid use
directly contributes to altered susceptibility to HIV-1 beyond the increased risk of exposure. Previous in vitro and

in vivo studies addressing the role of p-opioid agonists in altering levels of the co-receptor CXCR4 and subsequent
HIV-1 replication have yielded contrasting results. The bone marrow is believed to be a potential anatomical
sanctuary for HIV-1.

Methods: The well-characterized CD34*CD38" human bone marrow-derived hematopoietic progenitor cell line
TF-1 was used as a model to investigate the effects of the p-opioid receptor—specific peptide DAMGO (D-Ala2,
N-Me-Phe4, Gly5-ol-enkephalin) on CXCR4 expression as well as infection of undifferentiated human
hematopoietic progenitor cells.

Results: The results revealed the presence of the p-opioid receptor-1 isoform (MOR-1) on the surface of TF-1 cells.
Furthermore, immunostaining revealed that the majority of TF-1 cells co-express MOR-1 and CXCR4, and a
subpopulation of these double-positive cells express the two receptors in overlapping membrane domains. Three
subpopulations of TF-1 cells were categorized based on their levels of surface CXCR4 expression, defined as

non-, low-, and high-expressing. Flow cytometry indicated that treatment with DAMGO resulted in a shift in the
relative proportion of CXCR4™ cells to the low-expressing phenotype. This result correlated with a >3-fold reduction
in replication of the X4 HIV-1 strain llIB, indicating a role for the CXCR4 high-expression subpopulation in sustaining
infection within this progenitor cell line.

Conclusions: These experiments provide insight into the impact of p-opioid exposure with respect to inhibition of
viral replication in this human TF-1 bone marrow progenitor cell line model.
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Background

In addition to several studies linking chronic opioid use
to immunomodulation [1] and increased susceptibility to
bacterial infections [2], the role of opiates as potential co-
factors in HIV-1 pathogenesis and disease has also been
proposed. In vitro experiments that involve treatment of
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peripheral blood mononuclear cells with morphine prior
to HIV-1 exposure resulted in increased viral replication
[3]. It is now known that prolonged treatment with mor-
phine or the selective p-opioid receptor agonist D-Ala2,
N-Me-Phe4,Gly5-ol-enkephalin (DAMGO) enhances the
percentage of T cells and monocytes expressing the HIV-1
co-receptors CXCR4 and CCR5, respectively, thereby
increasing the number of infected cells and the overall
amount of infectious virus produced in subsequent experi-
ments [4]. More directly, morphine treatment increases
HIV-1 infection of blood monocyte—derived macrophages
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by upregulating CCR5 expression and inhibiting produc-
tion of B-chemokines, endogenous CCR5 ligands [5].

Ongoing in vivo studies performed in the simian
immunodeficiency virus (SIV)-infected rhesus macaque/
model have yielded a better understanding of the impact
of prolonged morphine exposure on HIV-1 pathogenesis.
Prolonged morphine exposure increased viral replication
[6,7], increased the number of SIV-infected T cells [8],
accelerated disease progression and neuropathogenesis
[7], increased the amount of plasma virus [6,7], and
increased the incidence of mortality [7]. Despite these
numerous studies, a direct link between an alteration in
CXCR4 or CCR5 surface expression levels and quantity
of plasma virus has not been established.

The p-opioid receptor-1 isoform (MOR-1), the best char-
acterized isoform of the p-opioid receptor family, has been
found on cellular subsets of the immune system, as well
as cells of the central nervous system, including but not
limited to neurons [9-11]. It is possible that reported
inconsistencies in the literature regarding the expression
profile of CXCR4 may be attributable to a cell type—spe-
cific regulation of this chemokine co-receptor by p-opioids.
This process in turn might translate into the differential
ability of p-opioids to modulate HIV-1 replication in
divergent cellular populations. To investigate the effect of
p-opioids on CXCR4 expression in human bone marrow
progenitor cells, the TF-1 cell line was used; it represents a
model of susceptible CD34"/CD38" human hematopoietic
progenitor cells that are blocked at an early stage of
differentiation [12]. To begin experimentation in the
TE-1 cell line, experiments were performed to assess
levels of MOR-1 in these cells by western immunoblot
analyses, flow cytometry, and immunofluorescence mi-
croscopy. To analyze the relative surface distribution of
MOR-1 and CXCR4, immunofluorescence microscopy
studies were also performed. Alterations in total CXCR4
protein levels in DAMGO-treated TF-1 cells were deter-
mined using western immunoblot analyses and surface
expression levels were examined using flow cytometry.
We have previously demonstrated that, in addition to
CXCR4, TE-1 cells express the primary HIV-1 receptor
CD4 on their cell surface, thereby supporting productive
infection by the HIV-1 X4-utilizing (X4) IIIB strain [13].
This observation prompted studies examining the conse-
quence of DAMGO-mediated perturbation in CXCR4
levels on HIV-1 X4 replication in this human bone mar-
row—derived progenitor cell population.

Results

Identification of MOR-1 in TF-1 cells

Western immunoblot analysis confirmed the presence of
MOR-1 protein within TFE-1 cells, clearly demonstrating
the existence of a specific protein species at approximately
50 KDa, the expected molecular mass of human MOR-1

Page 2 of 9

(Figure 1A) [14]. As expected, the levels of MOR-1 in
undifferentiated SH-SY5Y neuroblastoma cell lysates
(positive control) were much higher than those observed
in TF-1 lysates. In addition, the detection of MOR-1 was
abrogated by preincubating the primary antibody with
the MOR-1 blocking peptide. Blotting the membrane for
B-actin confirmed equal loading in all lanes. Immuno-
staining of nonpermeabilized cells analyzed by flow
cytometry (Figure 1B) and fluorescent microscopy
(Figure 1C) clearly demonstrated that MOR-1 was expressed
at the cell surface.

Relative localization of MOR-1 and CXCR4

To analyze the relative distribution of MOR-1 and
CXCR4 at the cellular level, immunofluorescence studies
on nonpermeabilized TF-1 cells was performed. CXCR4
and MOR-1 were shown to be co-expressed on the sur-
face of a number of TF-1 cells. The majority of the cells
quantitated (87%) expressed both MOR-1 and CXCR4 at
the cell surface (Figure 2). Far fewer cells expressed
MOR-1 or CXCR4 exclusively (2% and 3% of counted
cells, respectively), and 8% of cells quantitated did not
express either receptor.

Interestingly, on the surface of double-positive cells,
the staining for the two receptors appears to overlap,
suggesting the possibility of physical proximity. A propor-
tion of these double-positive cells co-expressed CXCR4
and MOR-1 in distinct domains on the surface that
traced the circumference of the nucleus. Additionally,
double-positive cells that exhibited uniform distribution
of expression of the two receptors across the cell surface
differed in nuclei morphology. A similar co-localization
pattern of MOR-1 and CXCR4 has been previously
reported in cortical neurons [10]. Given the observed
changes in nuclear morphology, we proceeded to deter-
mine whether these discrete domains were specific to
MOR-1 and CXCR4 or resulted from general TF-1 cellu-
lar topography. To distinguish between these two possi-
bilities, fluorescently tagged amphipathic molecules that
embed within regions of high lipid density were used to
visualize the plasma membrane. This procedure clearly
demonstrated that the observed discrete domains were
regions of high lipid density (Figure 3A), likely owing to
membrane thinning and nuclear dispersion during M
phase of the cell cycle.

Together these observations suggest a possible link
between cell cycle and the observed MOR-1 and CXCR4
surface localization patterns. To better understand the
influence of the phase of the cell cycle on MOR-1 and
CXCR4 cell surface localization, TF-1 cells were treated
with aphidicolin (10 pg/ml) for 16 hours to induce an
arrest in early S phase. Following treatment, MOR-1
expression was analyzed on the surface of TF-1 cells in S
phase using fluorescent microscopy and flow cytometry.
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Figure 1 MOR-1 is expressed on the surface of TF-1 cells. (A) Western immunoblot analyses performed with the human neuroblastoma cell
line SH-SY5Y (positive control) and TF-1 cell line whole cell lysates demonstrate the presence of p-opioid receptor-1 protein (MOR-1) at ~50 KDa.
Abrogation of the 50-KDa band with preincubation of the polyclonal antibody with a MOR-1 blocking peptide confirms the specificity of reaction.
The membrane was stripped and reblotted for human B-actin (43 KDa) as the endogenous loading control. The blot is representative of results
obtained from three independent experiments. (B) Flow cytometry of nonpermeabilized TF-1 cells stained with an antibody directed against a
region mapping within the N-terminus of MOR-1 (20 pug/ml) shows expression on the cell surface. A fluorescein isothiocyanate (FITC)-conjugated
secondary antibody directed against the primary host was used in combination with primary staining (blue) or alone (red) as a negative control. (C)
The left panel shows a subpopulation of paraformaldehyde-fixed, nonpermeabilized TF-1 cells expressing MOR-1 on the surface (detected in green
with a FITC-tagged antibody directed against a region mapping within the N-terminus of MOR-1). The right panel shows a merge with DAPI
(4' 6-diamidino-2-phenylindole) nuclear staining of the same field. The images were taken at 60x with an Olympus IX81 deconvolution microscope.
J
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TF-1 cells in S phase expressed MOR-1 in a punctate pat-
tern across the cell surface (Figure 3B) and expressed
MOR-1 at a higher mean fluorescent intensity (MFI) than
the untreated, heterogeneous population of TF-1 cells
(Figure 3C). These observations suggested that the diverse
cell surface expression patterns of MOR-1 in conjunction
with CXCR4 are the result of a specific phase of the cell
cycle. While the two receptors are expressed in overlap-
ping membrane domains, suggesting the possibility of
proximity, the localization in discrete membrane domains
surrounding the nucleus may not be due to regulated traf-
ficking of the two receptors.

Effects of prolonged DAMGO exposure on CXCR4
expression

To study the effects of MOR-1 signaling on CXCR4
expression, the levels of total as well as surface CXCR4
was examined in DAMGO-pretreated TF-1 cells. Western
immunoblot analyses were performed on whole cell

lysates prepared from TF-1 cells, in the absence or pres-
ence of two different concentrations of DAMGO (1 and
10 uM), a specific MOR-1 agonist. Total levels of CXCR4
protein (glycosylated CXCR4 monomer detected at
45 KDa) remained unchanged, suggesting that DAMGO
treatment does not affect overall expression or stability
of the CXCR4 protein within the cell (Figure 4A). This
observation prompted studies to determine whether the
subcellular localization of CXCR4 was affected by DAMGO
treatment. Immunostaining for surface CXCR4 was per-
formed on nonpermeabilized TF-1 cells and analyzed by
flow cytometry. Untreated TE-1 cells displayed a distribu-
tion among a range of MFIs, with three distinct cellular
populations: a large population of CXCR4 non-expressing
cells, a low-expressing cell population, and a smaller popu-
lation of CXCR4 high-expressing cells (Figure 4B). This is
consistent with the heterogeneity in CXCR4 expression
observed in the human hematopoietic stem cell compart-
ment [15] and is consistent with levels of CXCR4 surface
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Figure 2 TF-1 cells express MOR-1 and CXCR4 in overlapping
domains. (A) TF-1 cells were cultured and stained as described
above. Briefly, TF-1 cells were grown on poly-D-lysine coated
coverslips and stained, nonpermeabilized, with primary antibodies
directed against MOR-1 and CXCR4, and with DAPI (4' 6-diamidino-2-
phenylindole) staining to show nuclear morphology. The upper left
panel demonstrates a nuclear reaction with DAPI (in blue). The upper
right panel demonstrates a surface reaction pattern for MOR-1 (in
green). The bottom left panel also demonstrates a surface reaction
pattern for CXCR4 (in red). The bottom right panel is an overlay
showing the relative expression of MOR-1 and CXCR4. These images
are representative of all fields captured. All images were obtained at
60x with an Olympus IX81 deconvolution microscope. (B) TF-1 cells
were quantified by counting a total of 1000 cell nuclei, and these
cells were then characterized based on MOR-1 and CXCR4 staining as
single-positive for either protein, double-positive, or double-negative.
This analysis shows that the majority of TF-1 cells are double-positive
for surface expression of the two proteins.

expression in primary human bone marrow cells. DAMGO
(1 and 10 pM) pretreatment for 24 hours resulted in an
alteration in the relative proportion of CXCR4" cells toward
the low-expressing phenotype, which was evident from
an increase in the low-expressing (midrange) MFI peak
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and a reduction in both the non-expressing and high-
expressing MFI peaks. Collectively, these studies show
that total protein levels of CXCR4 remain unchanged,
while surface expression levels of CXCR4 are altered fol-
lowing DAMGO exposure.

Effects of prolonged DAMGO exposure on HIV-1 replica-
tion in TF-1 cells

Given the observed changes in the level of CXCR4 surface
expression following DAMGO treatment and the under-
standing that co-receptor expression levels correlate with
cell susceptibility to HIV-1 infection [16], the level of
impact DAMGO would have on HIV-1 replication was of
interest. HIV-1 core antigen (p24) assays were used to
assess HIV-1 replication in TF-1 cells in the presence of
DAMGO. In comparison with untreated cells, DAMGO
pretreatment for 24 hours resulted in a dose-dependent
decline in p24 production (Figure 5). Specifically, p24 levels
dropped from 885 ng/ml in untreated cells to 386 ng/ml
in cells treated with DAMGO at 1 uM (p<0.001) and
254 ng/ml in cells treated with DAMGO at 10 uM (p <
0.001). This decline, which ranged from 2.3- to 3.5-fold,
was partially reversed upon CTAP (D-Phe-Cys-Tyr-D-Trp-
Arg-Thr-Pen-Thr-NH) pretreatment to 763 ng/ml (p<
0.001). Altogether, the results suggested that exposure to
p-opioids might render bone marrow progenitor cell popu-
lations less susceptible to HIV-1 infection.

Discussion

Because HIV-1 has been reported to penetrate the bone
marrow [17,18] of infected patients, it has been suggested
that cellular subsets of this important compartment may
serve as reservoirs for the virus. We aimed to determine
the effects of the specific MOR-1 agonist DAMGO on
viral replication in human bone marrow progenitor cells.
The human CD34"/CD38" TF-1 bone marrow—derived
hematopoietic progenitor cell line was used as an in vitro
model because it is known to express the HIV-1 receptor
CD4 as well as the co-receptor CXCRA4.

MOR-1 is the most extensively characterized receptor
subtype of the family and it has been identified on termin-
ally differentiated mature immune cell populations, includ-
ing human CD4" cells, cells of the monocyte-macrophage
lineage [19], and more primitive CD34'38  peripheral
blood and cord blood stem cells [20]. Its presence on more
terminally differentiated progenitor cells and the concomi-
tant underlying significance of its presence have, however,
not been fully elucidated. In this regard, we have clearly
demonstrated the presence of MOR-1 in a TF-1 human
bone marrow progenitor cell population.

MOR-1 has also been shown to oligomerize with other G
protein—coupled receptors (GPCRs) such as the chemokine
co-receptor CCR5 [21] with an adverse impact observed
on the G-protein coupling of the other oligomerization
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Figure 3 MOR-1 surface localization varies with the phase of the cell cycle. (A) TF-1 cells were grown on poly-D-lysine coverslips and left
nonpermeabilized. Cells were then stained with a fluorescently tagged amphipathic molecule that embeds within the lipid bilayer. The molecule
embeds preferentially into regions of high lipid density, and therefore these regions are represented by high fluorescence. (B) TF-1 cells were
grown on poly-D-lysine coverslips and then treated with aphidicolin (10 ug/ml) for 16 hours to induce arrest in S phase. Following treatment, cells
were left nonpermeabilized and stained for MOR-1 and with DAPI (4'6-diamidino-2-phenylindole). MOR-1 puncta are located diffusely throughout
the cell. All images were obtained at 40x with an Olympus IX81 deconvolution microscope. (C) TF-1 cells were left untreated or arrested in S
phase and stained for MOR-1 as described above, then analyzed by flow cytometry. Analysis shows an increase in MOR-1 expression in S phase,
as indicated by an increase in mean fluorescent intensity.

partner. Alterations in G-protein coupling, differential impeded by DAMGO in rat cortical neurons [10,11].
affinity of specific agonists, and enhanced internalization = Therefore, future studies will be focused on investigating
have also been reported for the -8 opioid receptor  whether molecular events triggered by MOR-1 signaling
(MOR-DOR) hetero-oligomeric complex [22]. Therefore, —affect CXCR4 receptor recycling and/or CXCR4 signaling
the presence of MOR-1 and CXCR4 in overlapping in bone marrow progenitor cells.

domains on TF-1 cells leaves open the possibility of These studies also provide a unique insight into the
dimerization between these receptors. Such localization role of p-opioids in modulating HIV-1 replication in
of MOR-1 has also been reported in neuronal mem- bone marrow progenitor cells. In the setting of HIV-1
branes of the rat caudate putamen wherein p-opioid infection, downregulation of CXCR4 might translate
receptors were found in cholesterol and sphingolipid-rich  into a reduction in HIV-1 replication under the influ-
membrane subdomains known as lipid rafts [20], where ence of p-opioids, thereby serving a protective func-
they seem to be important in regulation of GPCR signal-  tion, as suggested in studies performed in macaques
ing, receptor phosphorylation, and membrane trafficking  [24]. As shown here, DAMGO exposure resulted in a
[23]. This observation raises interesting questions con-  decrease in HIV-1 replication. While this decrease may
cerning the biological significance of MOR-1 localization  be the result of a decrease in viral entry involving
in TF-1 progenitor cells. The results reported herein =~ CXCR4, the possibility remains that this decrease is the
have also revealed MOR-1-mediated alteration in surface  result of inhibition of post-entry events in the viral life
CXCR4 levels, in line with our previous studies [10,11]. It  cycle. Paradoxically, because the SDF-1-CXCR4 axis is
has been previously reported that CXCR4 signaling is  vital for survival of progenitor cells [25], a reduction in
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Figure 4 DAMGO alters surface expression of CXCR4 on TF-1
cells. (A) Total levels of CXCR4 remain unaltered in TF-1 cells upon
DAMGO treatment. Western immunoblot analyses performed with
TF-1 cell line whole cell lysates demonstrate the presence of
glycosylated CXCR4 monomer at 45 KDa. In comparison to the
untreated cells, DAMGO (1 and 10 uM)-treated cells exhibited a
similar density of CXCR4, indicating that CXCR4 expression at the
protein level does not change. The membrane was stripped and
reblotted for human B-actin (43 KDa) as the endogenous loading
control. (B) Treatment of TF-1 cells with DAMGO results in a shift in
CXCR4* cells to the low-expressing phenotype. Immunofluorescence
flow cytometry analysis of nonpermeabilized TF-1 cells was performed
to detect a change in surface expression of CXCR4 following DAMGO
treatment. Immunofluorescence analysis for surface CXCR4 by flow
cytometry demonstrated that TF-1 cells were distributed among three
populations, non-expressing cells, low-expressing cells (lower mean
fluorescence intensity [MFI]), and high-expressing cells (higher MFI).
DAMGO pretreatment (1 and 10 uM) for 24 hours resulted in a shift in
the relative proportion of CXCR4" cells to the low-expressing
phenotype, as is evident from the increase in the lower MFI peak and
the reduction in the higher MFI peak. CXCR4 antibody isotype controls
are shown at the bottom.

levels of CXCR4 might render them more susceptible
to apoptosis in vivo. This result might provide a plaus-
ible explanation for the hematopoietic dysregulation
observed in animal models of long-term morphine
administration [26-29]. These results warrant further
studies aimed at dissecting the divergent and dichot-
omous effects of p-opioids on terminally differentiated
cell populations in the peripheral blood and bone
marrow.
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Figure 5 DAMGO treatment inhibits the replication of HIV-1
X4-utilizing strain IlIB in TF-1 cells. Analyses involving the
detection of HIV-1 p24 capsid protein were performed on cellular
supernatants 24 hours after infection to assess HIV-1 IlIB replication
in response to DAMGO treatment of TF-1 cells. Absolute values of
p24 levels are denoted in ng/ml on the Y axis. A 2.3-fold decrease
was observed with DAMGO treatment (1 uM), which further declined
to 3.5-fold at 10 uM. CTAP pretreatment reversed DAMGO-mediated
decline in p24 levels. Samples were assayed in triplicate and results
shown are the average of two independent experiments. *p = 0.00012,

**p= 000000076, and *** p = 0.000002.

Conclusions

These studies have demonstrated the presence of
both MOR-1 and CXCR4 on the cell surface of the
hematopoietic progenitor cell line TF-1. Additionally,
these receptors are localized to regions of high hydro-
phobicity within the membrane, indicative of high lipid
density. As such, MOR-1 and CXCR4 are localized in
proximity in this cell population. Most importantly,
these experiments demonstrate the alteration in sur-
face expression of CXCR4 as a result of DAMGO
stimulation, and reduction in HIV-1 replication of a
CXCR4-utilizing (X4) viral strain.

Methods

Materials

The potent cAMP phosphodiesterase inhibitor 3-isobutyl-
1-methylxanthine was obtained from Sigma-Aldrich
(St. Louis, MO). DAMGO, a selective p-opioid peptide,
and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP),
a selective MOR antagonist, were purchased from
Sigma-Aldrich. Amicon Ultra-0.5, Ultracel-3 Mem-
brane, 3-kDa centrifugal filters for protein purification
were obtained from Millipore (Bellerica, MA). Whole
cell lysates were prepared for protein studies in radio-
immunoprecipitation assay (RIPA) buffer (Pierce ECL;
Thermo Fisher Scientific, Rockford, IL), and protein
concentrations were calculated using the bicinchoninic
acid (BCA) protein assay as described by the manufac-
turer (Pierce ECL).
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Cell culture and treatment procedures

The TF-1 CD34'38" cell line (American Type Culture
Collection [ATCC], Manassas, VA) was grown in TF-1
media which is composed of RPMI-1640 medium (ATCC;
Mediatech, Inc., Manassas, VA) supplemented with 10%
heat-inactivated fetal bovine serum (FBS) (HyClone,
Thermo Fisher Scientific, Logan, UT), penicillin (100 U/
ml), streptomycin (100 pg/ml), and recombinant human
granulocyte/macrophage colony-stimulating factor (2 ng/
ml) (eBioscience, San Diego, CA). The SH-SY5Y human
neuroblastoma cell line (ATCC) was propagated in a
1:1 mixture of Eagle’s minimal essential medium with
Earle’s salts, L-glutamine, and F-12 K nutrient mixture
(Mediatech) supplemented with 10% heat-inactivated
FBS (HyClone), penicillin (100 U/ml), and streptomycin
(100 pg/ml). The cells were maintained at 37°C in 5%
CO, at 90% relative humidity.

Western immunoblot analysis

To identify MOR-1 at the protein level, an N-terminus-
specific antibody was used that recognizes a region map-
ping within the extracellular domain of human MOR-1
(N-20, Santa Cruz Biotechnology, Santa Cruz, CA). To
demonstrate the specificity of interaction, assays were
performed under nonblocking and blocking conditions.
Whole cell lysates were prepared in RIPA buffer (Pierce
ECL) and used to determine protein concentrations
utilizing the BCA protein assay as described by the
manufacturer (Pierce ECL). An equal amount of protein
was run on a 10% sodium dodecyl sulfate—polyacryl-
amide gel and transferred to a 0.45-um Immobilon-P
polyvinylidene fluoride membrane followed by probing
with the MOR-1 polyclonal antibody and detecting with
a horseradish peroxidase (HRP)-conjugated antigoat
IgG antibody (Jackson ImmunoResearch Laboratories,
West Grove, PA). As a negative control, the primary
antibody was preincubated with a MOR-1-specific
blocking peptide (1:1) (Santa Cruz Biotechnology)
before probing for the receptor protein. Because SH-
SY5Y neuroblastoma cells are known to constitutively
express high levels of MOR-1 [30], they were used as a
positive control in the experiments. Equal loading was
confirmed by stripping the membrane using the Restore
Western Blot Stripping Buffer (Thermo Scientific) and
reblotting for B-actin with a mouse monoclonal anti-
body from Sigma-Aldrich. To study the total CXCR4
protein expression resulting from prolonged DAMGO
exposure, TF-1 cells were first starved for 1 hour. After
washing in 1x phosphate-buffered saline (PBS), aliquots
were kept untreated or treated with DAMGO (1 or
10 pM) for 24 hours followed by lysis and processing for
western immunoblot analysis using a polyclonal anti-
CXCR4 antibody (H-118) (Santa Cruz Biotechnology)
and an HRP-conjugated antirabbit IgG antibody (Jackson
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ImmunoResearch Laboratories). All immunoblots were
visualized using a chemiluminescent detection proced-
ure as described by the manufacturer (Pierce ECL) on a
ChemiDoc acquisition/analysis station (Bio-Rad Labora-
tories, Hercules, CA).

Immunofluorescence analysis

To examine cellular distribution of MOR-1 and to com-
pare the expression pattern of MOR-1 with that of
CXCR4 on the surface of TF-1 cells, immunofluores-
cence studies were performed. Cells were incubated on
poly-D-lysine-coated coverslips. Where indicated, cells
were treated for 16 hours with aphidicolin (10 pg/ml) to
arrest cells in early S phase. Cells were subsequently
fixed with 2% followed by 4% paraformaldehyde. So that
we could visualize the surface expression of the two
receptors, TF-1 cells were not permeabilized prior to
staining. Sequential staining began with primary labeling
with an N-terminus-specific MOR-1 antibody, N-20
(Santa Cruz Biotechnology), followed by secondary label-
ing with a fluorescein isothiocyanate-conjugated antigoat
IgG antibody. Subsequently, CXCR4 was labeled with an
N-terminus-specific phycoerythrin-conjugated antihu-
man CXCR4 monoclonal antibody, 1D9 (Pharmingen,
BD Biosciences, San Jose, CA), followed by secondary
staining with a rhodamine (TRITC)-conjugated antirat
IgG antibody (Jackson ImmunoResearch Laboratories).
Each step was accompanied by washing three times
with PBS. Negative controls (not shown) consisted of
“no primary” and “isotype primary” antibody conditions.
Cells were mounted with Vectashield mounting medium
(Vector Laboratories, Burlingame, CA) and observed
under an Olympus IX81 deconvolution microscope at
60x magnification. A total of 1000 cells were counted
following three independent staining experiments, and
the percentage of cells in each phenotype was calculated
based on the total number of cells counted. Averages
reported were calculated based on the three independent
experiments, and error bars represent the standard devi-
ation of the results.

Flow cytometry

To determine mean fluorescence intensity of surface
CXCR4 on TF-1 cells, the cells were serum starved for
1 hour, then resuspended in TF-1 serum free media. Ali-
quots of 5x 10° cells were incubated in the absence or
presence of two different concentrations of DAMGO (1
and 10 pM) for 24 hours. These concentrations were
selected because 10 pM represents the upper range of
morphine observed in the serum of morphine-dependent
animals [31]. With respect to the MOR-1 analysis, where
indicated, cells were incubated in the absence or presence
of aphidicolin (10 pg/ml) for 16 hours to arrest cells in
early S phase. Collected cells were then washed with
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FACS wash buffer (Hanks balanced saline solution
[Mediatech], 3% FBS, and 0.02% NaN3). So that we
could visualize the surface expression of the two recep-
tors, TF-1 cells were not permeabilized prior to staining.
Cells were then reacted with a titrated amount of a mono-
clonal phycoerythrin-conjugated antihuman CXCR4
antibody 12G5 (R & D Systems, Minneapolis, MN) or
MOR-1 (N-20, Santa Cruz Biotechnology) on ice for
30 minutes. Concentration-matched IgG2A isotype or
whole IgG control antibody preparations were used as
negative controls. Subsequently, cells were again washed
with FACS wash buffer and fixed with 1% paraformalde-
hyde. We performed flow cytometry using a FACSCalibur
Flow Cytometer (BD Biosciences) and analyzed the results
using FlowJo version 6.1.1 software (Tree Star, Ashland,
OR).

HIV-1 p24 ELISA

To assess the effects of DAMGO pretreatment on HIV-
1 replication in TF-1 cells, p24 assays for measuring
viral core antigen were performed. Cells were seeded
into 12-well plates at a density of 0.5 x 10° cells/ml and
pretreated for 24 hours with DAMGO (1 or 10 uM)
alone or DAMGO (10 uM) and CTAP (1 puM) in TE-1
serum free media. After 24 hours, treated cells were
seeded in a new 12-well plate at a concentration of
0.5 x 10° cells/ml/well. This step was followed by expos-
ure to the X4-utilizing (X4) HIV-1 IIIB strain at a titer
of 10° median tissue culture infective dose (TCIDsp)
(Advanced Biotechnologies, Inc., Columbia, MD). Two
hours after infection, cells were washed with PBS, resus-
pended in TF-1 media containing serum, and reseeded
in 12-well plates. Following incubation for 24 hours, the
supernatant was collected and assayed for p24 core anti-
gen using an Alliance p24 ELISA procedure as described
by the manufacturer (Perkin Elmer, Waltham, MA). All
samples were assayed in triplicate and p24 values were
normalized for 1 x 10° cells/ml.

Statistical analysis
Significance was determined using the student ¢-test,
considering p values of <0.05 significant.
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