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Abstract

Background: Much attention has been given to the potential of halophytes as sources of tolerance traits for
introduction into cereals. However, a great deal remains unknown about the diverse mechanisms employed by
halophytes to cope with salinity. To characterize salt tolerance mechanisms underlying Karelinia caspica, an
Asteraceae halophyte, we performed Large-scale transcriptomic analysis using a high-throughput lllumina sequencing
platform. Comparative gene expression analysis was performed to correlate the effects of salt stress and ABA regulation
at the molecular level.

Results: Total sequence reads generated by pyrosequencing were assembled into 287,185 non-redundant transcripts
with an average length of 652 bp. Using the BLAST function in the Swiss-Prot, NCBI nr, GO, KEGG, and KOG databases,
a total of 216,416 coding sequences associated with known proteins were annotated. Among these, 35,533 unigenes
were classified into 69 gene ontology categories, and 18,378 unigenes were classified into 202 known pathways. Based
on the fold changes observed when comparing the salt stress and control samples, 60,127 unigenes were differentially
expressed, with 38,122 and 22,005 up- and down-regulated, respectively. Several of the differentially expressed genes
are known to be involved in the signaling pathway of the plant hormone ABA, including ABA metabolism, transport,
and sensing as well as the ABA signaling cascade.

Conclusions: Transcriptome profiling of K. caspica contribute to a comprehensive understanding of K. caspica at the

molecular level. Moreover, the global survey of differentially expressed genes in this species under salt stress and
analyses of the effects of salt stress and ABA regulation will contribute to the identification and characterization of
genes and molecular mechanisms underlying salt stress responses in Asteraceae plants.

Background

Salinity is a major environmental factor limiting plant
growth and productivity. Thus, salt-tolerant halophytes
serve as an excellent resource for the identification of de-
sirable traits and the subsequent development of new crop
systems [1]. Understanding the salt tolerance mechanisms
in such plants represents an important step towards gen-
erating crop varieties capable of coping with environmen-
tal stresses. Towards this end, there is still much to learn
about the diverse mechanisms employed by halophytes to
cope with salinity stress.
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Karelinia caspica, an herbaceous Asteraceae perennial
that grows in saline deserts and swamps [2], has broad-
spectrum resistance to pests and is also tolerant to salinity,
drought, low temperatures, and high temperatures [3]. Due
to its extreme desalination capacity, K. caspica is viewed as
a good pioneer plant for the improvement of saline soil [4].
As a secretohalophyte, K caspica actively absorbs and
discharges salt through special glands and salt holes on the
leaf surface [2,3]. At the same time, salt stress promotes K.
caspica succulence [2], which is typical of euhalophytes.
Considering these mechanisms in aggregate, the salt toler-
ance of K. caspica as intermediate between that of euhalo-
phytes and recretohalophytes is worth examining.

For most non-model organisms, the lack of whole-genome
sequencing data continues to represent a major hurdle for
research, as genome sequencing is still largely impractical for
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most eukaryotes and cannot be finished in a short timeframe.
In contrast, high-throughput transcriptome analysis can be
performed whether or not genomic sequences for the organ-
ism of interest are available [5] and thus represents a feasible
approach for organisms that have not been sequenced. To
date, transcriptome analysis has been employed in a wide
range of eukaryotes including the following: yeast [6], mice
[7], humans [8], Arabidopsis [9], Caenorhabditis elegans [10],
rice [11], and Vitis vinifera [12].

In addition to regulating diverse aspects of plant growth
and development, abscisic acid (ABA) is also required for
plant resistance to drought and salt stress [13-15]. Numer-
ous studies have aimed to elaborate the cellular and mo-
lecular responses of plants to ABA, including those related
to ABA sensing, signaling, metabolism, and transport.

To globally survey the salinity-induced ABA responses in
K caspica, RNA-Seq technology was used. The transcrip-
tion profiles of control and salt-stressed plants were com-
pared, and dynamic changes in the transcriptome were
analyzed. The goal of the present work was to elucidate
physiological processes, including those involved in the
ABA regulatory network, that are induced by salt stress in
the halophyte K. caspica at the transcriptomic level.

Methods

Plant materials

The K. caspica seeds used in this study were obtained
from saline land (Wujiaqu, Xinjiang, China). Specific
permission was not required for this collection activity
at these locations, which are considered wastelands, and
the field studies did not involve endangered or protected
species. Eight-week-old seedlings germinated in perlite:
vermiculite substrate (3:1) supplemented with 300 mM
NaCl at 25°C and grown under a 16-hour photoperiod
were used for the expression analysis. The treated and non-
treated groups were sampled at 3, 6, 12, 24, 36, and 48 hours.
After washing with deionized distilled water, the material
from the different time points was combined to generate the
final samples used for cDNA library preparation.

Preparation of cDNA Libraries for RNA-Seq

For each treatment (ie., the control and salt stress treat-
ments), approximately 100 g fresh material was used for
RNA preparation. Total RNA was extracted using the RNA-
queous Kit [16] then subsequently treated with RNase-free
DNase I (QIAGEN #79254) to remove residual genomic
DNA. For each treatment, mRNAs were treated with Truseq
RNA sample preparation kit (Illumina-15026495, USA),
firstly purified from the 20 mg total RNA using oligo (dT)
magnetic beads and fragmented using fragmentation buffer.
Cleaved short RNA fragments were used for first-strand
cDNA synthesis using reverse transcriptase and hexamer
primer, followed by second strand ¢cDNA synthesis using
DNA polymerase I and RNase H. Following a quality check
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using an Agilent 2100 Bioanalyzer, the cDNA libraries were
used for sequence analysis using the Illumina HiSeq TM
2000 system.

Transcriptome analysis

Raw sequencing data were deposited in the DDBJ/EMBL/
GenBank database (accession number GANI00000000).
After the adapter sequences were trimmed from the raw
reads, empty reads and reads containing unknown nucleo-
tides (Ns) >5 were removed. The remaining clean reads
were de novo assembled into unigenes using Trinity soft-
ware (trinityrnaseq_r2012-06-08 edition). The paired-end
method was then used to acquire a single set of non-
redundant unigenes. Glimmer 3.02 and EMBOSS_6.3 soft-
ware were used to analyze the coding sequences (CDS) of
the unigenes. All non-redundant unigenes were used to
perform BLAST searches and to obtain annotation infor-
mation in the following databases: NCBI nr, Swiss-Prot,
Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Cluster of Orthologous Groups (KOG). WEGO [17] was
used to classify GO function, which was analysis using the
Blast2go program [18].

Identification of differentially expressed genes

RPKM (reads per kilobase per million reads) values were
used to evaluate expression and to quantify transcript
levels [19], and differentially expressed unigenes [20] were
identified by fold change values and fisher test. In the
present study, the fold.change (AB) value > 1 were choo-
sen was used to as the threshold to determine significant
differences in gene expression. For the pathway enrich-
ment analysis, all differentially expressed unigenes were
mapped to terms in the KEGG database. A search was
then performed for significantly enriched KEGG terms
compared to the whole transcriptome background.

Quantitative RT-PCR (qRT-PCR) analysis

For qRT-PCR, total RNA was isolated from 200 mg frozen
materials as described above. Three biological replicates
were performed for both the control and salt stress-treated
seedlings. For each qRT-PCR reaction, 100 ng of RNA that
had been treated to remove genomic DNA was used as
template for cDNA synthesis. Additional file 1: Table S1
lists the sequences of the primer pairs used for qRT-PCR.
The relative transcript levels of selected genes were quanti-
fied using Platinum® SYBR® Green qPCR SuperMix-UDG
(Invitrogen, CA, USA). The reactions were performed using
the 7500 Real-Time PCR system and software (Applied
Biosystems, CA, USA). KcACTIN, which was constant under
the tested conditions, was included for normalization in
each qRT-PCR run. Average expression ratios (PQ/C)
were calculated using the AACT method, and log2
fold-change values were used.
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Results and discussion

Raw reads processing and assembly

To obtain transcript information for K. caspica, two
c¢DNA libraries were prepared for the control and salt
stress-treated plants then sequenced using the Illumina
sequencing platform. The raw reads were transformed by
base calling from the image data output from sequencing.
After trimming the adapter sequences and removing se-
quences with unknown or low quality bases, approxi-
mately 50.35 and 51.58 million clean reads were obtained
for the control and salt stress samples, respectively. Trin-
ity software (trinityrnaseq r2012-06-08) and the paired-
end method were used for de novo assembly of the clean
reads into contigs. A total of 287,185 transcripts with dif-
ferent lengths were generated from both of the treatments
(Additional file 2: Table S2), which provided abundant in-
formation for subsequent analysis of salt stress-associated
genes in K. caspica.

Functional annotation and GO assignments of the
assembled transcripts

The unigene sets obtained from the K caspica transcrip-
tome data were annotated based on protein sequence hom-
ology. First, we used glimmer3.02 and EMBOSS 6.3.1
software to transform all transcripts with sequences longer
than 100 bp into reliable coding sequences (CDS). The
320,260 CDS produced were used for further annotation
with the NCBI nr, Swiss-Prot, TTEMBL, CDD, pfam, and
KOG databases. From this analysis, 216,415 unigenes were
identified that exhibited high sequence similarity with

Page 3 of 9

known gene sequences (Additional file 3: Table S3 and
Additional file 4: Table S4). Subsequently, a total of 18,378
sequences were assigned to 25 KOG (clusters of ortholo-
gous groups for eukaryotic complete genomes) terms.
Among the terms identified, the three highest represented
categories were as follows: signal transduction mechanisms
(4,561); posttranslational modification, protein turnover,
chaperones (3,441); and general function prediction (3,271)
(Figure 1). All of the unigenes were queried in the GO data-
base (Gene Ontology, an international standardized gene
functional classification) to classify their predicted func-
tions. From this analysis, 35,533 unigenes were grouped
into three functional categories, “biological process”, “cellu-
lar component”, and “molecular function”, with the subsets
of sequences further divided into 33, 18, and 17 subcategor-
ies in these three groups, respectively. The largest subcat-
egory in the “biological process” group was “metabolic
process”, which included 12.1% of the unigenes in the sub-
category. In the “cellular component” and “molecular func-
tion” categories, “cell” and “binding activity” were the most
abundant GO terms, representing 7.5% and 11.3% of each
subcategory, respectively. In addition, there were high per-
centages of unigenes in the “cell part”, “catalytic activity”,
and “cellular process” categories and only a few unigenes in
the “receptor regulator activity”, “locomotion”, “cell junc-
tion”, and “symplast” categories (Figure 2).

Changes in gene expression under salt stress
To investigate the molecular response to salt stress
exposure, unigene transcript levels in the control and
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Figure 1 Diagram of the KOG (clusters of orthologous groups) classification. A total of 18,378 sequences were classified under 25 KOG

categories. All of the unigenes were grouped into three major functional categories: biological process, cellular component, and molecular
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Figure 2 GO annotation of non-redundant unigenes. Good hits were aligned to the GO database, and 35,533 transcripts were assigned to at
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salt stress treatments were calculated as RPKM (reads per
kilobase per million reads), which eliminates the influence
of gene length and sequencing discrepancy in calculating
gene transcript levels and permits a direct comparison
between treatments [19]. Based on the RPKM values
observed, 60,127 differentially expressed unigenes were
detected (Additional file 5: Table S5), with 38,123 and
22,005 up- and down-regulated genes, respectively. Salinity
imposes a water deficit and ion stress, which have wide-
ranging effects on the activity of plant cells, including inhib-
ition of essential enzymes, cell membrane destabilization, a
decrease in nutrient supply, and overproduction of reactive
oxygen species (ROS) [15,21]. The extensive variation ob-
served in the transcriptome (67.3%) indicates complex tran-
scriptional changes in K. caspica and comprehensive
salt-stress influence on the cellular activity of K. caspica.

Functional annotation of differentially expressed

unigenes under salt stress

To identify unigenes involved in metabolic or signal
transduction pathways that were significantly enriched
under salt stress, all of the differentially expressed
sequences were queried in the KEGG database and com-
pared to whole transcriptome data. Among the 60,127
differentially expressed transcripts (DETs), 13,848 genes
were well annotated, while the remaining 46,239 genes
had low sequence similarity to known sequences in the
current database and therefore represent potentially

novel salt-stress responsive genes. The potentially large
number of unknown regulated genes suggested that fac-
tors involved in salt stress responses in Asteraceae may
be distantly related to those identified in other genera.
Pathway enrichment analysis revealed that many genes
for which annotation data were available were directly or
indirectly involved in the salt stress response, namely,
primary metabolism, cellular processes, plant hormone
signal transduction, plant-pathogen interaction, biosyn-
thesis of secondary metabolism, and plant circadian
rhythm (Figure 3 and Additional file 6: Table S6). These
findings underscore the large scale re-coordination that
occurs during short-term acclimation to salt stress ex-
posure. Among the 4,023 DETs with pathway annota-
tion, 172 DETs were found to be involved in the plant
hormone signal transduction after salinity exposure, and
68 DETs were associated with MAPK signaling pathway
(Table 1). Since very little information about the signaling
cascades and the pathway of salinity sensing in Asteraceae
is available, the presently identified sequences provide
important clues for screening these putative salt stress
responsive genes and their associated genes.

Functional annotation of differentially expressed
unigenes involved in ABA-signaling under salt stress
ABA plays a key role in a wide range of developmental
processes and adaptive stress responses to environmental
stimuli in plants [22]. Many studies have focused on the
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cellular and molecular responses in plants to ABA, including
ABA metabolism, transport, sensing, and signaling. We
therefore focused on these physiological processes and
highlighted potentially informative findings determined from
the analysis.

ABA metabolism

ABA is synthesized from carotenoids. 9-cis-epoxycarotenoid
dioxygenase (NCED) breaks down the 11, 12 double bond
of 9-cis violaxanthin, which results in the formation of
C;5 xanthoxin within plastids. The subsequent steps of
xanthoxin conversion to abscisic aldehyde are catalyzed
by abscisic-aldehyde oxidase (AAO3) and xanthoxin de-
hydrogenase (ABA2) in the cytosol [23]. In the salt-
stressed K. caspica transcriptome, NCED (comp39466),
AAO3 (comp43593), and ABA2 (comp714908) were all
identified as up-regulated DETs. Consistent with this find-
ing, carotenoid cleavage dioxygenase (CCD, comp40565),
which yields another carotenoid-derived phytohormone
from carotenoid and therefore competes with NCED for
the same substrate, was down-regulated, further implicating
enhanced ABA content in the responses of K. caspica to
salt stress.

ABA transport
Although ABA is predominantly biosynthesized and
metabolized in vascular tissues, it acts in the stomatal

Table 1 Significantly enriched pathways of differentially
expressed unigenes

Pathway category UnigenesNo % Qvalue
Plant hormone signal transduction 172 428  159E-14
MAPK signaling pathway 68 169  145E-19
Calcium signaling pathway 32 080  1.29E-14
Nitrogen metabolism 29 072  261E-14
Circadian rhythm 20 050 261E-14
Steroid hormone biosynthesis 11 027  892E-12

Unigenes No. and % indicate the number and the percentage of unigenes in
each pathway from 4023 differentially expressed unigenes mapped to
KEGG respectively.

responses of distant guard cells [24-26]. In this way, ABA
intercellular regulation and transport are critical for plant
responsiveness to osmotic stress. It was recently reported
that two G-type ATP-binding cassette (ABC) transporter
genes, AtABCG25 and AtABCG40, encode proteins re-
sponsible for ABA transport and response in Arabidopsis
[27]. The ABC transporter is conserved in many model
species from E. coli to humans and was reported to trans-
port various metabolites and signaling molecules through
the action of phytohormones in an ATP-dependent man-
ner [28,29]. Several different types of ABC transporters
(Table 2) were identified as up-regulated DEGs (differentially
expressed genes) in K caspica through BLAST homology
searches, but only one unigene (comp306780) belonged to
the G-type ABC subfamily. Nevertheless, this finding does
not preclude the possibility that other non-G-type ABC
transporters or non-ABC transporters identified in K cas-
pica contribute to cell-to-cell ABA vesicular transport. In
fact, two nitrate transporter 1/peptide transporters (NRT1/
PTR) family members involved in the transport of nitrogen
(N) compounds were recently characterized as novel ABA
transporters in Arabidopsis despite being wholly distinct
from ABC transporter family members [23].

ABA sensing and signaling

In one proposed model of ABA signaling in Arabidopsis,
PYR/RCAR/PYL (Pyrabactin Resistance/Regulatory Com-
ponent of ABA Receptor/Pyrabactin Resistance 1-Like)
family proteins, which act as ABA receptors, recognize
and bind to group A PP2C (type 2C protein phosphatase)
molecules in the presence of ABA. Subclass III SnRK2s
(SNF1-related protein kinase 2) are then released from
PP2C-dependent negative regulation, allowing the acti-
vated SnRK2s to phosphorylate downstream proteins such
as ABA-responsive element (ABRE)-binding transcription
factors (ABFs) [30-32]. Similar regulation of ABA signal-
ing has been detected in other species such as wheat
[30,33,34]. In K. caspica, orthologs of PYL (comp365319,
comp38298), PP2C (comp6211), and SnRK2 (comp 30500,
comp27671, comp38192) were up-regulated in the salt
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Table 2 Putative ATP-binding cassette (ABC) transporter genes identified as up-regulated DEGs in K. caspica

Unigene ID Length (bp) Subfamily Best hit E-value Blast annotation/Organism
comp465528 297 A Q99758 1E-63 ATP-binding cassette sub-family A member 3 [Homo sapiens]
comp16398 388 B Q8LPT1 3E-54 ABC transporter B family member 6 [Arabidopsis thalianal
comp17267 328 B Q9ZR72 1E-59 ABC transporter B family member 1 [Arabidopsis thalianal
comp450357 451 B Q704E8 2E-61 ATP-binding cassette sub-family B member 7 [Rattus norvegicus)
comp454701 282 B Q8LPK2 7E-15 ABC transporter B family member 2 [Arabidopsis thalianal
comp577194 451 B QINRK6 3E-17 ATP-binding cassette sub-family B member 10 [Homo sapiens]
comp20933 300 C Q9LZJ5 OE-47 ABC transporter C family member 14 [Arabidopsis thaliana)
comp267971 705 D P48410 9E-125 ATP-binding cassette sub-family D member 2-like [Acyrthosiphon pisum]
comp324163 542 D P48410 4E-40 ATP-binding cassette sub-family D member 1 [Mus musculus)
comp352820 476 D QoQY44 9E-45 ATP-binding cassette sub-family D member 2 [Rattus norvegicus]
comp5337 228 D QouBJ2 3E-20 ATP-binding cassette sub-family D member 2 [Homo sapiens)
comp481971 244 E P61222 5E-30 ATP-binding cassette sub-family E member 1 [Mus musculus)
comp29933 2612 F QoUG63 0.0 ATP-binding cassette sub-family F ember 2 [Tribolium castaneum)
comp516400 351 F Q8K268 2E-33 ATP-binding cassette sub-family F member 2 [Homo sapiens]
comp306780 297 G Q9H172 1E-46 ATP-binding cassette sub-family G member 4 [Homo sapiens)
A B
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Figure 4 Sequence alignment and phylogenetic trees of (A) PYL, (B) PP2C, and (C) SnRK2 gene family members in Arabidopsis thaliana
along with DEGs identified in K. caspica. Sequence data referenced here can be found in the GenBank data libraries under the following
accession numbers: PYLT (AT5G46790), PYL2 (AT2G26040), PYL3 (AT1G73000), PYL4 (AT2G38310), PYLS (AT5G05440), PYL6 (AT2G40330), PYL7
(AT4G01026), PYL8 (AT5G53160), PYL9 (AT1G01360), PYL10 (AT4G27920), PYL11 (AT5G45860), PYL12 (AT5G45870), PYL13 (AT4G18620), PYR1
(ATAG17870), SNRK2.1 (AT5G08590), SNRK2.2 (AT3G50500), SNRK2.3 (AT5G66880), SNRK2.4 (AT1G10940), SNRK2.5 (AT5G63650), SNRK2.6
(AT4G33950), SNRK2.7 (AT4G40010), SNRK2.8 (AT1G78290), SNRK2.9 (AT2G23030), SNRK2.10 (AT1G60940), PP2CA (AT3G11410), HAIT(AT5G59220),
AHGT(AT5G51760), PP2CGT(AT2G33700), AP2CT(AT2G30020), HAI2(AT1G07430), PIAT(AT2G20630), HAI3(AT2G29380), PP2C74(AT5G36250), AtHABT
(AT1G72770), AtABI2(AT5G57050), and AtABIT(AT4G26080).
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stress sample (Figure 4), indicating that the regulation of
ABA signaling is indeed conserved among plant species.
Based on phylogenetic analysis, the DEGs comp365319,
comp38298, and comp907276 in K. caspica grouped to-
gether with AtPYL4-9 (Figure 4). Since AtPYL4, AtPYL5,
AtPYL6, AtPYLS, and AtPYL9 have been found to inhibit
PP2Cs even in the absence of ABA [35] and considering
that the ectopic expression of PYL5 and PYLS8 in Arabi-
dopsis results in enhanced drought resistance [36,37],
comp365319, comp38298, and comp907276 may function
independently of ABA as positive regulators in the salinity
response of K. caspica. Moreover, AtHAI1, AtHAI2, and
AtHAI3 (Highly ABA-Induced PP2Cs) and the DEG
comp6211 in K caspica made up the clade A PP2Cs
(Figure 4), which had the greatest effect on ABA-
independent low water potential phenotypes and less of
an effect on classical ABA sensitivity phenotypes [38].
Thus, comp6211 was associated with known clade A
PP2Cs in ABA-independent salinity-associated signaling.
Furthermore, physiological analyses illustrated that the
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DEGs comp27671, comp30500, and comp38192 were classi-
fied into groups [, 11, and III, respectively (Figure 4). Of these,
only group III SnRKs are considered ABA-dependent
kinases [39,40]. It nevertheless remains possible that
many of the K. caspica DEGs may be involved in ABA-
independent salinity-signaling cascades.

Real-time PCR validation of differentially expressed
unigenes

To validate the transcriptome data of K. caspica under
salt stress, five DEGs that were found to be up-regulated
in K. caspica exposed to salt stress, namely, orthologs of
SnRK2 (comp38192, comp 30500), PYL (comp38298,
comp365319), and PP2C (comp6211), were selected for
real-time PCR analysis using two-month-old K. caspica
seedlings treated with 300 mM NaCl. As shown in
Figure 5, all five genes exhibited enhanced expression at
certain points during the treatment period, confirming
the comparative transcriptome data for salt-stressed K.
caspica. Comp6211 and comp30500, which are predicted
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to be ABA-independent signaling components, also chan-
ged over the course of the treatment period, implicating
their functions in K. caspica responses to salinity. As ABA
receptors, PYL (comp38298, C; comp365319, D)responded
earlier in the presence of salinity stress, recognized and
bind to group A PP2C (comp6211, E) molecules. Subclass
I SnRK2s (comp38192, A; comp 30500, B), which
responded to salinity stress at 12 h, a little later than PYL
(comp38298, C; comp365319, D) and PP2C (comp6211, E),
are then activated, allowing the SnRK2s to phosphorylate
downstream proteins. And the expression of the five genes
was comparable with the fold change estimated by tran-
scriptomic data illustating that the changes presented in
real-time PCR are biologically significant. Taken together,
these results validated the involvement of ABA in K. cas-
pica subjected to salt stress. Actually, ABA is universal as
stress-invlolved hormone in plant kimdom. Besides, the core
components in ABA signaling have been obtained in rice,
Selaginella moellendorffi, Physcomitrella patens, Ostreococ-
cus tauri [41]. Although the PYR/PYL/RCAR-PP2C-
SnRK2 pathway model has been established [41], it is not
clear whether this model can explain all ABA responses in
plant kindom. It is necessary to determine whether these re-
dundant variants are dependent on or independent of the
core ABA pathway among different plants.

Other DGEs involved in other hormone signaling

Plants adapt to adverse environments by integrating growth
and development to environmentally activate cues. Besides
ABA, several DGE involved in other hormone signaling in-
dicated multiple hormone crosstalks in K.caspica responses
to salt stress. For example, GA integrates generic responses
into abiotic stress tolerance via the DELLA proteins [42]
(comp30323, comp47577) to regulate plant development.
Auxin modulate plant development,especially root system
architecture, to defense for salt stress by SAUR family pro-
tein (comp 31574, comp181105, etc.) and auxin responsive
GH3 gene family (comp324952, comp9514, etc.) [43,44];
Brassinosteroid (BR) and ethylene, which respectively medi-
ated by BR-signaling kinase (comp768925), ethyle-reponsive
transcription factor (ERF1, comp20087; ERF2, comp382497),
and EIN3-binding F-box protein (EBF1-2, comp768925), are
also involved in strateges plants take to cope with unfavor-
able conditions[45,46]. Therefore, the response to salt stress
in Kcaspica is a comprehensive regulatory network in term
of the plant hormones signaling cascade, and need further
elucidated.

Conclusion

This study profiled the transcriptome of K caspica
under salt stress using Illumina RNA-seq technology to
identify responsive genes and specific pathways involved
in the salinity response of K. caspica. The transcriptome
profile data provide a foundation for further investigation

Page 8 of 9

of the molecular basis underlying salt stress tolerance in
this species. Several key genes involved in ABA metabol-
ism, transport, sensing, and signaling functions were
found to be induced by salt stress treatment. Thus, the
transcriptome profiling approach and subsequent gene ex-
pression analysis in K. caspica provide important clues for
the identification of functional genes and the contribution
of the ABA signaling pathway to the salt tolerance of
Asteraceae plants.
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