
Nygaard et al. BMC Research Notes 2014, 7:84
http://www.biomedcentral.com/1756-0500/7/84
RESEARCH ARTICLE Open Access
Effects of zinc supplementation and zinc
chelation on in vitro β-cell function in INS-1E cells
Sanne Bjørn Nygaard*, Agnete Larsen, Astrid Knuhtsen, Jørgen Rungby and Kamille Smidt
Abstract

Background: Zinc is essential for the activities of pancreatic β-cells, especially insulin storage and secretion. Insulin
secretion leads to co-release of zinc which contributes to the paracrine communication in the pancreatic islets.
Zinc-transporting proteins (zinc-regulated transporter, iron-regulated transporter-like proteins [ZIPs] and zinc
transporters [ZnTs]) and metal-buffering proteins (metallothioneins, MTs) tightly regulate intracellular zinc homeostasis.
The present study investigated how modulation of cellular zinc availability affects β-cell function using INS-1E cells.

Results: Using INS-1E cells, we found that zinc supplementation and zinc chelation had significant effects on insulin
content and insulin secretion. Supplemental zinc within the physiological concentration range induced insulin secretion.
Insulin content was reduced by zinc chelation with N,N,N’,N-tektrakis(2-pyridylmethyl)-ethylenediamine. The changes in
intracellular insulin content following exposure to various concentrations of zinc were reflected by changes in the
expression patterns of MT-1A, ZnT-8, ZnT-5, and ZnT-3. Furthermore, high zinc concentrations induced cell necrosis while
zinc chelation induced apoptosis. Finally, cell proliferation was sensitive to changes in zinc the concentration.

Conclusion: These results indicate that the β-cell-like function and survival of INS-1E cells are dependent on the
surrounding zinc concentrations. Our results suggest that regulation of zinc homeostasis could represent a
pharmacological target.
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Background
Pancreatic tissue has high zinc (Zn2+) concentrations
relative to other tissues because zinc is essential for its
exocrine and endocrine functions [1]. In particular, Zn2+

is needed for the correct storage of insulin in secretory
vesicles by ensuring that insulin forms crystalline struc-
tures [2]. Furthermore, Zn2+ is co-secreted with insulin
and is involved in paracrine and autocrine communica-
tion within the pancreas [3]. Finally, Zn2+ regulates the
activity of ATP-sensitive potassium (KATP) channels and
calcium (Ca2+) channels, which are involved in glucose-
induced insulin secretion [4,5].
Abnormal zinc homeostasis seems to play an import-

ant role in impaired insulin sensitivity and diabetes.
Diabetic subjects often display hypozincemia and hyper-
zincuria [6,7], and zinc deficient rats exhibit reduced
insulin secretion and glucose sensitivity [8]. A local
* Correspondence: sbn@farm.au.dk
Department of Biomedicine, Centre of Pharmacology and Pharmacotherapy,
Health, Aarhus University, Wilhelm Meyers Allé 4, Bld 1240, 8000 Aarhus,
Denmark

© 2014 Nygaard et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
increase in Zn2+ concentrations cause pancreatic cell
death by inducing apoptosis [9], while reductions in free
zinc are associated with decreased insulin content in β-
cells [10,11].
Cellular zinc homeostasis is tightly regulated because

of the regulatory roles of intracellular Zn2+. Specialized
proteins are responsible for controlling zinc import and
export, as well as its intracellular distribution. Two clas-
ses of metal carrier proteins control the transmembrane
transport of zinc ions. Zinc-regulated transporters and
iron-regulated transporter-like proteins (ZIPs) facilitate
Zn2+ influx into the cell and zinc transporters (ZnTs) fa-
cilitate Zn2+ efflux out of the cell [12,13]. The free zinc
concentration is also influenced by the buffering activ-
ities of metallothioneins (MTs). MTs are a family of
metal-binding proteins that are thought to maintain a
reservoir of Zn2+ for use in cellular activities while sim-
ultaneously protecting against zinc toxicity [14,15]. Para-
doxically, zinc supplementation and zinc depletion can
be cytotoxic [16-20].
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Modifying intracellular Zn2+ traffic by changing the
gene expression levels of specific ZnT genes also affects
β-cell insulin content and secretion [11,21-23]. The gene
transcription of ZnTs and MTs is thought to be regu-
lated by the intracellular zinc concentration, as demon-
strated by studies using pancreatic islets, other cell lines
(e.g., Caco-2 and HT-29 cells), and in some subsets of
leukocytes [11,16-20,24,25]. Polymorphisms in the ZnT-
8 gene are associated with glucose intolerance and type
2 diabetes [26-29]. Furthermore, streptozotocin (STZ)-
treated ZnT-3–knockout mice exhibit impaired glucose
metabolism compared with STZ-treated wild-type mice
[11]. Overexpression of MTs was reported to prevent
STZ-induced islet disruption, delay the onset of hyper-
glycemia in STZ-treated mice, and improve islet β-cell
survival [30-32]. Finally, polymorphisms in genes encod-
ing different isoforms of MTs were reported to be asso-
ciated with the development of type 2 diabetes and
diabetic complications [33,34].
Despite intensive research, the full consequence of al-

tered zinc bioavailability on β-cell function remains un-
clear. Therefore, the present study investigated how cell
survival, insulin content/secretion, and the expression of
specific β-cell-relevant ZnTs and MTs respond to
changes in the zinc environment following supplementa-
tion or chelation of zinc. We found that zinc-specific in-
terventions had significant effects on the β-cell-like
activity of INS-E1 cells, demonstrating the pharmaco-
logical potential of zinc supplementation or chelation.

Methods
Cell culture
Rat INS-1E cells were used in this in vitro study. The
INS-1E cell line is an established glucose-sensitive
cell line with β-cell-like activity [35,36]. INS-1E cells
were cultured in a CO2 atmosphere in complete
RPMI 1640 supplemented with 11 mM glucose, 10%
(v/v) heat-inactivated fetal bovine serum, 50 μM β-
mercaptoethanol, 2 mM L-glutamine, 100 U/ml penicil-
lin, and 100 μg/ml streptomycin, as previously described
[10,11,21]. The zinc concentration of this medium was
approximately 2.5 μmol/l [10].

Zinc supplementation and chelation
For stimulation assays, cells were plated into six-well
plates (NUNC) in complete RPMI 1640 supplemented
with 11 mM glucose, 10% (v/v) heat-inactivated fetal bo-
vine serum, 50 μM β-mercaptoethanol, 2 mM L-glutam-
ine, 100 U/ml penicillin, and 100 μg/ml streptomycin
with the addition of either 5 μM to 1 mM zinc chloride
(ZnCl2) (Merck, Germany) or 2.5–50 μM of the Zn2+

chelator N,N,N’,N-Tektrakis(2-pyridylmethyl)-ethylenedi-
amine (TPEN) (Sigma Aldrich, Denmark). The basal glu-
cose concentration was kept permanently at 11 mM
because we experienced greater insulin response and cell
replication of the INS-1E, and continuous growth at this
concentration (unpublished data). We used 3–6 replicates
for the analyses of mRNA expression, viability, DNA frag-
mentation assessment, and insulin measurements.

Cell viability, cell cycle, and DNA fragmentation assay
INS-1E cells were treated with 50 μM to 1 mM ZnCl2 or
2.5–50 μM TPEN in complete RPMI medium for 24 h.
Cells were harvested by trypsinization and samples
pooled with cells floating in the used cell culture
medium. The cells were partly collected in RPMI me-
dium for assessing viability and partly in PBS for cell
cycle and DNA fragmentation assays. Before analyzing
cell cycle status and DNA fragmentation, the cells
were transferred to ice-cold 70% ethanol, vortexed, and
permeabilized at 0–4°C for ≥12 h. Cell cycle and DNA
fragmentation were determined by incubating perme-
abilized cells in 1 μg/ml 4′,6-diamidino-2-phenylindole
(DAPI) (Chemometec, Denmark), a DNA-specific dye,
for 15 min at 37°C followed by fluorescence analysis on
a NucleoCounter NC-3000 system (Chemometec). Via-
bility was determined by analyzing cell samples on Via1-
Cassettes (Chemometec) coated with two different dyes
to stain the entire cell population (acridine orange) and
nonviable cells (DAPI).

Insulin assay
INS-1E cells were treated with 5 μM to 1 mM ZnCl2 or
2.5–50 μM TPEN in complete RPMI medium for 24 h.
The cells were then incubated for 2 h in serum-free
Krebs–Ringer bicarbonate HEPES buffer at pH 7.4 con-
taining 115 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4,
2.6 mM CaCl2, 1.2 mM KH2PO4, 20 mM HEPES, 5 mM
NaHCO3, 0.1% (v/v) human serum albumin (Sigma),
with or without 50 μM to 1 mM ZnCl2 or 2.5–50 μM
TPEN and 11 mM glucose. The incubation medium was
collected to measure insulin secretion. The cells were
collected in Earle’s basal medium (Invitrogen, Denmark)
by scraping followed by centrifugation. Half of the intact
cells from each sample were re-suspended in a buffer
comprising 0.75% (v/v) glycine and 0.25% (v/v) bovine
serum albumin at pH 8.8 to measure the insulin concen-
tration, or in 0.1% M NaOH to measure the protein
concentration. The total protein concentration was mea-
sured using a BCA Protein Assay Reagent Kit from
Pierce, USA (Bie & Berntsen A/S, Denmark). The insulin
concentration was determined using an ultrasensitive rat
insulin enzyme-linked immunosorbent assay kit from
DRG Diagnostics (VWR, Denmark).

RNA extraction and cDNA synthesis
INS-1E cells were treated with 5 μM to 1 mM ZnCl2 or
2.5–50 μM TPEN in complete RPMI medium for 24 h.
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It was not possible to collect RNA material from cells
treated with 50 μM TPEN most likely due to severe tox-
icity of TPEN at this concentration level. RNA was ex-
tracted using the RNeasy Mini Kit Qiagen (VWR) and
treated with DNase (VWR). cDNA was synthesized from
total RNA using an ImProm-II™ Reverse transcription
system (Promega, Denmark).

Real-time PCR
Quantitative real-time PCR was performed in duplicate
using IQ Sybr Green supermix (Bio-Rad, Denmark) in a
MyiQ Two-Color Real-time PCR detection system (Bio-
Rad). A melting curve was prepared for all reactions.
The results were analyzed with iQTM5 Optical System
Software, Version 2.1. Starting quantities were calculated
from a standard curve. For each experiment, the most
stable housekeeping genes were found using the method
described by Vandesompele et al. [37]. Expression levels
were normalized to the three most stable housekeeping
genes from the following: β-actin, cyclophilin-A (CycA),
heat shock protein (HSP), clathrin (Cltc), and ubiquitin-
conjugase-7 (UBC-7). We selected the most stable
housekeeping genes and normalized the data using pre-
viously reported methods [37,38].

Primers used for real-time PCR
The following (forward and reverse) primers were used:
UBC-7, 5′-CAG CTG GCA GAA CTC AAC AA-3′ and
5′-TTT GGG TGC CAA ATC TCT GT-3′ (annealing
temperature 58°C); Cltc, 5′-AAG GAG GCG AAA CTC
ACA GA-3′ and 5′-GAG CAG TCA ACA TCC AGC
AA-3′ (annealing temperature 59°C); HSP, 5′-GAT TGA
CAT CAT CCC CAA CC-3′ and 5′-CTG CTC ATC
ATC GTT GTG CT-3′ (annealing temperature 59°C);
CycA, 5′-AGG TCC TGG CAT CTT GTC CA-3′ and
5′-CTT GCT GGT CTT GCC ATT CC-3′ (annealing
temperature 58°C); β-actin, 5′-CTA CAA TGA GCT
GCG TGT GGC 3′ and 5′-ATC CAG ACG CAG GAT
GGC ATG-3′ (annealing temperature 62°C); Bax, 5′-
GTG AGC GGC TGC TTG TCT-3′ and 5′-GTG GGG
GTC CCG AAG TAG-3′ (annealing temperature 59°C);
Bcl-2, 5′-CGA CTT TGC AGA GAT GTC CA-3′ and
5′-ATG CCG GTC AGG TAC TCA G-3′ (annealing
temperature 57°C); insulin, 5′-CGC TTC CTG CCC
CTG CTG GC-3′ and 5′-CGG GCC TCC ACC CAG
CTG CTC CA-3′ (annealing temperature 67°C); ZnT-3,
5′-TCC TCT TCT CTA TCT GCG CCC-3′ and 5′-
TGT GCG GAG GCA ACG TGG TAA-3′ (annealing
temperature 59°C); ZnT-5, 5′-TCC ACA TGC TCT
TTG ACT GC-3′ and 5′-GTC AAG TTC CGG AGG
ATC AA-3′ (annealing temperature 64°C); ZnT-8, 5′-
GGT GGA CAT GTT GCT GGG AG-3′ and 5′-CAC
CAG TCA CCA CCC AGA TG-3′ (annealing
temperature 56°C); MT-1A, 5′-TCC CGA CTT CAG
CAG CCC GA-3′ and 5′-GCC CTG GGC ACA TTT
GGA GC-3′ (annealing temperature 63°C); and MT-3,
5′-TGG TTC CTG CAC CTG CTC GG-3′ and 5′-CAC
CAG GGA CAC GCA GCA CT-3′ (annealing
temperature 63°C).

Statistical analysis
Data are presented as mean values with the standard
error of the mean (SEM). One-way analysis of variance
with Dunnett’s multiple comparison test was used to de-
termine statistical significance among groups. Values of
P < 0.05 were considered to indicate a significant differ-
ence between the experimental and control conditions.

Results
High zinc concentrations reduce INS-1E cell viability
The number of viable INS-1E cells decreased signifi-
cantly when the ZnCl2 concentration reached 0.4 mM.
The percentage of viable cells was decreased by 16.9% at
0.4 mM ZnCl2 and only 47.1% of the cells were viable at
the highest ZnCl2 concentration, 1.0 mM (Figure 1A).
Based on DNA fragmentation assays, treatment with
ZnCl2 did not promote apoptosis (Figure 1A) and only a
small increase in the Bax/Bcl-2 ratio was observed at
1.0 mM ZnCl2 (Figure 1B).

Zinc chelation impairs INS-1E cell viability by inducing
apoptosis
The viability of INS-1E cells decreased significantly by
18.2% following exposure to 50 μM TPEN (Figure 1C).
DNA fragmentation was detected at 10 μM TPEN. Se-
vere DNA fragmentation was observed at 50 μM TPEN
and 41.4% of the cells exhibited reduced DNA content
as a consequence of DNA fragmentation (Figure 1C).
The Bax/Bcl-2 ratio was significantly increased in cells
exposed to 10 μM TPEN (Figure 1D).

The INS-1E cell cycle is affected by zinc supplementation
Supplementation with ZnCl2 disturbed the baseline dis-
tribution of cells in the different stages of the cell cycle
(Figure 2A, B). Low ZnCl2 concentrations (0.05–
0.4 mM) increased the proportion of cells in the G2/M
phase while higher ZnCl2 concentrations (0.7–1.0 mM)
reduced the number of cells in the G2/M phase. The
fraction of cells in the S phase was also affected by the
ZnCl2 concentration. The effect was particularly evident
at 0.4 mM ZnCl2, where a two-fold increase in the num-
ber of cells was detected compared with the control cells
(Figure 2A).

Chelation of Zn2+ by TPEN reduces the proportion of
dividing cells
The ratio of cells in the S phase was unaffected at all
conditions tested, except in cells treated with 5.0 μM



Figure 1 Cell survival. INS-1E cells were exposed to ZnCl2 (A, B) or TPEN (C, D) for 24 h in the presence of 11 mM glucose. (A, C) cell viability
and DNA fragmentation. (B, D) Bax/Bcl-2 gene expression. In cells exposed to ZnCl2, gene expression was normalized for β-actin, HSP, and Cltc.
In cells exposed to TPEN, gene expression was normalized for HSP, CycA, and UBC-7. Data are shown as the mean ± SEM (n = 4–6). *P < 0.05.
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TPEN, where the proportion of cells was significantly
decreased (Figure 2C). TPEN at concentrations ≥5.0 μM
reduced the proportion of actively dividing cells in the
G2/M phase (Figure 2C).

Zinc is required to maintain baseline insulin secretion
Insulin gene expression was significantly reduced follow-
ing exposure to cytotoxic concentrations of ZnCl2 (0.4–
1.0 mM; Figure 3A). Although insulin content was
unaffected by ZnCl2 (Figure 3B), the amount of secreted
insulin was increased (Figure 3C), resulting in a signifi-
cant increase in zinc-induced insulin secretion/insulin
content ratio (Figure 3D). In an additional experiment
using physiological concentrations of zinc (5–30 μM) we
found no changes in the intracellular insulin content
(Figure 4A). Insulin secretion increased in a dose-
dependent manner across the concentration range of
5–10 μM ZnCl2 relative to the control group, and a plat-
eau was reached at 15–30 μM ZnCl2 (Figure 4B). The
insulin secretion/insulin content ratio at 5–15 μM ZnCl2
showed a similar pattern to the insulin secretion data
(Figure 4C).
Chelation of zinc by TPEN decreases the intracellular
insulin content in INS-1E cells
Zinc chelation with TPEN did not affect insulin gene ex-
pression (Figure 5A). However, the intracellular insulin
content was significantly reduced following exposure to
5.0, 10, or 50 μM TPEN (Figure 5B). Zinc chelation did
not affect insulin release (Figure 5C), resulting in an in-
crease in the overall insulin secretion/insulin content ra-
tio (Figure 5D).
ZnT-3 gene expression is markedly upregulated by zinc
supplementation
ZnCl2 treatment significantly upregulated ZnT-3 transcrip-
tions by 2–4.8-fold at concentrations ≥0.4 mM (Figure 6A).
By contrast, Zn2+ chelation with 10 μM TPEN downregu-
lated ZnT-3 gene expression (Figure 6B).
ZnT-5 gene expression is downregulated by zinc
chelation
ZnT-5 gene expression was not affected by zinc supple-
mentation (Figure 7A) whereas chelation at high doses



Figure 2 Cell cycle. The proportions of INS-1E cells in the S and G2/M phases were determined after exposure to ZnCl2 (A, B) or TPEN (C, D) for
24 h in the presence of 11 mM glucose. Data are shown as the mean ± SEM (n = 4–6). *P < 0.05.
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(5.0 and 10 μM) of TPEN resulted in downregulation of
ZnT-5 gene expression (Figure 7B).

ZnT-8 gene expression is sensitive to zinc
supplementation and zinc chelation
ZnT-8 gene expression was gradually induced by zinc
supplementation reaching statistical significance at
0.4 mM ZnCl2. The most cytotoxic ZnCl2 concentra-
tions (0.7–1.0 mM) markedly reduced the transcription
of ZnT-8 (Figure 8A). ZnT-8 gene expression was sig-
nificantly downregulated by chelation with 10 μM TPEN
(Figure 8B).

MT-1A gene expression is upregulated by zinc
supplementation without changes in MT-3
The gene expression of MT-1A was exceptionally sensi-
tive to Zn2+ supplementation resulting in a transcrip-
tional upregulation, 100 to 300-fold, at concentrations
above 0.4 mM ZnCl2 (Figure 9A). By contrast, MT-3
transcription was only affected and was downregulated
at the highest cytotoxic ZnCl2 concentration (1.0 mM
ZnCl2; Figure 9B).
Zinc chelation by TPEN downregulates MT-1A gene
expression
Zn2+ chelation with TPEN significantly downregulated
MT-1A gene expression (Figure 10A) but did not affect
MT-3 expression (Figure 10B).

Discussion
Using INS-1E cells, this study demonstrated that ma-
nipulation of the zinc environment may affect β-cell
survival and insulin production by interfering with intra-
cellular zinc homeostasis under the control of the zinc
transporters ZnT-3, ZnT-5, and ZnT-8. Excess zinc sup-
ply seems to reduce the viability of INS-1E by causing
cellular necrosis. Synaptic Zn2+ release was reported to
be related to exocytotic neuronal death [39,40]. In this
mechanism, zinc was reported to cause cell death by re-
entering neurons through ZnTs, N-methyl-D-aspartate
receptor-mediator channels, and voltage-dependent cal-
cium channels. Here, we find that zinc at concentrations
of up to 0.1 mM ZnCl2 is well tolerated by INS-1E cells,
but increasing the concentration from 0.2 to 1 mM
steadily increased cell death. At 1 mM ZnCl2, 52.8% of



Figure 3 Effects of zinc supplementation on insulin gene expression, insulin content and insulin secretion. Insulin gene expression (A),
intracellular insulin content (B), insulin secretion (C), and the insulin secretion/content ratio (D) were assessed after INS-1E cells were stimulated
with 20 μM to 1 mM ZnCl2 for 24 h in the presence of 11 mM glucose. Gene expression was normalized for β-actin, HSP, and Cltc. Data are
shown as the mean ± SEM (n = 4–6). *P < 0.05.
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INS-1E cells were dead. The concentration of Zn2+

within the insulin granules is approximately 20 mM
[40,41] and, upon glucose stimulation, the concentration
of Zn2+ co-secreted into the extracellular space may
reach 475 μM [9], corresponding to the concentration of
400 μM (0.4 mM) that significantly increased cell death
Figure 4 Effects of physiological concentrations of ZnCl2 on insulin co
secretion (B), and the insulin secretion/content ratio (C) were assessed afte
presence of 11 mM glucose. Data are shown as the mean ± SEM (n = 4). *P
in our study (Figure 1A). Our results indicate that an ex-
cessive extracellular Zn2+ load, resulting from insulin
release, may promote β-cell death, which might be par-
ticularly important in the context of hyperinsulinemia.
Reductions in Zn2+ packaging might also result in an
increase in free labile zinc, increasing β-cell damage.
ntent and insulin secretion. Intracellular insulin content (A), insulin
r INS-1E cells were stimulated with 5–30 μM ZnCl2 for 24 h in the
< 0.05.



Figure 5 Effects of zinc chelation on insulin gene expression, insulin content and insulin secretion. Insulin gene expression (A),
intracellular insulin content (B), insulin secretion (C), and the insulin secretion/content ratio (D) were assessed after INS-1E cells were stimulated
with 2.5–50 μM TPEN for 24 h in the presence of 11 mM glucose. Gene expression was normalized for HSP, CycA, and UBC-7. Data are shown as
the mean ± SEM (n = 3–6). *P < 0.05.
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A similar cytotoxic effect might occur in autoimmune
diabetes because an increase in secretory granular Zn2+

release occurs alongside the loss of β-cells [42-44]. Sev-
eral studies have suggested that limiting cellular Zn2+

concentrations by reducing dietary zinc uptake or
Figure 6 Effects of zinc supplementation and zinc chelation on the ge
indicated concentrations of ZnCl2 (A) or TPEN (B) for 24 h in the presence of
for β-actin, HSP, and Cltc in cells exposed to ZnCl2 and to HSP, CycA, and UBC
(n = 4–6). *P < 0.05.
administering a low-affinity Zn2+ chelator, such as clio-
quinol, could attenuate the development of the diabetic
state resulting from zinc accumulation [43,44].
MT-1A is abundantly expressed and is generally con-

sidered to have a protective role against oxidative stress.
ne expression levels of ZnT-3. INS-1E cells were exposed to the
11 mM glucose. The gene expression levels of ZnT-3 were normalized
-7 in cells exposed to TPEN. Data are shown as the mean ± SEM



Figure 7 Effects of zinc supplementation and zinc chelation on the gene expression levels of ZnT-5. INS-1E cells were exposed to the
indicated concentrations of ZnCl2 (A) or TPEN (B) for 24 h in the presence of 11 mM glucose. The gene expression levels of ZnT-5 were
normalized for β-actin, HSP, and Cltc in cells exposed to ZnCl2 and to HSP, CycA, and UBC-7 in cells exposed to TPEN. Data are shown as the
mean ± SEM (n = 4–6). *P < 0.05.
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MT-1A is essential for the regulation of intracellular zinc
homeostasis because it acts as a Zn2+ acceptor and a
Zn2+ donor to control the availability of cellular zinc
[45]. MT-1A gene expression is controlled by metal re-
sponse element-binding transcriptional factor (MTF)-1
[46], allowing free Zn2+ to directly control the transcrip-
tion of MT-1A. Notably, in the present study, we found
that MT-1A responded strongly to changes in the zinc
concentration. MT-1A upregulation was pronounced
following zinc supplementation. Similar results were also
observed in pancreatic islets [18,24], indicating that ex-
cess extracellular zinc causes an increase in intracellular
free Zn2+, a process that is possibly mediated by the
ZnT-1 transporter.
MT-3 is predominately expressed in the brain, where

it acts as a neuronal growth inhibition factor with neuro-
protective properties [47]. Although MT-3 has been lo-
calized in peripheral tissues, its role in these tissues is
not understood [14,48]. Unlike MT-1A, the expression
of MT-3 does not seem to be controlled by MTF-1.
Figure 8 Effects of zinc supplementation and zinc chelation on the ge
indicated concentrations of ZnCl2 (A) or TPEN (B) for 24 h in the presence of
for β-actin, HSP, and Cltc in cells exposed to ZnCl2 and to HSP, CycA,
(n = 4–6). *P < 0.05.
Consistent with this, we found that changes in the envir-
onmental Zn2+ concentration did not directly affect
MT-3. However, we did observe transcriptional downregu-
lation of MT-3 after exposing cells to highly cytotoxic
conditions, such as 1.0 mM ZnCl2, and we expect
this to be caused by the ongoing processes underlying
cell death in these conditions. The results of this
study support those of other studies indicating that
MT-3 plays a different role to MT-1A in the pancreas,
and that MT-3 is unlikely to be a direct regulator of
intracellular zinc signaling in β-cells.
In neurons, ZnT-3 transports zinc ions into synaptic

vesicles. This Zn2+ transporter is also expressed in β-
cells [11,14,49,50]. The increase in ZnT-3 gene expres-
sion observed in the present study is consistent with our
previous finding [11] that ZnT-3 is upregulated during
stressful conditions (Figure 6A).
Expression of ZnT-8 is highly tissue-specific and be-

sides β-cells, ZnT-8 is also expressed in adipose tissue
and in the retina [14,39,51]. ZnT-8 is thought to be
ne expression levels of ZnT-8. INS-1E cells were exposed to the
11 mM glucose. The gene expression levels of ZnT-8 were normalized
and UBC-7 in cells exposed to TPEN. Data are shown as the mean ± SEM



Figure 9 Effects of zinc supplementation on the gene expression levels of metallothioneins. INS-1E cells were exposed to the indicated
concentrations of ZnCl2 for 24 h in the presence of 11 mM glucose. The gene expression levels of MT-1A (A) and MT-3 (B) were normalized for
β-actin, HSP, and Cltc. Data are shown as the mean ± SEM (n = 4–6). *P < 0.05.
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crucial for β-cell function because it is thought to trans-
port zinc ions into insulin-containing secretory vesicles
[23,52]. Here, we found that ZnT-8 is upregulated by ex-
posure to low, non-cytotoxic ZnCl2 concentrations, indi-
cating that Zn2+ uptake into insulin-containing granules
is increased if Zn2+ is readily available. This is supported
by other findings showing that INS-1E cells overexpress-
ing ZnT-8 have higher intracellular Zn2+ concentrations
compared with wild-type cells [21]. It is possible that
this regulatory mechanism has a protective role because
ZnT-8 overexpression was reported to protect β-cells
from zinc depletion because of enhanced storage cap-
acity [22]. It seems that ZnT-8 gene expression is corre-
lated with the cellular zinc content in β-cells, as
observed in RPE cells [51]. At a functional level, the zinc
supplementation study confirmed the importance of the
constant presence of Zn2+ in controlling insulin secre-
tion (Figure 4C). In this study, immediate insulin secre-
tion was compared between a basal zinc environment
and a Zn2+-supplemented environment. Overall, we
found that zinc, at physiological concentrations [1,53,54]
of 15–30 μM, increased the release of insulin from INS-
Figure 10 Effects of zinc chelation on the gene expression levels o
concentrations of ZnCl2 for 24 h in the presence of 11 mM glucose. The gene
CycA and UBC-7. Data are shown as the mean ± SEM (n = 4–6). *P < 0.05.
1E cells, emphasizing the importance of Zn2+ as a regu-
lator of glucose-induced insulin secretion under normal
conditions. This effect of zinc supplementation was
demonstrated in a previous study using pancreatic islets,
in which it was proposed that Zn2+ is an autocrine sig-
naling molecule in the endocrine pancreas [55].
The pivotal role of Zn2+ in the regulation of insulin se-

cretion is also reflected by the chelation experiments
using TPEN. TPEN preferentially chelates free Zn2+, but
also depletes zinc ions that are tightly bound to cellular
metallo-proteins when administered at high concentra-
tions. The effect of zinc chelation by TPEN on insulin
secretion has not been examined in prior studies. We
found that the predominant effect of chelation in INS-
1E cells involves a reduction in the intracellular insulin
content. Because insulin crystallization is an essential
function of Zn2+, a reduction in intracellular insulin
could be a consequence of impaired insulin storage in
conditions of inadequate zinc. These results are consist-
ent with our previous studies showing that the insulin
content is reduced in β-cells exposed to the chelator
diethyldithiocarbamate (DEDTC) [11].
f metallothioneins. INS-1E cells were exposed to the indicated
expression levels of MT-1A (A) and MT-3 (B) were normalized for HSP,
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ZnT-8 gene expression was reported to be downregu-
lated by the chelator DEDTC [11,38], although this ef-
fect was less pronounced in the present study. The
effects of zinc chelation by TPEN and DEDTC have
been investigated in the context of hippocampal excit-
ability. In the hippocampus, TPEN and DEDTC had dif-
ferent effects, suggesting that the discrepancy is caused
by the more specific Zn2+ binding by TPEN than
DEDTC, and by the fact that DEDTC chelates other
metals, including copper [56]. In addition, TPEN may
favor Zn2+ because TPEN has a higher binding affinity
for Zn2+ (dissociation constant 1–2.6 × 10−16 M) than
for other metals [57].
TPEN-based Zn2+ chelation also reduced the viability

of INS-1E cells. Administered in vitro, TPEN can chelate
extracellular zinc ions, cytoplasmic-free Zn2+, zinc lo-
cated within intracellular compartments, and strip Zn2+

from proteins [58]. Thus, exposing β-cells to TPEN is
expected to reduce the availability of zinc and interfere
with zinc-dependent cellular activities. DNA fragmenta-
tion assays showed that chelation is stressful to INS-1E
cells, and initiates programmed cell death, even though
Bax/Bcl-2 activity was unaffected after 24 h of stimula-
tion, except at the most cytotoxic stimuli (Figure 1D).
Monitoring Bax/Bcl-2 at an earlier time might have
revealed an altered ratio. The pro-apoptotic effects of
zinc deficiency were previously demonstrated in several
other cell lines [16,22,25,59,60]. TPEN directly affected
the distribution of cells in different stages of the cell
cycle, reflecting the importance of Zn2+ in cell division.
It seems likely that Zn2+ is required for the passage
of cells through the cell cycle. Certainly, several DNA-
synthesizing enzymes seem to depend on Zn2+, suggest-
ing that zinc depletion suppresses DNA synthesis
[61,62].
Unlike other zinc transporters, ZnT-5 holds a unique

position in regulating intracellular Zn2+ concentrations
because it is localized in the Golgi apparatus, secretory
vesicles, and in the cell membrane [63,64]. ZnT-5 is also
implicated in Zn2+ efflux and influx. A study of ZnT-5–
knockout mice revealed a reduction in islet zinc content
in these animals [43]. Although the protein is abundant
in pancreatic tissue [65], little is known about the func-
tion of ZnT-5 in this organ. In our experiments, ZnT-5
gene expression was not substantially affected by zinc
supplementation but was sensitive to chelation by TPEN.
This downregulatory effect of TPEN on ZnT-5 gene
expression differs from that of studies using other cell
types. ZnT-5 was reported to be upregulated by TPEN
in Hela epithelial cells [25] and was upregulated or un-
affected by TPEN in some subtypes of leukocytes [17].
Thus, the role of ZnT-5 in cellular Zn2+ homeostasis
may be tissue-specific and might be related to the role of
free Zn2+ in individual cell types.
Conclusion
Using INS-1E cells, the present results indicate that β-
cell function is directly related to the surrounding Zn2+

concentration, adding to the accumulating evidence that
links abnormal zinc homeostasis to the development of
diabetes. Manipulation of the cellular zinc environment
was found to have significant effects on cell survival, cell
proliferation, and insulin processing and release. Under-
standing the finely tuned system involved in zinc trans-
port and zinc buffering might open a new field of
research into pharmacological intervention aimed at
prolonging and improving pancreatic β-cell function.
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