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Abstract

to run genomic analyses or interpret their results.

represented in those alignments.

contained in BAM files.

Background: Massive computational power is needed to analyze the genomic data produced by next-generation
sequencing, but extensive computational experience and specific knowledge of algorithms should not be necessary

Findings: We present BamBam, a package of tools for genome sequence analysis. BamBam contains tools that
facilitate summarizing data from BAM alignment files and identifying features such as SNPs, indels, and haplotypes

Conclusions: BamBam provides a powerful and convenient framework to analyze genome sequence data
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Findings

Massive amounts of data are involved in genome se-
quence research, requiring researchers to use super-
computing clusters and complex algorithms to analyze
their sequence data. Genomic analyses frequently in-
clude next-generation sequencing to produce millions of
short reads, followed by aligning of reads to a reference
genome sequence with software like GSNAP and Bowtie
2 [1,2]. These programs generate SAM files, the ac-
cepted standard for storing short read alignment data,
which are subsequently compressed to BAM format via
SAMtools [3]. The BAM files must then be analyzed and
compared to produce meaningful results. Here we ex-
pand on the body of tools for analyzing and comparing
BAM files.

We present BamBam, a package of bioinformatics
tools to carry out a variety of genomic analyses on BAM
files (Table 1). The included tools perform such tasks as
counting the number of reads mapped to each gene in a
genome (as for gene expression analyses), identifying
SNPs (Single Nucleotide Polymorphisms) and CNVs
(Copy Number Variants), and extracting consensus se-
quences. The purpose of BamBam is to provide a con-
sistent framework to perform common tasks, without
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requiring extensive knowledge of computation or algo-
rithms to select or interpret appropriate parameters.

The BamBam package includes several independent
programs, briefly described below. Brief tests were car-
ried out to compare InterSnp, GapFall, and HapHunt
with similar tools (Additional file 1). The latest version
of PolyCat is also included [4]. The README in the
download package provides example commands for
various common analyses, including phylogeny infer-
ence, molecular evolution estimation, methylation ana-
lysis, and differential expression analysis. A usage guide
(see Additional file 2) provides a more detailed walk-
through of some workflows.

Single nucleotide polymorphisms

InterSnp calls SNPs between samples, represented by
separate BAM files. InterSnp examines each position in
the genome, assigning consensus alleles to each site for
each sample. A SNP is called whenever two samples dif-
fer at the same position, producing a table with the
genotypes of all samples at all polymorphic sites. The
output is a table with the sequence name, position, and
genotype for each sample at that site on each row, which
can be readily processed by common command-line pro-
grams or scripts to calculate statistics or produce marker
data for other programs.
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Table 1 The core independent tools of BamBam

Section Tool Purpose
Single nucleotide  InterSnp Call SNPs between two or more
Polymorphisms samples
Pebbles Impute genotypes in output from
InterSnp
HapHunt Phase haplotypes with K-means
Copy number GapFall Identify deletions between two
Variants samples
Elfen Identify covered regions
HMMph Call copy number variants with
HMM
Bisulfite-sequence  MetHead Summarize base pair methylation
Analysis in bisulfite-sequence data
GeneVisitor Bam2Consensus Generate consensus sequences
from one or more samples
Bam2Fastq Extract mapped and unmapped
reads from BAM files
Counter Summarize read coverage of
sequences or regions
SubBam Extract subset of mapped reads
Allopolyploid PolyCat Categorize reads by genome
analysis based on similarity to parents
Scripts Various Various

Pebbles imputes genotypes using the K-nearest neighbor
algorithm [5,6]. For each unknown genotype, Pebbles
finds the samples that are most similar at nearby loci.
Then it assigns a genotype to the unknown locus based on
the weighted contributions of those neighbors. Pebbles
operates on InterSnp output—a table of genotypes—and
produces a file of the same form.

HapHunt uses K-means clustering to solve the
haplotype-phasing problem, which consists of identi-
fying all haplotypes in a sampled individual or population.
Many programs have attempted to solve haplotype phas-
ing and the closely related haplotype assembly problems
using a variety of strategies, including Max-Cut, hidden
Markov models, and dynamic programming [7-9]. The
K-means clustering algorithm (Figure 1) is an unsuper-
vised machine learning algorithm, and is mathematically
equivalent to Principle Component Analysis [10,11].

HapHunt first selects K reads distant from one another
to serve as haplotype seeds. It assigns each other read to
the haplotype with the closest consensus sequence. Then
it recalculates the consensus sequences based on the reads
in each haplotype and repeats the process of assigning
each read to the haplotype with the closest consensus se-
quence. It repeats this process a given number of times,
calculating a score at the end of each round based on the
difference of the smallest interhaplotype distance and
greatest intrahaplotype distance. This score favors clus-
terings in which haplotypes are individually compact and
most distinct from one another. This score can optionally
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be scaled by the average size ratio for each pair of haplo-
types, favoring clusterings that are more evenly divided.
The consensus sequences of the final haplotypes are
printed as an aligned FASTA file for each sequence in the
original reference.

Copy number variants

Gapfall identifies large deletions between samples based
on read coverage. It searches the genome for extended
regions that have high coverage in one sample but no
coverage in the other. A large region with no coverage
could indicate a physical deletion (for genomic samples)
or a deactivated gene (for RNA-seq). These putative
deletions are reported as an annotation file that can be
visualized with a genome browser such as IGV [12].

Eflen identifies and extracts regions in a BAM file that
are covered by at least a user-specified number of reads
and outputs those regions as a GFF file. Provided with
multiple BAMs, Eflen will identify regions that are co-
vered in at least a user-specified fraction of those BAMs.
This tool can be especially useful for analyzing GBS or
RNA-seq data.

HMMph identifies CNVs between samples based on
read coverage. BAM files must be provided for a control
and for the sample of interest. The coverage ratio bet-
ween those two BAM files is normalized by the total
read coverage. Then the copy number of each locus in a
sliding window is modeled based on a Poisson distribu-
tion in an untrained Hidden Markov Model [13,14].

Bisulfite-sequence analysis
Bisulfite treatment converts unmethylated cytosines to thy-
mines. MetHead summarizes methylation at all cytosine
positions in the genome, based on BAM files of mapped
bisulfite-treated reads. It totals the number of mapped
cytosines and thymines at each position (indicating methy-
lated and unmethylated states, respectively), then performs
a one-tailed binomial test for the methylation of that site.
Different protocols are used for bisulfite treatment. If
PCR is not performed after bisulfite treatment but before
sequencing, then only 2 possibilities exist: conversions on
the forward and reverse strand. But if PCR is performed, 4
possibilities exist (Figure 2). To properly count the num-
ber of cytosines and thymines in the 4-possibility proto-
col, the origin of the pre-PCR DNA fragment must be
inferred. MetHead determines this—if necessary—by
counting the number of C->T conversions and G-> A
conversions (indicative of a conversion on the reverse
strand). It generates a BAM file with the orientation of
each read matching its origin strand. That BAM can then
be analyzed as if it were data produced by the 2-possibility
protocol. Note that, in the produced BAM, the orientation
of reads is not based on the direction in which the read
was sequenced. Instead, the orientation of the read
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Figure 1 K-means clustering algorithm. An example 2-cluster run is shown, with the clusters distinguished by color and the current cluster seeds
marked by a starburst. In the first round, each point is assigned to its closest seed, and a new seed is chosen for each cluster based on the average of all
points in that cluster. As a result, the blue cluster seed moves to the right side. In the second round, both cluster seeds drift to their correct locations,
resulting in a proper division. Note that, after two rounds, the clusters have reached a steady-state, and would not change further through an infinite
number of iterations.

C -> T with Bisulfite Treatment

>>AC"GTTCGCTTGAGTCACATAAACGC"TGGAAAGATAT>>
<<TGC"AAGCGAACTCAGTGTATTTGC"GACCTTTCTATA<L<L

Bisulfite treatment

~ -

>>AC"GTTUGUTTGAGTUAUATAAAUGC"TGGAAAGATAT>>
<<TGC"AAGUGAAUTUAGTGTATTTGC"GAUUTTTUTATA<<

PCR

<4 -

>>ACGTTTGTTTGAGTTATATAAATGCTGGAAAGATAT>>
<<TGCAAACAAACTCAATATATTTACGACCTTTCTATA<L<

<<TGCAAGTGAATTTAGTGTATTTGCGATTTTTTTATA<<

>>ACGTTCACTTAATTCACATAAACGCTARAAAAATAT>>
Figure 2 Bisulfite treatment. The effects of bisulfite treatment on
DNA are shown. An “m" superscript indicates a methylated cytosine.
The orientation of each strand is indicated by “<<" and “>>". Bisulfite
treatment converts unmethylated cytosines into uracils and, ultimately,
thymines. After PCR, however, a given fragment may have C->T
conversions or G- > A conversions, depending on its orientation relative
to its origin fragment.

indicates the type of conversion caused by bisulfite treat-
ment: C->G or A->T.

GeneVisitor

It is often useful to be able to compute on specific gen-
omic intervals, such as genes. GeneVisitor provides a
quick and easy way to do this, using an annotation file
(GFF or BED format) to call a function on each indi-
cated region of the genome. This class can be used by
C++ programmers to run custom functions. In addition,
pre-built tools utilize GeneVisitor without the need for
programming.

Bam2Consensus converts one or more BAM files into
a series of FASTA-formatted consensus sequences. If
desired, multiple sequences—essentially unphased haplo-
types—can be produced per BAM file, facilitating analyses
of heterozygosity, nucleotide diversity, and molecular evo-
lution. Suppose you have several BAM files representing
different accessions of a species, all mapped to a common
genome reference sequence. With a single command,
Bam2Consensus can produce an aligned FASTA file for
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each gene, each containing the consensus sequences for
each accession.

Bam2Fastq extracts mapped or unmapped reads from
a BAM file, or from select regions of the BAM file.

Counter summarizes the number of reads mapped to
each annotated region in one or more BAM files.
RPKM (Reads Per Kilobase per Million mapped reads)
normalization can be applied if desired. The output of
Counter is a table of features and read counts, ready to
be imported into EdgeR for differential expression ana-
lysis [15].

SubBam extracts a subset of a BAM file. It can optio-
nally modify the BAM file, changing the coordinates of
mapped reads to match a new reference that is a subset
of the original reference. Suppose you have WGS reads
mapped to a reference sequence and are interested in
several loci. SubBam can produce BAMs that only con-
tain the loci of interest, with a coordinate system corre-
sponding to the position in the locus, rather than in the
genome as a whole.

Allopolyploid analysis

The latest version of PolyCat is included in BamBam. Poly-
Cat uses an index of known homoeo-SNPs (polymorphisms
that distinguish the genomes of an allopolyploid) to iden-
tify the source genome for each read in a library, which
cannot be distinguished through typical next-generation
sequencing protocols [4].

The Multilndex class is used by PolyCat and Met-
Head, and can be used to make novel tools in C++. The
Multilndex is appropriate for random access to hun-
dreds of millions of individual base positions in a gen-
ome sequence. It provides quick random access to base
positions scattered across a genome sequence. Each se-
quence in the reference is indexed with a linked-list,
with an index of landmark nodes spaced along the se-
quence at a resolution specified by the user (Figure 3).

Scripts

In addition to the core tools mentioned above, BamBam
includes many Perl scripts, many of which use BioPerl
modules [16]. Script functions include calculation of nu-
cleotide diversity (1) and molecular evolution rates (Ka
and Ks), paralog identification, differential expression with
EdgeR [15], summarization of results from MetHead, and
summarization of genotype tables produced by InterSnp
and Pebbles.

Conclusions
The BamBam tools form a simple interface between the
researching biologist and the wealth of data contained in
next-generation sequence alignments. They provide a
means to efficiently identify interesting genomic features
and summarize data, facilitating many next-generation se-
quence analysis experiments.

BamBam is freely available under the MIT license at
http://sourceforge.net/projects/bambam/. It depends on
both SAMtools and BAMtools [3,17].

Availability and requirements
Project Name: BamBam
Project Home Page: http://sourceforge.net/projects/
bambam/
Operating System: Unix
Dependencies: SamTools, BamTools, BioPerl
Programming Language: C++ and Perl
License: MIT

Additional files

Additional file 1: Supplementary Material. Figure S1 Read alignment
of cotton A-genome and D-genome reads to a common reference,
rendered in IGV. Highlights indicate differences compared to the reference,
so highlights in the upper sequence (A-genome) and the lack of those
highlights in the lower sequence (D-genome) indicate SNPs between the
two genomes. In this region, InterSnp identified 17 SNPs but SAMtools failed
to identify any. Figure S2 Haplotypes identified by SAMtools and HapHunt,
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compared to the known haplotype. Figure S3 Phylogenetic tree. This
neighbor-joining tree was built by neighbor based on SNPs identified by
InterSnp. Then Geneious was used to render the actual tree. Table S1 The
number of deletions identified in each accession (row), along with the
percentage of those deletions that were shared with other members of the
same species and with the entire group of samples.

Additional file 2: BamBam User Guide [15,18].
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