
Jaschob et al. BMC Research Notes (2015) 8:70
DOI 10.1186/s13104-015-1009-z
TECHNICAL NOTE Open Access
Mason: a JavaScript web site widget for visualizing
and comparing annotated features in nucleotide
or protein sequences
Daniel Jaschob1, Trisha N Davis1 and Michael Riffle1,2*
Abstract

Background: Sequence feature annotations (e.g., protein domain boundaries, binding sites, and secondary
structure predictions) are an essential part of biological research. Annotations are widely used by scientists during
research and experimental design, and are frequently the result of biological studies. A generalized and simple
means of disseminating and visualizing these data via the web would be of value to the research community.

Findings: Mason is a web site widget designed to visualize and compare annotated features of one or more nucleotide
or protein sequence. Annotated features may be of virtually any type, ranging from annotating transcription binding
sites or exons and introns in DNA to secondary structure or domain boundaries in proteins. Mason is simple to use and
easy to integrate into web sites. Mason has a highly dynamic and configurable interface supporting multiple sets of
annotations per sequence, overlapping regions, customization of interface and user-driven events (e.g., clicks and text to
appear for tooltips). It is written purely in JavaScript and SVG, requiring no 3rd party plugins or browser customization.

Conclusions: Mason is a solution for dissemination of sequence annotation data on the web. It is highly flexible,
customizable, simple to use, and is designed to be easily integrated into web sites. Mason is open source and freely
available at https://github.com/yeastrc/mason.

Keywords: Sequence annotation, Data visualization, Bioinformatics, Sequence feature annotation, Feature annotation,
JavaScript, SVG
Introduction
Annotating regions or features within nucleotide and
protein sequences (such as locations of binding sites,
conserved residues, transmembrane regions, protein do-
main boundaries, or protein secondary structure) is a
ubiquitous part of biological research. Previous annota-
tions are an essential component of experimental design
and interpretation, and new sequence annotations are
often the goal of new studies—themselves becoming part
of subsequent experimental design and interpretation in
future studies. Given the growth of sequence annotation
data and the importance of these data in research, it is
becoming increasingly important to effectively dissemin-
ate and visualize these data. Of particular importance is
* Correspondence: mriffle@uw.edu
1Department of Biochemistry, University of Washington, UW Box 357350,
1705 NE Pacific St, Seattle, WA 98195-7350, USA
2Department of Genome Sciences, University of Washington, UW Box
357350, 1705 NE Pacific St, Seattle, WA 98195-7350, USA

© 2015 Jaschob et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
the ability to merge separate sequence annotations into
a single view that allows for the interpretation of new
data in the context of known annotations.
Aligning and displaying multiple sequence annotations

is already a core feature of genome browsers—software
designed for navigating whole genomes and capable of
visualizing a very wide array of annotations for genetic
loci. Prominent examples of genome browsers include
the UCSC genome browser [1], GBrowse [2], the
Ensembl genome browser [3], and JBrowse [4]. While
these tools are well-designed, mature, and feature rich;
these tools are not designed to disseminate feature anno-
tations for individual sequences outside the context of a
broader genome. Other websites have developed web
pages for displaying aligned feature annotations of indi-
vidual protein sequences, including the UCSC Proteome
Browser [5], the Protein Data Bank (PDB) [6], InterPro
[7], WormBase [8], and the Saccharomyces Genome
Database (SGD) [9]. While well-designed and informative,
l. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

https://github.com/yeastrc/mason
mailto:mriffle@uw.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Jaschob et al. BMC Research Notes (2015) 8:70 Page 2 of 9
these views are optimized for the particular features
they are displaying. Additionally, they are only available
as parts of their respective web sites and not as a gen-
eralized distributable tool that may be integrated into
other websites.
Recently, tools have started to emerge that are de-

signed to visualize protein sequence feature annotations
from any source on any web site. FeatureViewer [10], a
component of BioJS [11], is a JavaScript library that uses
SVG to render feature annotations. FeatureViewer is
very customizable, but consequently complicated to set
up. To simplify the setup, two extensions are provided:
DasFeatureViewer and SimpleFeatureViewer. However,
DasFeatureViewer requires the availability of a server-
side Distributed Annotation System (DAS) resource and
SimpleFeatureViewer has no support for overlapping
feature annotations. pViz.js [12] is a JavaScript library
that uses SVG and CSS to provide a dynamic interface
for visualizing feature annotations in protein sequences.
pViz is simpler to set up and requires no server-side
component. However, pViz has only very basic support
for overlapping annotations (annotations appearing on
separate tracks). Additionally, pViz utilizes pre-defined
CSS classes to assign different colors to different fea-
tures, which limits pViz’s ability to achieve true-data
driven coloring or shading schemes (such as shading
based on confidences scores of the annotations), as all
possible cases must be defined in advance. A comparison
of the features offered by FeatureViewer, pViz and the
work described here is presented in Table 1. These dif-
ferences and their significance are further explored in
the context of actual applications in “Findings”, under
“Current Implementations.”
Table 1 Comparison of main features between Mason
and pViz.js

Feature Mason pViz.js FeatureViewer

Simple, standalone component ✓ ✓ ‡

Dynamic interface ✓ ✓ ✓

Click and mouseover events ✓ ✓ ✓

No browser plugins required ✓ ✓ ✓

Data-driven coloring and shading ✓ † ✓

Optimized for many overlapping
annotations

✓

Row-level summary bars ✓

Zooming ✓ ✓

Customizable annotation shapes ✓ ✓

Export Image ✓

†pViz.js, by default, supports color customization via CSS, which requires
pre-defined color definitions for classes of annotations in advance and is not
amenable to true data-driven coloring schemes where color may indicate any
possible value. ‡DasFeatureViewer extension of FeatureViewer requires a
server-side DAS data source (SimpleFeatureViewer does not).
Here we present Mason, a generalized web site module
designed to display sequence feature annotations on any
web site. Mason aligns and displays many sequence fea-
ture annotations in a single, dynamic view and is par-
ticularly well-suited for many overlapping annotations.
Mason is independent of any specific source or type of
annotation and is highly customizable, supporting true
data-driven tooltips, click events, and coloring. It is writ-
ten purely in JavaScript and SVG, requiring no 3rd party
plugins. Mason is designed to be simple to use, easy to
set up, and requires no server-side component. Mason is
open-source and freely available at https://github.com/
yeastrc/mason.

Findings
Web component
Mason is implemented using only standard World Wide
Web technologies: JavaScript, HTML, and Scalable
Vector Graphics (SVG). Consequently, no 3rd party plu-
gins are required for modern web browsers. Mason is
cross-platform and has been tested with current versions
of Chrome, Firefox, Safari, and Internet Explorer run-
ning on Windows, Linux, MacOS, and iOS. Mason has
no server-side component other than the availability
of the data to be displayed. Mason makes use of the
jQuery (http://jquery.com/), svg.js (http://www.svgjs.com/),
wz_tooltip.js (http://www.walterzorn.com/), and Modernizr
(http://modernizr.com/) JavaScript libraries—all of which
are available at the mason GitHub site at https://github.
com/yeastrc/mason.

Software architecture
Mason is designed to be flexible and customizable with
regard to type and source of sequence annotations. All
of the code that is independent of a specific type of data
(such as building the viewer itself or detecting user
events) is contained in the Mason core. All of the code
that is specific to a particular type of data is passed into
the core when the viewer is instantiated as a set of
JavaScript callback functions that adhere to a specific
interface. This set of callback functions, which may be
collectively considered a module, is then used by the
core to provide custom behavior for a specific instance
of the Mason viewer.
The Mason core expects the input data to be pro-

vided at the time of instantiation and for that data to
adhere to a specific Javascript object structure. This
provides Mason with independence from any particu-
lar source of data and allows the code for processing
the data to be a part of the Mason core, but requires
that the source data be converted to this structure be-
fore being passed to Mason. Further customization is
achieved by providing simple customization parame-
ters to the Mason core at the time of instantiation.

https://github.com/yeastrc/mason
https://github.com/yeastrc/mason
http://jquery.com/
http://www.svgjs.com/
http://www.walterzorn.com/
http://modernizr.com/
https://github.com/yeastrc/mason
https://github.com/yeastrc/mason

Jaschob et al. BMC Research Notes (2015) 8:70 Page 3 of 9
These parameters include items such as row heights,
border colors, or font sizes.
Full implementation details, including examples and

documentation of the interfaces for callback functions,
input data format, and the customization options are
provided at the Mason GitHub site at https://github.
com/yeastrc/mason. Additionally, this site includes sev-
eral pre-built modules for common sources of sequence
annotations. These are discussed in more detail in the
Results section.

Installation
The simplest method for installing Mason is by using one
of the pre-built modules that supports the output of a spe-
cific sequence annotation program (described below) or by
using the more-flexible generic JavaScript Object Notation
(JSON) module that may be used for data from any source.
Along with the pre-built modules, the generic JSON mod-
ule requires no knowledge of JavaScript to implement and
requires no server-side component. It only requires that
the data be formatted as JSON text using a relatively sim-
ple pre-defined schema (available at our web site). The
generic JSON module supports tooltips, linking annota-
tions to external URLs, expanding overlapping annotations,
and row-level coloring. To install the generic JSON mod-
ule, first include the necessary JavaScript files on the page
using standard HTML. Then, create a DIV on the page
with the pre-defined class (“generic-json-mason-viewer”)
that references the location of the data, such as:

The data will be read in from the indicated file lo-
cation and a Mason viewer will be automatically cre-
ated at the location of the DIV. (Note: because of
web browser security models, the JSON file must be
accessed via a web server and that must be the same
web server address as the HTML file referencing it.)
Alternatively, the text in above may be
present within the page, itself, by leaving out the

attribute and
assigning the “masonData” variable equal to the text con-
tents of the file inside of a < script > element. For full
documentation, including the syntax of the JSON, exam-
ples, and download files for the generic JSON viewer, visit
the Mason demo page at http://www.yeastrc.org/mason/.
To apply Mason to sequence annotation data that is

beyond the scope of the pre-built modules, it is neces-
sary to write code to convert the annotations to the ex-
pected input format and to write a series of callback
functions to customize the look and behavior of Mason
(see “Software Architecture, above). Note: that a working
proficiency with JavaScript is necessary for this step.
Once the data is formatted and the callback functions
are written, Mason may be instantiated on the page
using the JavaScript function call:

Where is the location on the page to build
the viewer (jQuery variable), includes
the data to be displayed, includes con-
figuration parameters, and
is an object containing the customized callback functions
that constitute a module for a given type of sequence
annotation. Note that multiple Mason viewers may be
added to the same page by making multiple calls to

.
Detailed documentation for installation, the input data

format, configuration parameters, and the callback func-
tions are available at the Mason GitHub site at https://
github.com/yeastrc/mason.
Graphical user interface
Basic functionality
The Mason viewer graphically represents a sequence
horizontally, with position 1 on the left and the final
position on the right. Each set of feature annotations is
represented as a separate row, where each annotation in-
cludes a starting and ending position in the sequence.
These annotations are represented as blocks in that row
that start and end at the specified positions (Figure 1).
Mason is capable of displaying multiple rows of annota-
tions per viewer, which is meant to display multiple
sets of annotations of the same type from separate
sources (e.g., sets of secondary structure predictions
from different programs or protein coverage from mul-
tiple proteomics experiments) (Figure 2). Because se-
quence positions are consistent between multiple rows
in the Mason viewer, the positions of the annotations
may be directly compared between the different rows.
Additionally, multiple Mason viewers containing data of
different types may be available on the same page (e.g.,
one viewer for secondary structure predictions and one
viewer for disordered regions) (Figure 2). The positions
in the sequences between different viewers also line up
and may also be directly compared. Furthermore, Mason
is aware of multiple instances of the Mason viewer on
the same page, and provides a visual indication of how
annotations in distinct viewers line up when the user
moves their mouse arrow over an annotation of interest
(or tap on mobile devices) (Figure 2).

https://github.com/yeastrc/mason
https://github.com/yeastrc/mason
http://www.yeastrc.org/mason/
https://github.com/yeastrc/mason
https://github.com/yeastrc/mason

Figure 1 An example of a single mason viewer with a single row. This is a depiction of predicated transmembrane regions in a protein.
The protein’s sequence is graphically represented as a row with the N-terminus on the left and the C-terminus on the right. The predicted
transmembrane regions, shaded yellow, are mapped onto this representation based on the positions of their start and end residues.

Jaschob et al. BMC Research Notes (2015) 8:70 Page 4 of 9
Overlapping feature annotations
Feature annotations may sometimes overlap in the se-
quence. For example, annotation A may describe posi-
tions 2–10 and annotation B may describe positions
8-19—creating overlapping annotations for positions
8–10. Visually, this will appear as a single block from
positions 2–19; however, a clickable icon will appear
to the left of the row label that indicates overlapping
Figure 2 An illustration of the more advanced features of the Mason
web page, each depicting a different type of sequence annotation data. Th
loaded with multiple rows. Each row depicts the peptide coverage for this
summary bar on the right-hand side of the rows indicates the total protein
bars indicates the peptide coverage for the same protein from the Peptide
bars indicates predicted transmembrane regions. The viewer with green an
The viewer with cyan bars indicates predicted coiled-coils in that sequence
regions in that protein. The vertical lines present in the same position in all
pointer is currently on. And the tooltip present next to the mouse pointer
annotations are present. When click, that row will ex-
pand such that overlapping features are displayed in mul-
tiple rows, ensuring all distinct annotated features may
be displayed (Figure 3).

Tooltips and click events
Text to appear in a tooltip when the user mouses-over
(or taps) on any annotated feature may be defined in a
viewer. In this example, five mason viewers are loaded on a single
e top-most viewer, with red blocks, illustrates a single mason viewer
protein from multiple mass spectrometry proteomics experiments. The
sequence coverage in each experiment. The viewer with the purple
Atlas [13] resource of proteomics experiments. The viewer with yellow
d blue bars depicts the predicted secondary structure for that protein.
. And, the viewer with black bars indicates the predicted disordered
viewers represent the boundaries of the feature annotation the mouse
is presenting information about that annotated feature.

Figure 3 An illustration of how Mason handles overlapping feature annotations. The small box with the plus sign to the left of the row
label indicates that overlapping feature annotations are present in that row. Clicking that box will expand the row such that all distinct feature
annotations are displayed. In this case, a single mason viewer with multiple rows is shown. The user has clicked the box next to “Run: 471” and
the row expanded to show all distinct annotations for that row in shades of magenta. The mouse pointer has been placed over a distinct
annotation, resulting in the display of vertical lines showing the boundaries of that annotation across all rows and a tooltip describing that annotation.

Jaschob et al. BMC Research Notes (2015) 8:70 Page 5 of 9
callback function passed into the Mason viewer creator
(see Implementation). Examples include displaying the
starting and ending positions and the confidence scores
associated with the annotation. Likewise, the result of
clicking (or double tapping) on any of the annotated fea-
tures may be similarly defined via another callback func-
tion. This may be useful as a means for users to click
through to another web page with more information
about the specific annotation.

Colors and shading
The color of the blocks in the Mason viewer may be
customized via a callback function that has access to the
data associated with the annotations. This enables a very
broad range of capabilities regarding data visualization.
Coloring schemes may range from simple (all blocks are
the same color) to more sophisticated schemes that use
shading to indicate annotation confidence scores or sep-
arate colors to indicate annotation properties (such as
different colors for an alpha-helix or beta-sheets in sec-
ondary structure predictions).

Lines noting positions of interest
Mason may also display vertical lines at specific posi-
tions in the rows to note positions of interest that aid in
interpretation of the data. Examples would include not-
ing cleavage sites in DNA sequences or trypsin cut sites
in protein sequence (Figure 4). The positions to draw
lines is passed into the Mason creator, the color of the
lines are defined via callback functions, and the visibility

Figure 4 An illustration of lines noting positions of interest and how an options menu can be used with the Mason viewer. In this
example, a single Mason viewer depicting the peptide coverage for a single protein from multiple mass spectrometry proteomics experiments
is shown. In the experiments, the proteins have been digested with trypsin and the green vertical lines represent positions in the protein’s
sequence that contain the trypsin cut motif. The expectation is that all peptides should be terminated on both ends by a trypsin cut site. The
presence of the green lines is controlled via an options menu, which is not itself a part of Mason, but can interact with the Mason viewer via
Javascript function calls. In this case, checking the “Show Trypsin cut points” checkbox toggles the green vertical lines on and off by calling
functions in the Mason core.

Jaschob et al. BMC Research Notes (2015) 8:70 Page 6 of 9
of the lines may be toggled via a simple function call to
the Mason viewer.

Summary bars
Mason may optionally show a summary bar on the
right-hand side of the rows to visually indicate some
type of summary statistic associated with the entire row
of sequence annotations. Examples including showing
protein quantitation data or protein sequence coverage
for a given mass spectrometry run. Multiple rows con-
taining summary bars effectively provide a horizontal
bar graph for comparing summary statistics between
rows. Custom colors, shading, tooltips, and click han-
dlers may be defined for the summary bars using call-
back functions.

Current implementations
The Mason viewer has been integrated into two upcom-
ing (not yet published) large-scale proteomics data re-
sources (Figure 5). In the first case (Figure 5A), Mason
is used to visualize the relative abundance of a protein
and the relative abundance of the individual peptides
used to identify that protein across many different con-
ditions. This implementation of Mason makes use of the
summary bar feature (to the right of the rows) to show
overall relative protein abundance, makes use of data-
driven coloring and shading to provide an indicator for
relative abundances of the peptides, and makes use of
Mason’s ability to disambiguate overlapping annotations
to show relative abundances of distinct peptides that
were identified and to provide links for viewing the
underlying mass spectrometry data collected for each
peptide. FeatureViewer and pViz.js would not be suitable
solutions for this visualization, as the row level summar-
ies and dynamic disambiguation of overlapping annota-
tions are essential aspects of this view of the data.
Additionally, coloring and shading that describe under-
lying values in the data (such as quality or quantity of
identifications) would be difficult to accomplish by pre-
defining classes of colors using CSS, which is the default
coloring model used by pViz.js.
In the second case (Figure 5B), Mason is again used to

visualize the coverage of a protein in many different
conditions—but in this case, those conditions are separ-
ate proteomics experiments where the protein was iden-
tified. The top viewer in the figure visualizes the
coverage of this protein in many different runs, where
the shading of the red blocks indicates the strength of

Figure 5 (See legend on next page.)

Jaschob et al. BMC Research Notes (2015) 8:70 Page 7 of 9

(See figure on previous page.)
Figure 5 Screenshots from two implementations of the Mason viewer on data-driven web applications. (A) Mason is used to show
protein sequence coverage, relative protein abundance, and relative peptide abundance across many conditions. The top viewer compares the
data across multiple developmental stages of the model organism C. elegans, and the bottom viewer compares the data across multiple mass
fractions. The summary bar to the right of the viewer indicates overall relative protein abundance (as compared between conditions in the
respective viewers). The protein and peptide abundance is shown using shades of red, where black represents the least abundance and bright
red represents the most. The rows with red boxes to the left of the labels may be expanded to disambiguate the observed peptides. Each
disambiguated peptide may be clicked on to view the underlying mass spectrometry data. (B) Mason is used to show protein sequence
coverage (viewer with red bars) among many mass spectrometry runs. The bars to the right represent total sequence coverage for the protein in
the respective run. Shades of red in the rows indicate the quality of scores the peptide identification received, and the shade of red in the row
level summary bar serves as a secondary indication of protein sequence coverage. Each row with the red box to the left of the label may be
expanded to disambiguate overlapping peptides, and each peptide may be moused-over to view summary information and clicked on to view
underlying mass spectrometry data. The other viewers (purple, green, cyan, and black) show annotations for this protein from other sources.

Jaschob et al. BMC Research Notes (2015) 8:70 Page 8 of 9
the identification, and the row-level summary bars to
the right indicate the overall protein coverage in that
run. In this type of data, identifying overlapping peptides
for a protein in an experiment is very common, so the
ability to handle many overlapping annotations for the
protein is essential to effectively disseminating the data.
Attempting to show all disambiguated peptides from all
runs at once in multiple tracks would result in a much
more cluttered and non-informative view. To provide
context, the remaining viewers on the page display an-
notations for this protein from other sources, and makes
use of Mason’s ability to communicate between in-
stances of the viewer to show precisely how annotations
in one viewer map to the others.

Pre-built examples
Several pre-built code examples are available for display-
ing data from common sources of sequence annotations.
Working demos and downloads are available at http://
www.yeastrc.org/mason/.

Generic JSON module
The Mason site includes code for reading and displaying
data formatted as JSON adhering to a simplified schema
(available on the web site). This module is suitable for
providing a simple view of sequence annotation data
from nearly any source, especially data that has many
overlapping annotations. This module supports overlap-
ping features, tooltips, links to external URLs, and row-
level coloring.

Transmembrane and signal peptides
The Mason site includes code for displaying transmem-
brane and signal peptide predictions from the Philius
prediction server [14]. The code accepts a protein se-
quence directly, submits this to the Philius prediction
server, and displays the results in the newly-built Mason
viewer. Only the protein sequence is required, and there
is no need to install or run Philius on the part of the
web site operator.
Secondary structure
The Mason site includes code for displaying predicted
protein secondary structure as generated by the psipred
program [15]. This is accomplished by pointing the code
to the URL for a .ss2 file (PSIPRED VFORMAT) that is
generated by the psipred program—the code for acces-
sing the data and converting it to JSON is provided.
Consequently, psipred must be run in advance and the
resulting file made available on a web server.

Coiled-coil regions
The Mason site includes code for displaying predicted
coiled-coil regions generated by the Paircoil2 program
[16]. This is accomplished by pointing the code to the
URL for a .pc2 file that is generated by the Paircoil2
program—the code for accessing the data and convert-
ing it to JSON is provided. Consequently, Paircoil2 must
be run in advance and the resulting file made available
on a web server. This module also includes a custom op-
tions menu that allows the user to filter the data based
on the P-score generated by Paircoil2.

Disordered regions
The Mason site includes code for displaying predicted
disordered regions generated by the DISOPRED pro-
gram [17]. This is accomplished by pointing the code
to the URL for a .diso file that is generated by the
DISOPRED program—the code for accessing the data
and converting it to JSON is provided. Consequently,
DISOPRED must be run in advance and the resulting
file made available on a web server.

Conclusions
The Mason viewer is a generalized, flexible, and portable
web site module capable of displaying DNA or protein
sequence annotations for single sequences. Mason is
designed to be integrated with existing 3rd party web
applications, though some familiarity with JavaScript is
required. Although Mason has a highly dynamic inter-
face, it uses only standard web technologies, requires no

http://www.yeastrc.org/mason/
http://www.yeastrc.org/mason/

Jaschob et al. BMC Research Notes (2015) 8:70 Page 9 of 9
3rd party web browser plugins, and is designed to be
simple-to-use and intuitive for end users. Mason is
open-source and is freely available at the Mason GitHub
site at https://github.com/yeastrc/mason. The site in-
cludes extensive documentation and examples, including
pre-built code for displaying sequence annotations from
several existing sources.

Availability and requirements

� Project name: Mason
� Project home page: https://github.com/yeastrc/mason
� Operating system(s): Platform independent
� Programming language: JavaScript, HTML, SVG
� Other requirements: None
� License: Apache 2.0
� Any restrictions to use by non-academics: None

Abbreviations
CSS: Cascading style sheets; DAS: Distributed annotation system; GUI: Graphical
user interface; HTML: Hypertext markup language; JSON: JavaScript object
notation; SVG: Scalable Vector Graphics.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DJ performed the programming and prepared online documentation. TND
supported the project, provided scientific guidance, and contributed to the
manuscript. MR conceived of and managed the project, and prepared the
manuscript. All authors read and approved the final manuscript.

Acknowledgements
This work is supported by grants P41 GM103533 (to T.N.D.) from the National
Institute of General Medical Studies from the National Institutes of Health
and the University of Washington Proteomics Resource (UWPR95794).

Received: 20 November 2014 Accepted: 10 February 2015

References
1. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The

human genome browser at UCSC. Genome Res. 2002;12(6):996–1006.
2. Donlin MJ. Using the Generic Genome Browser (GBrowse). Curr Protoc

Bioinformatics. 2009;Chapter 9(9):9.
3. Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, et al. Ensembl 2014.

Nucleic Acids Res. 2014;42(Database issue):D749–55.
4. Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH. JBrowse: a next-

generation genome browser. Genome Res. 2009;19(9):1630–8.
5. Hsu F, Pringle TH, Kuhn RM, Karolchik D, Diekhans M, Haussler D, et al. The

UCSC Proteome Browser. Nucleic Acids Res. 2005;33(Database issue):D454–8.
6. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The

Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–42.
7. Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, et al.

InterPro in 2011: new developments in the family and domain prediction
database. Nucleic Acids Res. 2012;40(Database issue):D306–12.

8. Harris TW, Baran J, Bieri T, Cabunoc A, Chan J, Chen WJ, et al.
WormBase 2014: new views of curated biology. Nucleic Acids Res.
2014;42(Database issue):D789–93.

9. Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, et al.
Saccharomyces Genome Database: the genomics resource of budding
yeast. Nucleic Acids Res. 2012;40(Database issue):D700–5.

10. Garcia L, Yachdav G, Martin MJ. FeatureViewer, a BioJS component for
visualization of position-based annotations in protein sequences.
F1000Res. 2014;3:47.
11. Gomez J, Garcia LJ, Salazar GA, Villaveces J, Gore S, Garcia A, et al. BioJS:
an open source JavaScript framework for biological data visualization.
Bioinformatics. 2013;29(8):1103–4.

12. Mukhyala K, Masselot A. Visualization of protein sequence features using
JavaScript and SVG with pViz.js. Bioinformatics. 2014;30(23):3408–9.

13. Desiere F, Deutsch EW, King NL, Nesvizhskii AI, Mallick P, Eng J, et al. The
PeptideAtlas project. Nucleic Acids Res. 2006;34(Database issue):D655–8.

14. Reynolds SM, Kall L, Riffle ME, Bilmes JA, Noble WS. Transmembrane
topology and signal peptide prediction using dynamic bayesian networks.
PLoS Comput Biol. 2008;4(11):e1000213.

15. Jones DT. Protein secondary structure prediction based on position-specific
scoring matrices. J Mol Biol. 1999;292(2):195–202.

16. McDonnell AV, Jiang T, Keating AE, Berger B. Paircoil2: improved prediction
of coiled coils from sequence. Bioinformatics. 2006;22(3):356–8.

17. Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT. The DISOPRED server
for the prediction of protein disorder. Bioinformatics. 2004;20(13):2138–9.
Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

https://github.com/yeastrc/mason
https://github.com/yeastrc/mason

	Abstract
	Background
	Findings
	Conclusions

	Introduction
	Findings
	Web component
	Software architecture
	Installation
	Graphical user interface
	Basic functionality

	Overlapping feature annotations
	Tooltips and click events
	Colors and shading
	Lines noting positions of interest
	Summary bars
	Current implementations
	Pre-built examples
	Generic JSON module
	Transmembrane and signal peptides
	Secondary structure
	Coiled-coil regions
	Disordered regions

	Conclusions
	Availability and requirements
	Abbreviations

	Competing interests
	Authors’ contributions
	Acknowledgements
	References

