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Abstract

Background: Many academic fields contribute to medical and health research. As a result, due to the various
backgrounds of these disciplines, inference and interpretation of study findings can be misconstrued.

Results: In a recent survey of the 2009 H1N1 literature we found many instances where semantic and statistical
misinterpretation or miscommunication could potentially arise. We provide examples where miscommunication or
misinterpretation of study results can mislead the interdisciplinary reader. We also provide some additional
background on statistical methodology and theory for the interested reader.

Discussion: This work presented some examples where statistical misinterpretation or miscommunication could
arise in the H1N1 literature. However, similar challenges are encountered in other subjects and disciplines. To reduce
the probability of this occurring it is necessary that (1) readers consider papers with a critical eye and approach
citations with caution; (2) authors take more care to present study methods with more clarity. Reproducibility of the
study results would greatly aid readers in their ability to understand and interpret the given findings.
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Introduction
Within the fields of medicine and health, there is a con-
stant written dialogue through various medical journals,
papers, and reports. Professionals within the academic
disciplines of medicine, health, biology, statistics, and
mathematics are primary contributors to these texts. Due
to the complexity involving multiple disciplines, authors,
and researchers, there is a clear need for a common lan-
guage of dissemination so that the results of collaborative
efforts may be more easily interpreted across fields.
In a recent survey of the 2009H1N1 pandemic influenza

literature, we came across several instances where seman-
tic and statistical misinterpretation or miscommunication
could potentially arise, and we give some of these exam-
ples here. The statistical examples we present include
specific cases of important broad statistical concepts that
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are widely used in the biological and medical litera-
ture: including estimation, sample size considerations in
hypothesis testing, and graphical methods. Although the
examples are not exhaustive in covering the vast field of
statistics, we believe that these examples could be of use
to interdisciplinary research groups in biology, medicine
and health, and researchers in mathematical biology.

Organization of material
The examples are presented in the following sections,
followed by a discussion. Remarks 1, 2, 3, 4 and 5 pro-
vide additional background on the statistical methodology
and theory discussed in the main text, for the interested
reader. A list of notations and abbreviations used in the
main text is provided at the end of the note, immediately
following the discussion.

Representations and citations
With the vast amount of literature surrounding the study
of influenza, challenges can arise in tracking results across
publications, potentially leading to interpretations which

© 2014 Recoskie et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto: jmheffer@yorku.ca
mailto: hkj@yorku.ca
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Recoskie et al. BMC Research Notes 2014, 7:939 Page 2 of 7
http://www.biomedcentral.com/1756-0500/7/939

differ from those intended by the original authors.We give
some examples here, to illustrate possible misleading rep-
resentations and citations. We focus on three studies by
[1-3].
In the 2009 H1N1 pandemic, the effects of infection and

vaccination in children were of some interest, and many
studies included cohorts of children in their data. How-
ever, the definition of ‘child’ varied across some of these
publications. For example, study cohorts ranged from 10
‘infants’ ([1], mean age 7.6 months, 6.1–11.8 months age
range) to a study of 124 children ([2,3], ages 6 months
to 9 years). It is important to note that, within these age
ranges, immune system functions can vary considerably
[4]. Thus, it is difficult to compare results over these ages
and between these different cohorts. Therefore, the reader
should interpret these results with some caution.
Citations within these papers also can appear some-

what misleading. For example, [1] cite [2] when writing
“Middle-aged adults had been exposed repeatedly to sea-
sonal influenza viruses, leading to antibody production,
whereas young children often lacked previous exposures”.
However, the result of [2] is “children had little evidence of
cross-reactive antibodies to 2009 H1N1”, not that children
lacked previous exposure to influenza leading to antibody
production. Furthermore, [2] also concluded that “the
data confirm the presence of some level of cross-reactive
antibody in persons 60 years or more of age and the lack
of such antibody in children and adults”.
Another example of a citation which could be misin-

terpreted also comes from [1], where it is stated that
“young infants and children, as in previous pandemics,
had high rates of infection with comparatively low mor-
tality” and that “this paradox is explained by absence of
protective and pathogenic immunity in children before
infection”. Here, the authors are referring to CDC [3].
However, CDC [3] states that “the results indicated that
before vaccination, no cross-reactive antibody to the novel
influenza A (H1N1) virus existed among children”, as well
as, “previous vaccination of children ... did not elicit a
cross-reactive antibody response to the novel influenza A
(H1N1) virus”. Although the idea behind the statements
from [1] and CDC [3] is the same, antibodies are only
one form of immunity, and therefore it can be misleading
for [1] to generalize such a statement when citing another
study.

Estimating a density and assessing goodness-of-fit
In data analysis, the complex behaviour of data can often
be summarized through an appropriate choice of a statis-
tical model. When researchers are interested in the distri-
bution of some quantity, they often model this behaviour
by fitting a probability density function to the data. Some
popular choices of distributions used here include the nor-
mal, log-normal, or gamma densities. For an example,

consider the incubation period of the H1N1 pandemic
as estimated in [5]. The incubation period is defined
as the time between infection of an individual and the
appearance of symptoms. Here, the authors estimate the
incubation period based on a sample size of n = 316
laboratory-confirmed cases of H1N1 and fit a log-normal
distribution to the observed data. For further details on
data acquisition and how missing data were handled we
refer to [5].
In attempting to replicate the analysis of [5], we came

across two specific issues with this data set: First, the
data set has been discretized (we expect the true pro-
cess to be continuous, whereas only integer values were
observed). Second, the data set has several zero obser-
vations, whereas a log-normal density does not allow
for observations of zero. Unfortunately, [5] do not dis-
cuss how they handle these issues. Here, we assume
that an observation of 0 means that the incubation
time was actually < 1, an observation of 1 means that
the incubation time was larger than 1 but smaller
than 2 (days), and so on. That is, we assume that the
data have been interval censored or grouped. With this
assumption, we use two popular approaches to esti-
mate our model, maximum likelihood and least squares
estimation.
First, we consider the method of maximum likelihood.

To handle the discretized data we employ an approach
very popular in insurance and actuarial applications: We
assume that an observation known to fall somewhere in
an interval (e.g. [ 1, 2)) falls exactly at the midpoint of that
interval (e.g. 1.5). In our case, it means that we transform
the data as described in [5] by adding 0.5 to each integer
value (i.e. an observation of 1 becomes 1.5, and observa-
tion of 0 becomes 0.5, etc.). Let us denote this transformed
data as z1, . . . , z316. Now, we can find the maximum like-
lihood estimator of θ = (μ, σ), as described in Remark 1,
when the density f (x|θ) is the log-normal density.
We next consider a least squares approach to estimate

the unknown parameters. We handle the discretized data
directly and without using the midpoint assumption as
for maximum likelihood. The details of the method are
described in Remark 2, with θ = (μ, σ) and log-normal
density f (x|θ). The intervals, or bins, in our case were
taken to be I1 = [0, 1), I2 = [1, 2), . . . ,I10 = [9, 10), I11 =
[10,∞).

Remark 1 (Maximum likelihood estimation (MLE)
when data is not grouped). Maximum likelihood is a
popular statistical method used for parameter estimation.
Let f (x|θ) denote the density model chosen and θ denote
the unknown parameter(s) of the model. Let z1, . . . , zn
denote the observed data, where n denotes the sample size.
The method of maximum likelihood says that the estimate



Recoskie et al. BMC Research Notes 2014, 7:939 Page 3 of 7
http://www.biomedcentral.com/1756-0500/7/939

of θ should be θ̂n, the value of θ which maximizes the
likelihood function

L(θ) =
n∏

i=1
f (zi| θ).

The estimated density model then becomes f (x | θ̂n).Note
that the above formula makes the implicit assumption that
the observed data are independent.

Remark 2 (Least squares estimation (LSE) when data
is grouped). The method of least squares is a second
popularmethod to find the unknown parameter values in a
model. As in Remark 1, let f (x|θ) denote the density model
chosen and θ denote the unknown parameter(s) of the
model. Assume that the data z1, . . . , zn has been grouped
(or binned) into m intervals I1, . . . , Im. Let p̂i denote the
proportion of observed data which lies in each bin. The
method of least squares then says that the estimate of θ

should be θ̂n, the value of θ which minimizes

m∑
i=1

(̂
pi −

∫
Ii
f (x|θ)dx

)2
.

The estimated density model then becomes f (x | θ̂n).

Remark 3 (Goodness-of-fit). Suppose the data are
divided among k boxes: B1, . . . ,Bk . Now, calculate Oi,
the observed number of data in the ith box, and Ei =
n

∫
Bi f (x|θ̂n)dx, the expected number of observations in the

ith box under the estimated model. Here, n denotes the
sample size. The larger the chi-squared test statistic

χ2
obs =

k∑
i=1

(Oi − Ei)2

Ei
,

the more evidence we have that the model does not fit
well. The α-critical value of the test statistics is the upper
α quantile of the X 2 distribution with k − m degrees of
freedom, where m is the number of parameters estimated
in the model. Equivalently, the p-value is calculated as
P

(
χ2(k − m) > χ2

obs
)
.One “rule-of-thumb” states that the

boxes should satisfy Ei ≥ 5, which improves the quality of
the test.

The results of both methods are shown in Figure 1,
where we used fictional data similar to that given in ([5],
Figure four). From Figure 1, it is evident that neither
method appears to fit the overall data well. The LSE does
a better job of modelling the main mode of the empiri-
cal data, whereas the MLE seems to fit the small values
of the data better than the LSE, but does not capture the
main mode of the observations. Neither method handles
the small values well, especially the observed zero values.
However, the quality of the fit needs to be evaluated based
upon the intended use of the estimated density. For exam-
ple, if we were interested in using this estimated model in
simulations to understand the spread of the disease in a
population with some immunity to the disease, we would
want a much better fit to the observed distribution for
values near 0 or 1, since the presence of immunity can
shorten the incubation period, and in some cases, symp-
toms will never be demonstrated. In such an instance, it
would be imperative that a better model of the behaviour
of the incubation period be provided.
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Figure 1 Fitting the log-normal distribution to the incubation data.Maximum likelihood and least squares estimators are fit to empirical
incubation period data (see legend).
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Notably, both fitted distributions (MLE and LSE) would
be rejected as models based on a goodness-of-fit analy-
sis (see Remark 3). For the maximum likelihood model we
find χ2 = 180.7 (with bin breaks at 0, 2, 3, 4, 5, 6,∞ to sat-
isfy Ei ≥ 5) and for the least squares model we observe
χ2 = 169.6 (with bin breaks at 0, 3, 4, 5, 6,∞ to satisfy
Ei ≥ 5). Both of these tests have p-values close to zero, and
therefore, in both cases, we reject the null hypothesis that
the observed data was generated by a log-normal density
model. (If the p-value is smaller than α, then we say that
the data are statistically significant at level α.)
It should be noted that we chose the log-normal to

reflect the choice in [5]. We also considered other distri-
butions, such as the Weibull, which improved the fit of
the model (results not shown). Note, however, theWeibull
model did not handle the important data near zero well
either.

Measuring the centre of a distribution
To summarize the properties of a given model, such as
a density, one often turns to summary statistics, such as
the mean, median, or mode. For models such as the nor-
mal density, all three of these are equal. However, this is
not the case for all density distributions: If the density is
skewed, these quantities can be very different. For exam-
ple, in a right-skewed distribution, the mean is larger than
the median.
In [5], a stochastic model was built and employed to

simulate influenza dynamics to gain understanding of
virus behaviour. The authors then compared the duration
of symptoms from the stochastic model with the observed
duration: “our estimate of the duration of symptoms
(median 7 days) is longer than our model-based estimate
(mean 3.4 days)” ([5], page 134). The observed duration of
symptoms is right-skewed ([5], Figure four), and therefore
the mean will be much higher than the median. Hence,
the comparison given above between the observed and
model-based estimates of the duration of symptoms is
“underplayed” in that the difference between the model-
based and empirical datameans ormedians would be even
greater.

Sample size and hypothesis testing
In biomedical studies, it is generally laborious and expen-
sive to obtain large amounts of quality data, thus, small
sample sizes (n) are frequently observed. It is therefore
important to understand the limitations of the conclu-
sions which can be drawn from such data. In particular,
for hypothesis testing, the sample size has a large effect
on the power of the statistical procedure (Remarks 4
and 5). Statistical power measures the ability of a test to
correctly detect the alternative hypothesis. Therefore, con-
clusions drawn from a small sample population may not
be informative.

In [1], the authors compare different measures of
immune complex-mediated disease in 2009 H1N1
influenza infection between infants, middle-aged adults,
and the elderly ([1], Figures four (a) and four (c)). Here, the
sample sizes range from n = 3 to n = 16 for all groups.
In such cases, a more thorough understanding of the
difference between the null and alternative hypotheses as
well as the inherent variability of the data is important to
understand the statistical power of the test statistic being
used. Without this additional information, it is difficult to
comment on the results. However, the small sample size
is an immediate concern.
To gain an understanding of the potential issue, consider

the following heuristic example. Suppose that we wish to
test if the proportion of the population p with a certain
characteristic is equal to zero (that is, the null hypothesis
isH0 : p = 0 and the alternative hypothesis isHA : p > 0).
We collect a sample size of n = 10, and observe no one
with the characteristic in question. The power of our test
depends on what nonzero population proportion we are
actually interested in detecting.
Suppose that, if the characteristic were present, it would

be present in a large proportion of the population: e.g.
p = 0.5. In this case, we could be fairly certain that we
have an ability to tell the difference between the null (H0)
and alternative (HA) hypotheses: indeed, we would expect
to see about half of the sample size with the characteristic
(i.e. on average) if HA holds. On the other hand, suppose
that the characteristic of interest is rare in the population:
e.g. p = 0.05. Here, we would need to sample at least
20 individuals before we could expect to observe at least
one individual with the characteristic (again, on average).
Thus, with a sample size of n = 10, the probability that we
could detect a nonzero, but small, population proportion
is low, even if the alternative is true. That is, the power of
the test to detect this population proportion is low.

Remark 4 (Hypothesis testing). Once the the null (H0)
and alternative (HA) hypotheses have been set, a decision
is made based on the observed data. The decision is either
correct or incorrect, and this depends on the data observed
and the true state of the world.

DECISION:
fail to reject H0 reject H0

TRUTH: H0 is true correct decision Type I error
HA is true Type II error correct decision

We set α = P(Type I error) and β = P(Type II error).
The hypothesis test rejects H0 if the data are unlikely to be
observed under the null hypothesis. For a concrete exam-
ple, suppose that we are using the z-test and our hypotheses
are H0 : μ = μ0 vs. HA : μ > μ0. Note that the alterna-
tive hypothesis in this case is one-sided. With a significance
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level of α = 0.05, we reject the null hypothesis if the
observed test statistic

xn − μ0
σ/

√
n

> 1.645

where σ is the population standard deviation, n is the
sample size, and xn is the observed sample mean.

Remark 5 (Power in a hypothesis test). Ideally, the
probabilities of both the Type I and Type II errors (defined
in Remarks 4) would be small. However, the opposite is
true: Decreasing one increases the other. Therefore, the typ-
ical approach in hypothesis testing is to fix the probability
of a Type I error, α, and then to control the probability of
a Type II error β through the sample size. The power of a
hypothesis test is the probability with which we detect the
alternative hypothesis, assuming that it is the true state of
the world. Hence, the power is equal to 1−β , and we would
want this to be high. Exact calculations of power depend
on both the test statistic and the actual distribution in the
alternative hypothesis. The power of the z-test described in
the previous box is the probability that(

Xn − μ0
)

σ/
√
n

> 1.645

under the alternative hypothesis, where Xn denotes the
sample mean, now a random quantity (i.e. prior to being
observed, or considered under repeated experimentation).
However, there aremany possible values for themean in the
alternative hypothesis, and we perform the calculations for
each population mean μA ∈ HA. The value of μA used in
the calculation should be determined by the experts in the

particular field : this is the value of the population mean
the scientists would like to detect through the hypothesis
test. Overall, the power depends on the difference between
the population means under the alternative and null
hypotheses (μA −μ0), on how variable the data are (i.e. σ ),
and, perhaps most importantly, on the sample size. Power
functions for the one-sided z-test of H0 : μ = μ0 vs. HA :
μ > μ0 for different sample sizes are plotted below, assum-
ing that σ = 1. We can clearly see that the probability of
detecting a fixed difference ofμA−μ0 increases, sometimes
drastically, as the sample size increases (Figure 2).

Graphical representation of data
Graphical methods are a simple yet highly effective
method of providing information. Popular choices in the
influenza literature include histograms or bar plots. The
work in [6] studies the 2006–2007, 2007–2008, and 2009
influenza seasons. There, mortality due to severe pneu-
monia, and morbidity, are compared graphically by age.
These figures appear to indicate an increase in the pro-
portion of severe pneumonia deaths and illness in younger
adults in 2009 when compared to 2006–2008 (see Figures
two and three of [6]). In Figure two of [6], the ages are
grouped into bins of equal width (10 years). However, in
Figure three of [6], there is a clustered group of width
twenty years (25–44) and a clustered group of width ten
years (50–59). This results in an apparent spike in the per-
centage distribution, which can be easily misinterpreted
as a significant proportional increase. However, the spike
is largely due to the amalgamation of three age groups. A
related example for fictional data is illustrated in Figure 3.
The figure shows the same data in each panel, but in
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Figure 2 Power versus effect for various sample sizes. Three cases are shown for different values of n (see legend).
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Figure 3 Three different ways of presenting the same data. (a) shows the original data, while in (b) & (c) three groups have been amalgamated,
however (c) reflects the change in bin width in the amalgamated group. Note that Figure 3 (c) is a histogram in which the area is correctly
proportional to relative frequency while Figure 3 (b) is a boxplot which is misleading when the base of the boxes represent different age spreads.

plot (b) the middle group has been amalgamated in a
misleading way. Plot (c), compared to (b), has a lower
chance of misinterpretation by the reader.

Discussion
There is great potential for misrepresentation and mis-
interpretation within citations and statistical inference.
Extra care should be taken so that more clarity is provided
when describing study methods and results. Also, more
consistent use of statistical methods will provide a clearer
picture and enable readers to reproduce results. However,
a reader must still consider a paper with a critical mind
and approach citation supported inferences and statisti-
cal results with a degree of caution. It is important to note
that the peer review process is not an ideal mechanism for
eliminating errors due to misinterpretation of cited work.
The present work is focused on several specific exam-

ples from the H1N1 literature. However, similar chal-
lenges are encountered in other subjects and disciplines.
A large number of the misunderstandings presented

above could have been resolved with additional infor-
mation, allowing the reader to examine the data more

closely. This point has also been raised in a recent editorial
[7], where the question of reproducible research was dis-
cussed. In [8] and Strasak et al. [9] have also raised this
issue, the latter of which proceeds further, documenting
statistical errors common to medical research, some of
which include those mentioned here.

List of notations and abbreviations
MLE: Maximum likelihood estimator; LSE: Least squares estimator; H0: Null
hypothesis; HA : Alternative hypothesis; μ: Population mean; μ0: Population
mean under the null hypothesis; μA : Population mean under the alternative
hypothesis; p: Population proportion; σ : Standard deviation; α: Significance
level of a test; the probability of a type I error; 1-α is equal to the specificity of
the test; β : Probability of a type II error; 1-β is equal to the sensitivity or
statistical power of the test; n: Sample size.
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