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Abstract

Background: There is currently no gold standard technique for quantifying infarct size (IS) and ischaemic area-at-risk
(AAR [oedema]) on late gadolinium enhancement imaging (LGE) and T2-weighted short tau inversion recovery imaging
(T2w-STIR) respectively. This study aimed to compare the accuracy and reproducibility of IS and AAR quantification on
LGE and T2w-STIR imaging using Otsu’s Automated Technique (OAT) with currently used methods at 1.5T and 3.0T
post acute ST-segment elevation myocardial infarction (STEMI).

Methods: Ten patients were assessed at 1.5T and 10 at 3.0T. IS was assessed on LGE using 5–8 standard-deviation
thresholding (5-8SD), full-width half-maximum (FWHM) quantification and OAT. AAR was assessed on T2w-STIR using
2SD and OAT. Accuracy was assessed by comparison with manual quantification. Interobserver and intraobserver
variabilities were assessed using Intraclass Correlation Coefficients and Bland-Altman analysis. IS using each technique
was correlated with left ventricular ejection fraction (LVEF).

Results: FWHM and 8SD-derived IS closely correlated with manual assessment at both field strengths (1.5T: 18.3 ±
10.7% LV Mass [LVM] with FWHM, 17.7 ± 14.4% LVM with 8SD, 16.5 ± 10.3% LVM with manual quantification; 3.0T:
10.8 ± 8.2% LVM with FWHM, 11.4 ± 9.0% LVM with 8SD, 11.5 ± 9.0% LVM with manual quantification). 5SD and
OAT overestimated IS at both field strengths. OAT, 2SD and manually quantified AAR closely correlated at 1.5T, but
OAT overestimated AAR compared with manual assessment at 3.0T. IS and AAR derived by FWHM and OAT
respectively had better reproducibility compared with manual and SD-based quantification. FWHM IS correlated
strongest with LVEF.

Conclusions: FWHM quantification of IS is accurate, reproducible and correlates strongly with LVEF, whereas 5SD
and OAT overestimate IS. OAT accurately assesses AAR at 1.5T and with excellent reproducibility. OAT overestimated
AAR at 3.0T and thus cannot be recommended as the preferred method for AAR quantification at 3.0T.
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Background
Cardiovascular magnetic resonance (CMR)-measured in-
farct size (IS) [1,2] and myocardial salvage index (MSI)
[3,4] are important measures of reperfusion success and
predictors of remodelling and prognosis post acute ST-
segment elevation myocardial infarction (STEMI). MSI is
the proportion of reversibly injured ischaemic area-at-risk
(AAR) visualised as myocardium with high signal intensity
on T2-weighted images [3-5].
There is currently no gold standard technique for the

quantification of IS and AAR on late gadolinium im-
aging (LGE) and T2-weighted short tau inversion
recovery imaging (T2w-STIR) respectively.[6] Semi-
automated standard deviation (SD)-based thresholding
techniques [4,7], manual (visual) contouring of enhance-
ment [1,2], the full-width half-maximum (FWHM)
method [6,8], and recently, automated techniques have
been used [9,10]. The heterogeneity of techniques and
resulting IS and AAR values hinders comparisons between
studies.
Otsu’s Automated Thresholding (OAT) automatically

identifies hyperenhanced areas by selecting the grayscale
signal intensity threshold giving minimal intraclass variance
within enhanced and normal myocardium and is largely
user-independent [11]. There are very scarce published data
using OAT quantification, of IS [12] and AAR [13,14].
There are no published studies assessing IS or AAR

quantification at 3.0T, or using 7SD and 8SD infarct
quantification thresholding at any field strength.
This study aimed to compare the accuracy and repro-

ducibility of IS and AAR quantification on LGE and
T2w-STIR using OAT with the currently used quantifi-
cation methods at 1.5T and 3.0T.
Methods
Study population
Ten patients were retrospectively, randomly selected
using a random number generator [15] from the cohort
of a UK multicentre, prospective CMR study investigat-
ing acute STEMI management at 1.5T (Complete
Versus culprit-Lesion only PRimary PCI Trial) [16]. Ten
further patients were identically selected from a separ-
ate multicentre study at 3.0T (Randomized Controlled
Trial Comparing Intracoronary Administration of Ad-
enosine or Sodium Nitroprusside to Control for Attenu-
ation of Microvascular Obstruction During Primary
Percutaneous Coronary Intervention) [17]. STEMI was
diagnosed according to ESC definitions [18] and pa-
tients underwent primary PCI within 12 h of symptom
onset. The studies were approved by Trent Research
Ethics Committee, conducted according to the Declaration
of Helsinki and all participants provided written in-
formed consent.
CMR image acquisition
CMR was performed during the index admission on a
1.5T scanner (Siemens Avanto, Erlangen, Germany [n = 4]
or Philips Intera, Best, The Netherlands [n = 6]) or 3.0T
scanner (Siemens Skyra, Erlangen, Germany [n = 5]; Phi-
lips Achieva TX, Best, Netherlands [n = 4] or GE Signa
HDxt, Little Chalford, UK [n = 1]) with retrospective elec-
trocardiographic gating and dedicated cardiac receiver
coils. The imaging protocol is outlined in Figure 1 and
Additional file 1. T2w-STIR imaging with coil SI correc-
tion, cine imaging with steady state free precession and
Late Gadolinium Enhancement (LGE) imaging were per-
formed in long-axis views and contiguous short-axis slices
covering the entire LV. LGE images were acquired 10–15
minutes after administration of 0.15 mmol/kg (3.0T) or
0.2 mmol/kg (1.5T) gadolinium-DTPA (Magnevist, Bayer,
Germany) using a segmented inversion-recovery gradient-
echo sequence. The inversion time was progressively ad-
justed to null unaffected myocardium.

IS and AAR quantification
Image quality was graded according to a 4-point scale
before analysis: 3 = excellent, 2 = good, 1 =moderate and
0 = unanalysable. To remove the confounding variable of
image quality on AAR quantification, 26% of studies
from the total study population, where T2w-STIR images
were deemed non-analysable were excluded from the
random number study selection pool. Analysis was per-
formed offline in a central core lab, blinded to patient
details using cmr42 (Circle Cardiovascular Imaging, Cal-
gary, Canada). LGE, T2w-STIR and cine images were
studied together and co-registered to allow accurate
quantification based on all available data. For the assess-
ment of LV volumes and function, IS and AAR, endocar-
dial and epicardial borders were manually contoured on
contiguous short-axis LV slices, excluding papillary mus-
cles, trabeculae, epicardial surfaces and blood-pool arte-
fact, and the quantification method applied. The most
apical LGE and T2w-STIR slice was excluded to
minimize partial volume effect. Total IS and AAR were
expressed as percentage of LV mass (LVM).

IS quantification
IS was quantified on LGE magnitude images as hyperen-
hancement using 5/6/7/8 SD thresholding, FWHM [8]
and OAT by 2 experienced readers (JNK, SN: 3 years ex-
perience each). Mean IS was compared using the tech-
niques and with manual (visual) quantification. As there
is no gold standard technique for in vivo IS quantifica-
tion, we used the mean of 6 analyses (manual quantifica-
tion undertaken twice each by observers JNK and SAN,
and by an SCMR Level 3 trained reader [GPM: 10 years
experience]). Manual quantification has been used in
this capacity in the majority of studies comparing



Figure 1 CMR protocol (for Siemens Avanto 1.5T scanner; parameters for other scanners presented in Additional file 1). 4C, 2C,
3C = 4,2,3-chamber long-axis views, LV = left ventricle, SAX = short-axis, FOV = field of view, AAR = area at risk, IS = infarct size, IMH= intramyocardial
haemorrhage, MVO =microvascular obstruction.
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quantification methods for IS [6,19,20] and AAR
[13,21,22], and has high intraobserver and interobserver
agreement and reproducibility [6,14]. For 5/6/7/8 SD
thresholding, a region of interest (ROI) was manually
drawn in remote (no enhancement, oedema or wall-
motion abnormality) myocardium and the area of en-
hancement automatically calculated as the region with
signal intensity 5/6/7/8 SD above the mean within the
ROI respectively. For the FWHM technique, an ROI was
manually drawn in the infarct core and enhancement
calculated as pixels where signal intensity exceeded 50%
of the automatically determined maximum signal inten-
sity in the infarct core. Where it was not obvious which
ROI in the infarct core had the highest maximum signal
intensity, ROIs were drawn in potential regions and the
ROI with the highest signal intensity selected. The ROI
size for the 5/6/7/8 SD and FWHM methods was set at
2 cm2. The FWHM method is unaffected by ROI size as
it selects the threshold based on the single pixel with
highest signal intensity. The same signal intensity
threshold was set for all slices on 5/6/7/8 SD and
FWHM thresholding. OAT automatically calculates a
unique signal intensity threshold for each slice by divid-
ing the greyscale signal intensity histogram in each slice
into 2 groups (enhanced, normal) based on the signal in-
tensity threshold giving the least intraclass variance
(lowest sum of variances) and thus most homogeneity of
signal intensities within each group (Figure 2) [11,12].
The only user input, and thus potential sources of vari-
ation are the endocardial and epicardial contours, and
manual correction of noise artefact. OAT requires no
ROI selection and is thus largely user-independent com-
pared with SD-based, FWHM and manual quantification.

AAR quantification
AAR was quantified on T2w-STIR as hyperenhancement
using 2SD thresholding and OAT by 2 blinded readers
(JNK, SAN). The ROI size for 2SD was set at 2 cm2.
Mean AAR was compared across the techniques and
with manual quantification as described above for IS
quantification.
Two manual corrections were applied to IS and AAR

measurements: [a] inclusion of hypointense regions
within enhancement corresponding to microvascular ob-
struction and intramyocardial haemorrhage in total IS
and AAR respectively [4,6]; [b] exclusion of small iso-
lated regions of enhancement without interslice continu-
ity, in non-infarct related artery territories deemed to be
noise artefact.
To assess intraobserver variability of the techniques,

all images were re-quantified by a single observer after a
2-month interval. We also recorded the time taken to
quantify IS and AAR using each of the methods once
the endocardial and epicardial contours had been drawn
(time taken for [a] quantification of AAR or IS using
chosen technique + [b] inclusion of IMH or MVO where
appropriate + [c] exclusion of noise artefact).

Statistical analysis
Normality was assessed using the Shapiro-Wilk test, his-
tograms and Q-Q plots. Normally distributed data were
expressed as mean ± standard deviation. IS and AAR by



Figure 2 Otsu’s Automated Thresholding (OAT) method. Top row: Short-axis late gadolinium images from basal to apical (left to right). Middle row:
Enhancement (yellow) signifying infarct, designated on a slice-by-slice basis by OAT method. Bottom row: OAT automatically identifies hyperenhanced areas by selecting
the grayscale signal intensity threshold (red) on a slice-by-slice basis that gives the minimal intraclass variance within enhanced and normal myocardium.

Table 1 Baseline demographics by CMR field strength
cohort

1.5T 3.0T

n 10 10

Age (years) 56.6 ± 14.0 52.6 ± 10.6

LAD IRA (n, %) 3 (30%) 4 (40%)

LCX IRA (n, %) 2 (20%) 2 (20%)

RCA IRA (n, %) 5 (50%) 4 (40%)

Treatment strategy IRA-only PCI:
n = 3 (30%)
Complete
revascularisation:
n = 7 (70%)

Vasodilator
treatment group:
n = 7 (70%)
Control group:
n = 3 (30%)

CMR time post STEMI (d) 3.7 ± 1.3 3.4 ± 2.1

LVEDM (g) 111.6 ± 21.9 107.1 ± 23.1

LVEDV (ml) 179.9 ± 33.8 169.3 ± 35.2

LVESV (ml) 94.7 ± 20.9 94.4 ± 32.3

LVEF (%) 47.2 ± 7.8 45.4 ± 8.1

LGE image quality 2.5 ± 0.6 2.2 ± 0.6

T2w-STIR image quality 2.6 ± 0.5 2.1 ± 0.3

Data expressed as mean ± standard deviation. CMR = cardiovascular
magnetic resonance, STEMI = ST-segment elevation myocardial infarction,
LVEDM = Left ventricular end-diastolic mass, LVEDV = Left ventricular
end-diastolic volume, LVESV = Left-ventricular end-systolic volume, LVEF = Left
ventricular ejection fraction, PCI = percutaneous coronary intervention,
IRA = infarct-related artery.
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each quantification method were normally distributed
and thus compared using paired t-tests, and the accuracy
of each method was assessed by comparison with man-
ual assessment using paired t-testing, two-way mixed-
effect intraclass correlation coefficient for absolute
agreement ICC (three, one) [23] and Bland-Altman ana-
lysis [24]. On ICC, agreement was defined as excellent
(ICC ≥ 0.75), good (ICC 0.6-0.74), fair (ICC 0.4-0.59), or
poor (ICC < 0.40) [25]. Interobserver and intraobserver
variabilities were expressed using ICC (three, one) and
Bland-Altman analysis. The significance of differences in
reproducibility was assessed using Wilcoxon rank com-
parison of the squared differences [6]. Statistical tests
were performed using SPSS v20 (IBM, USA). p < 0.05
was considered significant.

Results
Baseline characteristics
Baseline characteristics are summarised in Table 1.
Twenty patients were studied (1.5T n = 10, 3.0T n = 10).
CMR was undertaken 3.7 ± 1.3 days post STEMI in the
1.5T group and 3.4 ± 2.1 days post STEMI in the 3.0T
group. In total, 171 slices were analysed for IS and AAR
(89 at 1.5T, at 82 at 3.0T). All LGE and STIR slices were
of diagnostic image quality. Data for IS and AAR are
shown in Tables 2, 3 and 4, and Figures 3 and 4.



Table 2 Infarct size (IS) results at 1.5T by quantification method and corresponding reproducibilities

1.5T IS (FWHM) IS (5SD) IS (6SD) IS (7SD) IS (8SD) IS (OAT) IS (MANUAL)

Mean IS (%LVM) 18.3 ± 10.7 25.9 ± 16.1b 22.0 ± 15.8a 19.8 ± 15.3 17.7 ± 14.4 28.2 ± 11.8b 16.5 ± 10.3

ICC v Manual 0.909 0.667 0.759 0.804 0.832 0.621

Mean bias v Manual
(±1.96SD LoA)

+1.84 (+10.30, −6.62) +9.39 (+25.58, −6.81) +5.57 (+21.65, −10.52) +3.28 (+18.86, −12.30) +1.21 (+15.92, −13.50) +11.71 (+17.39, +6.03)

Interobserver ICC 0.922 0.952 0.904 0.906 0.888 0.976 0.793

Interobserver mean
bias (±1.96SD LoA)

+0.37 (+9.17, −8.43) +2.54 (+11.62, −6.54) +4.43 (+16.01, −7.16) +4.00 (+15.48, −7.47) +4.01 (+16.02, −8.01) +0.55 (+5.82, −4.73) +5.34 (+14.96, −4.28)

Intraobserver ICC 0.991 0.957 0.954 0.938 0.925 0.991 0.983

Intraobserver mean
bias (±1.96SD LoA)

+0.36 (+3.34, −2.61) −0.81 (+9.37, −10.99) +0.01 (+10.28, −10.27) +0.07 (+11.76, −11.62) +0.42 (+13.00, −12.17) +0.81 (+4.21, −2.50) −1.92 (+0.64, −4.49)

IS expressed as mean ± standard deviation. FWHM = full-width half maximum, 5-8SD = >5-8 standard deviation, OAT = Otsu’s Automated Thresholding, LVM = Left Ventricular Mass, ICC = Intraclass Correlation
Coefficient, LoA = Limits of Agreement (Bland-Altman).
a - p < 0.05 vs. manually quantified IS. b – p < 0.01 vs. manually quantified IS.
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Table 3 Infarct size (IS) results at 3.0T by quantification method and corresponding reproducibilities

3 T IS (FWHM) IS (5SD) IS (6SD) IS (7SD) IS (8SD) IS (OAT) IS (MANUAL)

Mean IS (%LVM) 10.8 ± 8.2 17.0 ± 11.2b 14.77 ± 10.4b 13.0 ± 9.7a 11.4 ± 9.0 21.6 ± 9.8b 11.5 ± 9.0

ICC v Manual 0.964 0.780 0.874 0.937 0.966 0.505

Mean bias v Manual
(±1.96SD LoA)

+0.22 (+5.09, −4.65) +6.42 (+14.93, −2.09) +4.17 (+11.05, −2.71) +2.38 (+7.92, −3.16) +0.81 (+5.62, −4.01) +11.03 (+22.20, −0.15)

Interobserver ICC 0.990 0.957 0.937 0.916 0.888 0.977 0.913

Interobserver mean
bias (±1.96SD LoA)

−0.49 (+1.74, −2.72) +0.44 (+7.23, −6.35) +1.14 (+8.51, −6.23) +1.40 (+9.25, −6.44) +1.50 (+9.99, −6.98) −0.05 (+4.35, −4.44) +1.97 (+9.48, −5.54)

Intraobserver ICC 0.988 0.992 0.992 0.993 0.993 0.986 0.972

Intraobserver mean
bias (±1.96SD LoA)

+0.20 (+1.49, −1.10) +0.43 (+2.90, −2.03) −0.04 (+2.42, −2.50) +0.10 (+2.19, −1.98) +0.32 (+2.08, −1.45) +0.15 (+3.50, −3.21) +1.14 (+4.35, −2.07)

IS expressed as mean ± standard deviation. FWHM = full-width half maximum, 5-8SD = >5-8 standard deviation, OAT = Otsu’s Automated Thresholding, LVM = Left Ventricular Mass, ICC = Intraclass Correlation
Coefficient, LoA = Limits of Agreement (Bland-Altman).
a - p < 0.05 vs. manually quantified IS. b – p < 0.01 vs. manually quantified IS.
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Table 4 Area at risk (AAR) by field strength and quantification method and corresponding reproducibilities

1.5T 3.0T

AAR (2SD) AAR (OAT) AAR (MANUAL) AAR (2SD) AAR (OAT) AAR (MANUAL)

Mean value (AAR [% LVM]) 34.8 ± 9.8 38.1 ± 13.0 35.4 ± 11.2 35.2 ± 14.4 38.9 ± 9.9a 30.0 ± 8.2

ICC v Manual 0.865 0.920 0.649 0.465

Mean bias v Manual
(±1.96SD LoA)

+0.31 (+12.20, −11.57) +3.62 (+11.24, −4.00) +5.13 (+22.76, −12.50) +8.92 (+23.15, −5.31)

Interobserver ICC 0.908 0.976 0.825 0.869 0.981 0.716

Interobserver mean
bias (±1.96SD LoA)

+3.38 (+9.12, −2.37) +1.26 (+7.20, −4.68) +1.31 (+17.11, −14.49) −0.34 (+15.36, −16.03) −1.35 (+1.64, −4.33) −5.20 (+9.54, −19.95)

Intraobserver ICC 0.948 0.995 0.977 0.987 0.990 0.826

Intraobserver mean
bias (±1.96SD LoA)

+2.80 (+7.28, −1.68) +0.58 (+3.31, −2.16) −0.01 (+5.62, −5.64) +1.00 (+5.50, −3.51) +0.04 (+2.82, −2.74) +1.46 (+14.84, −11.93)

AAR and MSI expressed as mean ± standard deviation. 2SD = >2 standard deviations, OAT = Otsu’s Automated Thresholding, LVM = Left Ventricular Mass, ICC = Intraclass Correlation Coefficient, LoA = Limits of
Agreement (Bland-Altman).
a - p < 0.05 vs. manually quantified AAR.
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Figure 3 Mean Infarct Size (IS) by Quantification Method. Left panel 1.5T and right panel 3.0T. IS using OAT, 5-8SD, FWHM and manual
quantification. IS = infarct size, FWHM= full-width half maximum, 5-8SD = >5-8 standard deviations, OAT = Otsu’s Automated Thresholding.
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Infarct size
IS varied significantly with the quantification method
(Tables 2 and 3 and Figures 3 and 5). FWHM, 7SD and
8SD closely agreed with manual IS quantification at 1.5T,
and 6SD showed weak agreement. FWHM and 8SD
closely agreed with manual quantification at 3.0T. At both
field strengths, IS was significantly greater with OAT and
5SD compared with manual quantification. IS was also
greater with 6SD and 7SD at 3.0T. Bland-Altman plots for
agreement with manual quantification are shown in Add-
itional file 2. There was a strong trend towards reduced IS
quantification time using FWHM compared with all SD-
based methods at both field strengths. The reduction in
quantification time with FWHM was highly significant
when compared with manual quantification at both field
strengths, and when compared with 5SD and 8SD at 1.5T.
There was no difference in quantification time using
FWHM and OAT (Table 5).
Figure 4 Mean Area-At-Risk (AAR) by Quantification Method. Left pane
quantification. IS = infarct size, OAT = Otsu’s Automated Thresholding, 2SD =
Interobserver and intraobserver variability of IS
quantification
Results are displayed in Tables 2 and 3. FWHM and OAT
demonstrated extremely high interobserver and intraob-
server agreement at both field strengths, with all ICC
values >0.922 and mean bias < +1.84%. SD-based techniques
demonstrated good interobserver and intraobserver
agreement at both field strengths, however lower than
for FWHM and OAT, with ICC values >0.888 and mean
bias < +4.43%. Interobserver and intraobserver agree-
ment for manual quantification were very high at both
field strengths apart from interobserver agreement at
1.5T, which was good (ICC 0.793). Bland-Altman charts
for IS are shown in Additional files 2 and 3.
Interobserver agreement for IS at 3.0T was signifi-

cantly better with FWHM vs. manual quantification (p =
0.037). Intraobserver agreement for IS was significantly
better at 1.5T with FWHM vs. 6SD (p = 0.013), 7SD (p =
l 1.5T and right panel 3.0T. AAR compared using 2SD, OAT and manual
>2 standard deviations.



Figure 5 Infarct size and Area-At-Risk quantification at 3.0T. Top/middle rows: IS on a single patient at 3.0T demonstrating increasing IS using
FWHM, 5SD and OAT, and decreasing IS from 5–8 SD. FWHM and 8SD closely correlated with the reference standard of manual quantification. Bottom
row: AAR in the same patient using OAT and 2SD thresholding was non-significantly greater than the reference standard of manual quantification.
FWHM= full-width half maximum, 2/5/6/7/8SD = >2/5/6/7/8 standard deviations, OAT = Otsu’s Automated Thresholding.
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0.022) and 8SD (p = 0.037), and at 3.0T for FWHM vs.
manual (p = 0.047). There was a strong trend towards
higher intraobserver agreement for IS at 1.5T with
FWHM vs. manual (p = 0.093).

Correlation of myocardial injury with LV ejection fraction
At 1.5T, FWHM and manual quantification demon-
strated a strong inverse correlation between IS and
LVEF (FWHM: r = −0.745, p = 0.013; manual r = −0.709,
p = 0.022). All other methods demonstrated moderate
inverse correlation and did not reach statistical signifi-
cance. At 3.0T, FWHM IS showed a significant, moder-
ate correlation with LVEF (r = −0.673, p = 0.033). The
correlation using all other techniques was weaker and
not statistically significant.

AAR extent
AAR varied with the quantification method used (Figures 4
and 5). There was no significant difference between 2SD,
OAT and manually quantified AAR at 1.5T. At 3.0T, AAR
quantified with OAT was larger than that manually con-
toured (p = 0.004) and similar to that on 2SD. Agreement
with manual quantification at 1.5T tended to be higher for
OAT than 2SD, with ICC 0.920 and narrower limits of
agreement on Bland-Altman analysis. There was no differ-
ence in AAR quantification time using OAT, 2SD or man-
ual quantification at 1.5T or 3.0T (Table 5), Additional
files 4 and 5.
Interobserver and intraobserver variability of AAR and MSI
quantification
OAT had extremely high interobserver and intraobserver
agreement for AAR quantification at both field strengths,
with all ICC values >0.976. Good interobserver agreement
was seen for 2SD quantification of AAR at both field
strengths. Manual quantification demonstrated excellent
interobserver agreement at 3.0T. Interobserver agreement
at 1.5T and intraobserver agreement at both field strengths
was good with manual quantification (ICC >0.716).
Interobserver agreement at 3.0T was significantly

better for OAT vs. manual quantification (p = 0.017),
and at 1.5T was borderline significantly higher for
OAT vs. manual (p = 0.059). Intraobserver agreement
at 3.0T was significantly better for OAT vs. manual
quantification (p = 0.007). The raw datasets for IS and
AAR quantification at 1.5T and 3.0T field strengths are
available in Additional files 6 and 7.



Table 5 Time taken per patient for Infarct Size (IS) and
Area at risk (AAR) quantification by field strength and
quantification method

Time (minutes) p

. 17.1 ± 2.4 vs. 20.9 ± 5.5 0.04

1.5T: FWHM v 6SD (IS) 17.1 ± 2.4 vs. 19.4 ± 3.1 0.09

1.5T: FWHM v 7SD (IS) 17.1 ± 2.4 vs. 19.1 ± 3.7 0.13

1.5T: FWHM v 8SD (IS) 17.1 ± 2.4 vs. 19.6 ± 3.2 <0.01

1.5T: FWHM v OAT (IS) 17.1 ± 2.4 vs. 18.0 ± 2.6 0.45

1.5T: FWHM v MANUAL (IS) 17.1 ± 2.4 vs. 21.1 ± 4.7 0.01

1.5T: 5SD v OAT (IS) 20.9 ± 5.5 vs. 18.0 ± 2.6 0.21

1.5T: 2SD v OAT (AAR) 17.1 ± 2.4 vs. 16.7 ± 2.6 0.73

1.5T: 2SD v MANUAL (AAR) 17.1 ± 2.4 vs. 18.3 ± 2.6 0.14

1.5T: OAT v MANUAL (AAR) 16.7 ± 2.6 vs. 18.3 ± 2.6 0.07

3T: FWHM v 5SD (IS) 18.9 ± 2.7 vs. 24.7 ± 9.1 0.08

3T: FWHM v 6SD (IS) 18.9 ± 2.7 vs. 22.2 ± 5.2 0.07

3T: FWHM v 7SD (IS) 18.9 ± 2.7 vs. 22.5 ± 5.3 0.07

3T: FWHM v 8SD (IS) 18.9 ± 2.7 vs. 21.2 ± 3.0 0.08

3T: FWHM v OAT (IS) 18.9 ± 2.7 vs. 20.7 ± 3.2 0.11

3T: FWHM v MANUAL (IS) 18.9 ± 2.7 vs. 24.0 ± 3.7 <0.01

3T: 5SD v OAT (IS) 24.7 ± 9.1 vs. 20.7 ± 3.2 0.25

3T: 2SD v OAT (AAR) 19.6 ± 2.7 vs. 18.5 ± 2.6 0.26

3T: 2SD v MANUAL (AAR) 19.6 ± 2.7 vs. 18.3 ± 2.6 0.31

3T: OAT v MANUAL (AAR) 18.5 ± 2.6 vs. 18.3 ± 2.6 0.83

FWHM = full-width half maximum, 5/6/7/8SD = >5/6/7/8 standard deviation,
OAT = Otsu’s Automated Thresholding, 2SD = >2 standard deviations.
p < 0.05 taken as statistically significant.
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Discussion
In this study we assessed IS and AAR quantification in
acute STEMI patients with currently used semi-
automatic techniques at 1.5T and 3.0T. FWHM and 8SD
closely agreed with the reference standard of manual IS
quantification at both field strengths, whereas 5SD and
OAT led to higher IS values compared to manual quan-
tification. AAR measured by OAT and 2SD were similar
to manual quantification only at 1.5T. Interobserver and
intraobserver agreement for IS and AAR quantification
were better with FWHM and OAT compared with man-
ual quantification respectively, and tended to be better
than with SD-based methods. There was an inverse cor-
relation between IS and LVEF for all quantification
methods and this was strongest and most significant for
FWHM. Our study is the first to assess IS quantification
methods using 7SD and 8SD thresholding and to assess
IS and AAR quantification at 3.0T.

Mean IS using the quantification techniques
LGE IS quantification in acute MI has been validated in
a small number of animal studies. FWHM [8] and man-
ual quantification [9] of in-vivo images closely correlated
with IS on tetrazolium chloride stained canine hearts. Kim
et al. [7] demonstrated good agreement of 2SD threshold-
ing with tetrazolium chloride stained canine myocardium.
However this was on ex-vivo slices with high spatial reso-
lution and in the absence of rhythm and motion artefacts,
and may not be generalizable to humans [7]. Indeed, 2SD
has been shown to overestimate IS in humans based on
functional improvement and IS reduction in enhanced
areas.[26,27] There is no histological validation in
humans and hence no ‘gold standard’ quantification. We
thus used manual assessment as has been used previ-
ously [6,12], however derived from the mean of repeated
analyses by three experienced CMR cardiologists to in-
crease the robustness of our reference standard.
FWHM and 8SD were the only methods in our study

showing good agreement with manual quantification at
both field strengths. This may be because they are less
prone to IS overestimation resulting from oedema and
partial volume effects giving rise to intermediate signal in-
tensities [26,28]. This resulted in negligible requirements
for manual exclusion of noise artefact with FWHM and
8SD. This in conjunction with the relative ease in identifi-
cation of the brightest infarct core compared with decid-
ing on a representative remote ROI is likely to explain the
shorter time required for IS quantification using FWHM
compared with SD-based techniques.
The greater IS using 5SD compared with manual

quantification in our study is in agreement with previous
results at 1.5T [6]. These findings indicate that the good
agreement between 5SD and manual quantification in
chronic ischaemic heart disease [29], where infarct tends
to have a higher and more homogenous SI [6], cannot
be extrapolated to acute STEMI patients. The close cor-
relation of 5SD and in particular OAT with manual as-
sessment shown by Vermes et al. [12] is in contrast to
our findings. IS quantification was only performed on
slices with infarct seen visually in that study, thus poten-
tially underestimating IS. In addition, the small remote
ROI used for 5SD thresholding (0.5-1 cm2) by Vermes
et al. may not adequately represent remote myocardium
signal intensity, thus leading to underestimation or over-
estimation of IS if an excessively bright or dark, isolated
region of myocardium is taken as the remote ROI re-
spectively. By setting the ROI size at 2 cm2 for all SD-
based methods in our study, we aimed to ensure that the
ROI was large enough to represent remote myocardium
accurately. Using the same remote ROI for all SD-based
methods in our study ensured consistency and removed
the effect of ROI size and location when comparing IS
between 5–8 SD thresholds. Hence, 6 and 5-SD and 7, 6
and 5-SD quantification overestimated IS at 1.5T and
3.0T respectively due to their intrinsically progressively
lower signal intensity thresholds and not due to differ-
ences in remote ROI.
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OAT has the potential to overestimate LGE IS because
it calculates an individual SI threshold, and thus en-
hancement on every slice, regardless of the presence of
infarct (Figure 6). Whilst small areas of enhancement in
the non-infarct region were manually excluded, it is
likely that OAT leads to higher values due to near trans-
mural enhancement in the infarct area, in the presence
of peri-infarct oedema [11].
We studied IS and AAR quantification early after

STEMI. IS decreases with time post PPCI with a reduc-
tion of ~30% demonstrated within the first week in some
studies [26,30]. The extent of necrosis is overestimated
by LGE early post STEMI due to cellular disruption and
oedema. As scar resorbs and remodels, IS reduces and
scar may become more homogenous in signal intensity
and brighter. The relative overestimation of IS by lower
standard deviation thresholds and OAT compared with
FWHM, 8SD and manual quantification may thus be
more significant in acute compared with in chronic in-
farcts. We chose an early time point to minimise drop-out
in the study and most importantly, all the data relating in-
farct size to subsequent prognosis following STEMI has
been based on early measurement of infarct size (usually
within 1 week) [4,31]. Whether AAR varies in the first
week after STEMI has shown conflicting results [26,27].
As we have only scanned the patients in this study on a
Figure 6 Hyperenhancement with OAT without obvious Infarct. In this
significant infarct volume (bottom row). OAT = Otsu’s Automated Thresholdi
single occasion we cannot comment on how the results
would have varied if performed at later dates following
presentation.

Interobserver and intraobserver variability of IS
quantification
The excellent interobserver and intraobserver agreement
for FWHM, 5SD and OAT quantification of IS in our
study at both field strengths is in agreement with previ-
ous studies at 1.5T: FWHM, 5SD [6,27] and FWHM,
OAT [12]. Consistent with the work of Flett et al. [6], we
found that the FWHM technique had greater interob-
server and intraobserver reproducibility compared with
SD-based and manual quantification. This is expected
when considering that for each patient there is a single
brightest core of infarct. This is in contrast to the re-
mote ROI, which could be drawn on any slice without
complete LGE in SD-based quantification, or manual
contouring of enhancement, which is completely user-
dependent and in the acute phase post STEMI could
potentially be affected by partial volume in infarct
boundaries and oedematous myocardium.

Mean AAR and MSI using the quantification techniques
T2w-STIR AAR is typically quantified using 2SD threshold-
ing. Validation studies are limited. 2SD-derived AAR on
case there is no infarct present (top row), whereas OAT has calculated a
ng.
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T2w images in vivo correlated with microsphere-assessed
AAR in canine myocardium (r = 0.84).[32] There is no
gold standard AAR quantification method on T2w-
STIR, hence we used manual assessment.
The close agreement between OAT and manually con-

toured AAR at 1.5T is consistent with the work of McA-
lindon et al.[14] OAT however demonstrated greater AAR
compared with manual quantification at 3.0T. This is in
keeping with Sjogren et al. [13] who showed overesti-
mation of AAR using OAT with a mean bias of +5.3 ±
9.6% compared with manual quantification [13]. The de-
termination of an optimal threshold and quantification of
enhancement on every slice with OAT, regardless of
oedema is likely to contribute to this. The risk of overesti-
mation of AAR will be greatest in slices with minimal
oedema since OAT will deem a proportion of pixels en-
hanced. This may potentially have contributed to the over-
estimation of AAR at 3.0T in our study with OAT, since
our 3.0T cohort had a smaller AAR than the 1.5T patients.
IS was also smaller in our 3.0T cohort and may have con-
tributed to the greater overestimation of IS using OAT at
3.0T compared with 1.5T. Conversely, underestimation of
AAR is more likely in slices with complete enhancement
since OAT will deem a proportion of pixels unenhanced
[13]. T2w-STIR images were of diagnostic quality in all
patients in our study, however mean quality control grad-
ing was slightly lower at 3.0T (2.1 ± 0.3 [3 T] vs. 2.6 ± 0.5
[1.5T], p = 0.05) and may have potentially contributed to
the overestimation of OAT-derived AAR if there was
more noise artefact in the AAR or signal intensity drop
out in remote regions by reducing the threshold. More
work into automated quantification methods is required,
in particular at 3.0T. Newer automated techniques, taking
into account a priori information about the culprit artery
[13] and including noise and false positive artefact exclu-
sion [10,21] algorithms may improve the accuracy of auto-
mated IS and AAR quantification.
The relative degree of AAR overestimation in our

study was, however, considerably less than for IS. The
predominantly transmural pattern of OAT enhance-
ment for IS and AAR may cause less overestimation of
AAR compared with IS, since oedema has been shown
to be predominantly transmural in 70-100% of oedematous
segments [33,34].

Interobserver and intraobserver variability of AAR
quantification
The relatively low interobserver and intraobserver agree-
ment using 2SD compared with OAT at both field
strengths is likely to result from varying manual defin-
ition of the remote ROI. The extremely high ICC’s ob-
tained with OAT are remarkable considering that these
figures still take account differences in manual correc-
tion and contouring of endocardial and epicardial
borders. Given these results, quantification of AAR
with OAT could minimise variability in measurement
in multi-centre trials.

Limitations
The main limitation of our and previous similar studies
is the lack of a gold standard for IS and AAR quantifica-
tion. Different quantification techniques were studied for
IS and AAR. FWHM quantification of AAR was not
undertaken due to the lower CNR of T2w-STIR imaging,
since the vast majority of myocardium would have signal
intensity >50% of the maximum at the AAR core, lead-
ing to potentially extreme overestimation of AAR and
MSI. Indeed, McAlindon et al. demonstrated that FWHM
significantly overestimated AAR compared to all other
quantification methods tested at 1.5T (2,3,5 SD, OAT,
manual quantification) [14]. 5SD thresholding was not
assessed for AAR as it has never been validated or corre-
lated with clinical outcomes and the only study to feature
it demonstrated that it significantly overestimated AAR
compared to all other quantification methods tested at
1.5T (2,3 SD, FWHM, OAT, manual quantification) [14].
2SD thresholding was not assessed for IS as it has been
shown to overestimate IS [6,12] and had the lowest correl-
ation with histological IS on tetrazolium chloride staining
using Bland-Altman analysis [8] compared with all other
quantification methods used in studies of IS in acute
STEMI (5SD, FWHM, manual quantification). Test-retest
reproducibility was not assessed and should be considered
in future studies. Infarct heterogeneity and identification
of peri-infarct zone (greyzone) was not assessed in this
study and may be of interest to assess in future studies
using OAT. We deliberately studied patients imaged at
different field strengths and with different scanner ven-
dors to represent the situation in multi-centre clinical tri-
als and this should make the results more generalizable.
Our sample size (total n = 20) is limited, however is com-
parable to similar studies in myocardial infarction
[8-10,12,14,20] and our findings are supported by their
consistency at both field strengths.. Finally our results may
not be generalizable to if patients are scanned at different
time points following STEMI.

Conclusions
Inter- and intraobserver variability for the quantification
of IS with FWHM is excellent at 1.5 and 3.0T and better
than when using manual quantification. Only FWHM
and 8SD closely agreed with manual delineation of IS at
both field strengths. FWHM had better reproducibility,
shorter quantification time and closer correlation with
LVEF and may be the preferred method for IS quantifi-
cation in future studies. AAR is similar when assessed
with OAT, 2SD and manual quantification at 1.5T, how-
ever OAT has excellent intra and interobserver variability
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and thus has potential in quantification of AAR at 1.5T,
especially in multi-centre studies. OAT overestimated
AAR at 3.0T compared with manual quantification and
thus cannot currently be recommended as the preferred
method for AAR quantification at 3.0T.
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