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Abstract

Background: Transcription factors are essential proteins for regulating gene expression. This regulation depends
upon specific features of the transcription factors, including how they interact with DNA, how they interact with
each other, and how they are post-translationally modified. Reliable information about key properties associated
with transcription factors will therefore be useful for data analysis, in particular of data from high-throughput experiments.

Results: We have used an existing list of 1978 human proteins described as transcription factors to make a well-annotated
data set, which includes information on Pfam domains, DNA-binding domains, post-translational modifications
and protein–protein interactions. We have then used this data set for enrichment analysis. We have investigated
correlations within this set of features, and between the features and more general protein properties. We have also used
the data set to analyze previously published gene lists associated with cell differentiation, cancer, and tissue distribution.

Conclusions: The study shows that well-annotated feature list for transcription factors is a useful resource for extensive
data analysis; both of transcription factor properties in general and of properties associated with specific processes.
However, the study also shows that such analyses are easily biased by incomplete coverage in experimental data, and by
how gene sets are defined.

Keywords: Transcription factor, DNA-binding domain, Protein–protein interaction, Post-translational modification,
Enrichment analysis
Background
Transcription Factors (TFs) are proteins that in most
cases bind to specific DNA sequences known as Tran-
scription Factor Binding Sites (TFBSs), in particular in
enhancer regions or in promoter regions near their tar-
get genes [1]. The transcription factors modulate tran-
scription initiation and regulate gene expression, and are
thereby an essential part of the general regulatory system
of any cell. Normally regulation of gene expression
involves the binding of multiple transcription factors to
the regulatory regions of a given gene. However, the
definition of TFs is not always very clear-cut, and may
include DNA-binding proteins that do not recognize any
specific DNA motif, proteins that do not bind DNA, but in-
fluence transcription through protein–protein interactions
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(PPIs), and proteins that influence transcription in
more indirect ways, for example by mediating chroma-
tin remodeling [2].
Transcription factors are typically modular in struc-

ture, and will often contain effector domains and other
domain types, in addition to (in most cases) one or more
DNA-binding domains (DBDs). A DBD is typically a
protein domain with a characteristic fold that can
recognize a specific DNA sequence (motif ), and thereby
regulate transcription of specific target genes, although
there are also examples of TFs with a more general (less
motif-specific) affinity to DNA [3,4]. The interaction
between a TF and its TFBSs defines the specificity of the
TF, which is mediated by non-covalent interactions be-
tween the structural motif of the TF DBD and the sur-
face of the DNA bases and backbone atoms [5,6].
Most TFs belong to one of two major classes; the gen-

eral TFs and the site-specific TFs. The general TFs are
important components of the basal transcriptional ma-
chinery around transcription start sites. The general TFs
cannot stably bind to promoter or enhancer regions on
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their own. In most cases they are bound to regulatory
regions through interaction with site-specific DNA-
binding TFs. These site-specific TFs bind to DNA
through their DBDs, and at the same time they bind to
other transcriptional regulatory proteins via effector
domains [7], thereby stabilizing the whole complex.
Protein–protein interactions are important for the

function of proteins and the processes they are involved
in, and such interactions are often facilitated by specific
protein domains interacting with each other. Therefore,
understanding protein interactions at the domain level
can provide a generalized understanding of protein
interaction, and thereby protein function. As an
example, Gao et al. constructed a protein–protein net-
work of transcription factors involved in regulation of
liver cell proliferation and regeneration [8]. They identi-
fied 64 interactions in a regulatory network, providing
additional information on the regulatory aspects of liver
regeneration.
An important group of regulatory mechanisms avail-

able to the cell is post-translational modifications
(PTMs). The PTMs are highly dynamic and often revers-
ible, and they may occur on almost all proteins. Most
PTMs change the properties of a protein by the addition
of a specific chemical group to one or more of its amino
acid residues [9,10]. The PTMs make possible diverse
signaling that is suitable for relaying rapid messages
throughout the cell. Some PTMs, such as phosphoryl-
ation, can be quite transient, and may serve to rapidly
activate or deactivate a protein, whereas other PTMs
may be more long-lasting. PTMs may create further sig-
naling through modular protein domains that recognize
particular types of PTMs located on specific residues. A
relevant example of how PTMs may modify TF func-
tion is the MEF-2A factor which regulates gene expres-
sion in neuronal cells, where it can act as either a
transcriptional activator or a repressor. This switch is
controlled by post-translational modification of MEF-
2A, with acetylated MEF-2A acting as a transcriptional
activator, whereas the factor acts as a transcriptional
repressor when it is modified by sumoylation and phos-
phorylation [11].
This shows that the regulatory roles of TFs can be

modified by the properties of the TFs, including DNA-
binding and effector domains, PPIs and PTMs. There-
fore there is a need to increase our knowledge about TF
domains and other properties, in addition to their bind-
ing sites in target genes, and this makes a collection of
well-curated annotation data of TFs highly relevant.
There are some existing TF databases, but in general

they contain very limited information about TF proper-
ties, except for DNA motif specificity, most often
through a Position Weight Matrix (PWM), and links
to more general protein databases with additional
information. For example, JASPAR is an open-access
database of DNA binding site profiles, based on collec-
tions of position frequency matrices (PFMs) that are
mainly derived from published data, including chromatin
immunoprecipitation and sequencing (ChIP-seq) experi-
ments. The newest JASPAR version includes interfaces
to several packages (BioPython, Rtool, R/Bioconductor)
to facilitate access for both manual and automated
methods [12,13].
Zhang et al. published in 2012 a comprehensive ani-

mal transcription factor database based on DNA-binding
domains, where they collected and curated 71 animal TF
families [14]. Although this includes detailed annotations
for each TF (basic information, gene structure, func-
tional domain, 3D structure hit, Gene Ontology, path-
way, protein–protein interaction, paralogs, orthologs,
potential TF-binding sites and targets), it is not very
suitable for detailed analysis of TF properties. Fulton
et al. made in 2009 a catalog of mouse and human TFs
(called TFCat), where TFs were classified according to
evidence supporting DNA-binding and transcriptional
activation [15]. TFCat was based on information from
four transcription factor data sets, and categorized
DNA-binding TFs into 9 protein groups with 39 pro-
tein families. It is a very useful resource for TF classifi-
cation, but with limited information on TF properties.
Vaquerizas et al. used a set of 1391 manually curated
sequence-specific DNA-binding transcription factors to
investigate function, genomic organization and evolu-
tionary conservation [16]. Ravasi et al. identified almost
2000 proteins from the human genome that are poten-
tial TFs [17]. They built a global atlas of combinatorial
transcriptional regulation in mouse and human and
screened for physical interactions between the majority
of human and mouse DNA-binding transcription fac-
tors. This is again a useful resource, but with limited
additional information.
In this paper we describe the collection and curation

of a list of properties for human TFs, using the list of
TFs published by Ravasi et al. The main reason for using
this particular data set was that it also includes a consist-
ent set of protein–protein interaction data, with a clear
distinction between missing data and lack of interaction.
The properties that were added include DNA-binding
domains, protein–protein interactions, and post-
translational modifications. We then show how this can
be used for example to identify sub-groups of TFs and
to correlate these with specific functions, and to identify
TF properties that are associated with specific processes.
However, we also show that such analyses are easily
biased by data set composition and incomplete annota-
tions, and therefore have to be interpreted with great
care. The TF property data set and software for data
analysis is available with the paper as additional data.
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Methods
Initial definition of a data set of human TFs
We used a list of 1988 human transcription factors,
originally used by Ravasi et al. to build an atlas of com-
binatorial transcriptional regulation [17]. The gene
names were checked against HGNC [18] and UniProt
[19], and duplicates were removed. This gave a final list
of 1978 TFs. Initial annotation of the TFs was based on
database entries downloaded from UniProt (last update
done using release 2012_07).

Comparison to other TF collections
The gene list from Ravasi et al. was compared to previ-
ously published gene lists from Zhang et al. [14] and
Vaquerizas et al. [16]. These additional gene lists were
downloaded from supplementary material. DAVID does
not accept HGNC gene names for explicit definition of
background, therefore the gene names were remapped
to UniProt IDs for DAVID analysis, using the ID con-
verter of BioMart (http://www.biomart.org/) [20].

General domain annotation
Specific domains, as defined for example in Pfam [21],
are often associated with specific functions, and are
therefore an important annotation resource. Unfortu-
nately the Pfam annotation in UniProt does not include
information about sequence position of Pfam domains.
Therefore we downloaded the most recent swisspfam list
from Pfam (last update done using release 12.03.2013),
and searched the list for UniProt IDs [19,21].
Our annotation data include both levels of Pfam

families; Pfam-A and Pfam-B. Both entry types are made
from the most recent release of UniProtKB at a given
time and produced automatically from the non-
redundant clusters after sequence clustering. Pfam-A
entries can be successfully annotated by profile HMM
searches of primary sequence databases, whereas Pfam-B
entries are un-annotated [21].

Adding annotation on DNA-binding domains
In the following description we try to distinguish be-
tween the domains as defined by Pfam (Pfam domains),
and the individual occurrences of these domains in a set
of proteins (domain occurrences). In order to add anno-
tation on Pfam domains acting as DNA-binding domains
(DBDs), all entries for Pfam domains assigned to the list
of TFs were first manually reviewed and curated for evi-
dence strongly suggesting DNA binding, using Pfam
descriptions and associated literature references. In
order to get a more complete annotation of DBDs in
these proteins, we then used a DBD prediction method
to identify additional Pfam domains as DNA-binding. In
order to distinguish between sporadic and consistent
predictions we did the DBD predictions over all Pfam
domains in the set of TF proteins, including domains as-
sumed not to be DNA-binding. We then estimated the
overall prediction quality over all occurrences for each
Pfam domain, on the hypothesis that it was a DBD, and
used a support vector machine (SVM) [22] to distinguish
between true positive and false positive cases. Ideally,
Pfam domains where individual occurrences frequently
overlap with DBD predictions should be accepted as true
positive cases, whereas Pfam domains with few overlaps
should be rejected as false positives. The challenge is to
find a suitable cutoff between these two alternatives.
We used the threading-based method DBD-Threader

[23] for the prediction of DNA-binding domains. In this
method DNA-binding propensity is calculated using a
statistical DNA–protein pair potential. The sequence of
a target protein is compared against an experimentally
determined template library of DNA-binding protein do-
mains, using threading. Any significant template hits are
further evaluated using the DNA–protein interaction
energy, calculated using the alignment of the target tem-
plate and the corresponding DNA structure in complex
with the template protein. If there is at least one signifi-
cant template for a target protein according to the speci-
fied Z-score and energy threshold conditions, the
protein is predicted to be DNA-binding, otherwise it is
classified as non-DNA-binding [23]. It has been shown
that DBD-Threader has significantly improved perform-
ance when both threading Z-score and protein–DNA
interaction propensity are taken into account, leading to
a sensitivity of 56% and a precision of 86% on a bench-
mark set with 179 DNA-binding and 3797 non-DNA-
binding proteins [23]. The method has also shown good
performance in an independent benchmark study, in
particular with respect to specificity [24].
We used a reference set of TFs with Pfam domains

where we knew from manual curation that these specific
Pfam domains were DNA-binding. On this set we pre-
dicted DBDs using DBD-Threader. We then compared
annotated and predicted DNA-binding regions, and esti-
mated the quality of the predictions at three different
levels; protein level, domain level, and residue level, in
order to find optimal criteria for identifying false positive
predictions.

The protein level
At this level we predicted whether a protein was DNA-
binding or not, irrespective of domain overlap. We used
the set of proteins where curated annotation data
showed that they were DNA-binding because they con-
tained a Pfam domain annotated as DNA binding
[Additional file 1]. We then counted the number of TFs
with a known DBD that also were predicted to have a
DBD, and estimated the rate of true positive predictions,
or sensitivity (Sn, Equation 1).

http://www.biomart.org/
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Sn ¼ TP= TP þ FNð Þ ð1Þ

The domain level
At the domain level we tested how often the predicted
DBD (for proteins correctly predicted to have a DBD)
showed overlap with the known DBD (from curated an-
notation data), see Figure 1 for details. For each known
DBD we compared it to the predicted DBD and esti-
mated the amount of overlap relative to the Pfam do-
main. An overlap of at least 1 residue was counted as
significant, and the values for TP, FN and FP were used
to estimate sensitivity (Sn, Equation 1) and positive
predictive value (PPV, Equation 2).

PPV ¼ TP= TP þ FPð Þ ð2Þ

The residue level
At the residue level we measured the amount of overlap
between known and predicted DBDs for the actual over-
laps that were identified above. This was done according
to Figure 2, and used to estimate Sn and PPV as for the
domain level.

Predicting new DBDs
DBD-Threader was run on all TFs, and occurrences of
Pfam domains showing any overlap with DBD predictions
were used as an indication of potential DNA-binding. In
order to distinguish between random overlaps and true
DBDs we used the Support Vector Machine method
(SVM) [22] as implemented in scikit-learn version 0.15.0
[25], with a linear kernel function, and used it to separate
false positive from true positive cases, based on prediction
quality according to the hypothesis that each Pfam domain
is a DBD. The Pfam domains annotated as DBDs after
manual curation were considered as positive data, and for
negative data we identified any additional Pfam domains
in the DNA-binding proteins with at least one known
DBD, arguing that most likely the majority of the
remaining domains of these proteins are non-DBDs. These
Pfam domains were evaluated by manual curation (scien-
tific literature and Pfam entry annotation), and were sepa-
rated into 2 groups; Pfam domains with unknown DBD
status, and non-DBD Pfam domains [Additional file 1].
Obviously, only non-DBD Pfam domains that showed
FN Domain TP Domain

Predicted D

Pfam DBDs

Figure 1 Prediction quality at the domain level. Domains are classified
are not included in this comparison, as negative domains are not well defi
some overlap with DBD-Threader predictions could ac-
tually be used as negative data for the SVM classifier.
Initial tests showed that the SVM had best performance
on data at the residue level, leading to better separation
of positive and negative cases (data not shown), so we
used residue level %Sn and %PPV as features for classi-
fication. We then determined the final set of DBDs
based on the SVM output.

PTM annotation
For data on post-translational modifications (PTMs) we
used information from PhosphoSite (last update done
using release 01.01.2014) [26]. We imported data for 6
PTM types; acetylation, methylation, O-GlcNAc, phos-
phorylation, sumoylation and ubiquitination.

GOrilla and DAVID
We used GOrilla [27,28] and DAVID [29] for enrich-
ment analysis of TF subsets on a broad range of annota-
tion data. The reason for using both tools is that
although DAVID can analyze a broader range of proper-
ties, the information in GOrilla is more up to date. In
general we used a specific subset as the positive set, and
the full set of TFs as background. In cases where we
could identify the subset of TFs for which we had reli-
able data (e.g. the PPI data) we used this subset as back-
ground. In most cases (e.g. for PTMs) it was difficult to
identify TFs for which we actually had a lack of data
(rather than negative data), and in these cases the full
TF set was used.

Protein–Protein Interactions
Ravasi et al. were able to capture cDNA clones for
1222 TFs in human, in order to map PPIs [17]. The
number of possible interactions (including homo-

dimers) is n nþ1ð Þ
2 ¼ 1222 �1223

2 ¼ 747253; but based on
the data from Ravasi et al. only 762 out of these (0.1%)
were observed as actual interactions. This set was
tested for correlation against other features, using a
general enrichment analysis.

Enrichment analysis
The enrichment analysis was implemented as a Fisher’s
exact test on a 2 × 2 contingency table. Observations
FP Domain

BDs

Pfam Domains

DBD-Threader predictions

as TP, FN and FP as shown, relative to the curated Pfam domains. TNs
ned.



FN TP FP

Predicted DBD

Pfam Domain

DBD-Threader prediction

Pfam DBD

Figure 2 Prediction quality at the nucleotide level. Regions are classified as TP, FN and FP as shown, relative to overlap with the curated Pfam
domains. TNs are not included in this comparison, as they represent a very large fraction of the comparison, which may bias the analysis.

Bahrami et al. BMC Research Notes  (2015) 8:82 Page 5 of 15
were grouped according to pairs of properties, like being
involved in PPIs (yes/no) and having a DBD (yes/no).
This was then tested using the Fisher’s exact test, in
most cases with a threshold for p-value at 0.05 after
Benjamini correction for multiple testing. In addition to
the p-value, the expected number of occurrences and
the Matthew’s correlation coefficient (MCC, Equation 3)
was estimated for cases with significant p-values. The
testing was implemented using the full set of TFs (1978)
as background for all properties except PPI. For the PPI
case we used the 1222 TFs actually mapped for PPI in
the Ravasi et al. paper as background. For calculation of
MCC, a TF was considered as TP if it had both proper-
ties, as TN if it had none of properties and as FN or FP
if just had one of the properties (based on the 2 × 2
contingency table).

MCC ¼ TP� TN – FP� FNð Þ= sqrt ð TP þ FPð Þ
TP þ FNð Þ TN þ FPð Þ TN þ FNð ÞÞ

ð3Þ

Python scripts were used to extract subgroups of TFs
with specific properties for enrichment analysis [30].
Biopython was used to extract all gene names for each
TF from the UniProt files [31]. The p-values were esti-
mated using the Fisher 0.1.4 package [32]. The software
for enrichment analysis is available with the paper.

Ethical approval and consent
This study is based on human data. However, all data
have been downloaded from open data repositories
(UniProt, Pfam, PhosphoSite) or from supplementary
material from existing publications (see text), and cannot
be linked to individuals. Ethical approval and consent is
therefore not required.

Results and discussion
Making an initial set of TFs
The starting point for the annotated TF list was the set
of 1988 TFs by Ravasi et al. [17]. These TFs were then
supplemented with annotation data as described below
and in Methods, in particular with respect to UniProt
IDs, Pfam domains including DBDs, PPI data and PTMs.
Comparison to other TF collections
We wanted to use the data set by Ravasi et al. in order
to utilize the consistent set of PPI data generated for
that particular data set. However, alternative data sets
have been used in other studies, and in order to put the
set from Ravasi et al. into context, we compared it to
the sets from Zhang et al. [14] and Vaquerizas et al.
[16]. The set by Zhang et al. is based on manual cur-
ation of animal TF families, and includes a separation
into DNA-binding TFs, TF cofactors and chromatin re-
modeling factors. The set by Vaquerizas et al. is based
on curation of a list of potential TFs identified from
InterPro database entries.
We first tested for overlap between the different lists

based on unique HGNC gene names (see below). This
showed a quite similar overlap of 1253 genes between
Ravasi and Vaquerizas, 1374 between Ravasi and Zhang,
and 1404 between Vaquerizas and Zhang. These num-
bers are on average 10% lower if we focus on DNA-
binding TFs (1132, 1100, and 1359, respectively (see
below for definition of DBDs in the Ravasi set)). Of the
genes included in the Ravasi set, 186 and 66 are classi-
fied in the Zhang set as TF cofactors and chromatin
remodeling factors, respectively. This overlap is reduced
to just 14 and 10 if we focus on DNA-binding TFs in
the Ravasi set.
The similarity between the data sets from Ravasi and

Vaquerizas is further confirmed by comparing the dis-
tribution of domain types. The Vaquerizas set is
strongly dominated by the InterPro domains ZNF-
C2H2, Homeodomain, HLH and bZip, in that order.
This is very similar to the distribution of Pfam domains
in the Ravasi set (see below for how they were
mapped), which is dominated by the Pfam domains for
zinc fingers, homeobox, HLH and bZIP (Figure S1 [see
Additional file 2]). The Ravasi set may be somewhat
enriched in rare Pfam domains (i.e. domains found less
than 5 times), but this may also be caused by differ-
ences between InterPro and Pfam.
In order to highlight the differences between these col-

lections we used unique genes from each collection as
input to DAVID and GOrilla, in each case using the full
gene list for that collection as background. The genes
that are unique to Ravasi compared to Vaquerizas are
enriched for histone-related properties and transcription
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co-factor activity (results not shown), indicating that it
contains some cases that are not classical TFs. The
Vaquerizas set is, on the other hand, enriched for RNA
binding activity, but also catalytic activity, indicating that
also this data set may contain cases that are not TFs ac-
cording to a strict definition. Comparison of the Ravasi
data to the Zhang data shows a similar pattern, with
some enrichment for RNA binding and histone-related
properties in the Ravasi set. This shows that the gene set
defined by Ravasi et al. may have some inherent biases,
but that this may be a problem also in other gene sets.

Mapping of UniProt IDs and Pfam domains
The gene names by Ravasi et al. were mapped to
unique HGNC and UniProt IDs. In total 1978 TFs
(99.5%) could be mapped to unique IDs. Mapping of
Pfam domains was done using the annotations from
Pfam (in swisspfam) [21]. The list of 1978 human TFs
had 1664 unique Pfam domains, which included 936
Pfam-B domains and 728 Pfam-A domains. However,
most of the Pfam domains have few occurrences in the
set of human TFs (see later).

Mapping of DBDs
Verification on known Pfam DBDs
The ability for motif-specific DNA binding is an import-
ant property of most TFs. However, it is not necessarily
an essential property, as TFs also can interact through
PPIs. The observation of TFs that may bind to regions
without any apparent binding site motifs highlights this.
Motif-specific vs motif-less binding may have functional
relevance, and it is therefore important to identify TFs
with and without DNA-binding domains.
Less than 1% of all proteins have an experimentally

determined structure, which makes it difficult to assign
function based on structure. However, significantly simi-
lar sequences may share function, although functional
roles of related proteins can change during evolution
[33]. Therefore prediction methods based on sequence/
structure similarity can be used to try to identify DNA-
binding domain types when annotation is lacking. How-
ever, such predictions will contain some false positive
and false negative predictions. It is difficult to correct for
false negative predictions, i.e. to recognize something
that was missed by the prediction method. However, it
Table 1 Prediction results for DNA-binding domains on positi

Level Unit NPfam Npredicted

Protein proteins 907 776

Domain domains 70 46

Domain occurrences 1159 872

Nucleotide total nucleotides 69320 43326

Nucleotide average nucleotides 59 49
may be possible to correct for false positive predictions
by estimating prediction quality over a set of predictions.
Here we used Pfam domains as a basis, and tried to pre-
dict individual occurrences of DNA-binding for these
Pfam domains. We could then estimate the consistency
of prediction over all occurrences of a given Pfam
domain as a quality measure, and use this to identify
predictions that are likely to be false positive.
As a first step the 728 Pfam-A entries were checked

for DNA-binding properties from scientific literature
and Pfam entry annotation. This showed that after man-
ual curation 70 of the Pfam-A domains were confirmed
to be DNA-binding [see Additional file 1], and the pro-
teins that had at least one of these DNA-binding
domains were classified as DNA-binding proteins. These
70 DNA-binding Pfam domains were found in 907 pro-
teins, whereas 1071 proteins did not have a reliably
annotated DNA-binding domain at this stage.
We then used DBD-Threader to predict additional

Pfam domains as DBDs [23] (please see Methods for de-
tails). As an initial estimate of the expected reliability of
predictions, we started by doing prediction on the 907
TFs with known DBDs. These predictions were evalu-
ated at three different levels. At the protein level we just
checked whether the protein was predicted to be DNA
binding or not. This may be useful for classification of
TFs, but it does not identify new DNA-binding domains.
Therefore, for the true positive predictions at the protein
level we also evaluated the predictions at the domain
level, by checking whether the prediction was able to
identify the correct Pfam domain as DBD. This was eval-
uated both for each domain type, and over all domain
occurrences. For the true positive predictions at the do-
main level, we finally evaluated the predictions at the
residue level, by checking how well the predictions over-
lap with the Pfam domain annotated as DBD. The
results (Table 1) showed that 776 out of the 907 TFs had
been correctly predicted by DBD-Threader as DNA-
binding. At the domain level, 40 out of the 70 known
DNA-binding domains were correctly predicted by
DBD-Threader at least 50% of the time, giving a sensitiv-
ity of 57%. We then considered the domains with correct
prediction frequency of less than 50% as FN domains.
Statistics based on domain occurrences rather than do-
main types gave a higher sensitivity (74%), showing that
ve data

TP FP TN FN Sn PPV

718 - - 189 79.16 -

40 - - 30 57.14 -

863 519 - 296 74.46 62.45

42783 16899 - 26537 61.72 71.68

49 32 - 89 35.51 60.49
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performance is better on frequently occurring domains.
Doing the statistics at the level of residues gave a some-
what lower sensitivity (62%). The most likely reason for
this is shown in the average values, with a relatively high
FN rate. This shows that the Pfam domains on average
are longer than the predicted DBDs.
The results in Table 1 show that DBD-Threader in

general works quite well, with sensitivity of almost 75%
for the identification of DNA-binding domains. In par-
ticular it seems to work well for frequent DBDs, which
means that a large fraction of DBD-containing proteins
will be correctly identified, whereas rare cases are more
likely to be missed.
Some predictions were checked in more detail, based

on high FP/FN rates or large differences in Sn and PPV.
This involved three domain types (LAG1-DNAbind
(PF09271), BTD (PF09272), and HNF-1_N (PF04814)),
and two of these (PF09271 and PF09272) did illustrate a
potential problem, as there was one predicted continu-
ous DBD overlapping two Pfam domains (Figure 3). This
gives a low overlap when each domain is treated indi-
vidually. The manual evaluation also showed that the
HNF-1_N domain is likely to be an outlier. However,
this constitutes a small fraction of the actual domains,
and has minor impact on the analysis.

Identification of additional DBDs
For identifying additional Pfam domains as DBDs we
used DBD-Threader predictions as a starting point. We
then used the average overlap over all occurrences of
each Pfam domain as input for a Support Vector Ma-
chine (SVM) [22], in order to identify Pfam domains that
had too low overlap with DBD predictions to be classi-
fied as DNA-binding. As positive data we used the 40
Pfam domains that were correctly predicted by DBD-
Threader as DNA-binding. As negative data we used any
additional Pfam domains co-occurring with the 40 Pfam
domains in the positive set [Additional file 1], based on
the assumption that most TFs only have one type of
DBD. This may be an oversimplification in some cases,
but the SVM approach is supposed to be robust with re-
spect to outliers. The negative data also had to show
some overlap with DBD-Threader predictions in order
to be useful for defining a classification cutoff between
true positive and false positive cases (all Pfam domains
47
58

178 179
285

328 355

PF09271 PF09270

Predicted DBD

Figure 3 Example of a challenging DBD prediction. The predicted regio
without any overlap with DBD predictions will be zero
in both Sn and PPV). This left only 6 Pfam domains as
negative data. However, this should be a reliable data set
of non-DBD Pfam domains in DNA-binding proteins,
despite the small size.
The SVM classifier was used with the %Sn and %PPV

values for DBD-Threader predictions on each Pfam do-
main, over all occurrences (i.e. for the hypothesis that
the Pfam domain is a DBD). The performance of the
classifier was assessed on the 46 Pfam domains with
known classification by using a two-way cross-validation
with five re-samplings, in addition to a leave-one-out
cross-validation. This gave an average performance of
98% for both Sn and PPV. We then used this SVM to
classify the remaining Pfam domains, based on overlap
(or lack of overlap) of individual occurrences of each do-
main with the DBD-Threader predictions (Figure S2 [see
Additional file 2]). For prediction of new DBDs we fo-
cused on Pfam-A domains, and 38 Pfam domains not
included in the training set showed a non-zero overlap
with DBD-Threader predictions. According to the SVM
step 27 of these Pfam domains could be reliably identi-
fied as DNA-binding whereas 11 Pfam domains were
more likely to be non-DNA-binding (Table 2).
Following the above analysis we had in total 97 Pfam-

A domains annotated as DNA-binding, including the
30 domains that were annotated as DBD in literature,
but not reliably predicted by DBD-Threader in the ini-
tial analysis. A total of 1225 proteins had at least one
occurrence of a Pfam domain annotated and/or classi-
fied as DBD, and were therefore considered to be
DNA-binding, whereas the remaining 753 proteins
could not be identified as DNA-binding. This means
that at least 61% of the TFs are DNA-binding, and this
number seems to be comparable to the result from
Fulton et al. [15].
Pfam-B domains were not included in the final predic-

tion process for new DBDs. Such domains are generated
by an automatic process, which means that they do not
have a stable definition, and they will often be of low
quality. Also, they had only minor impact on the actual
TF classification. 45 Pfam-B domains showed at least
some overlap with DBD-Threader predictions. Following
the SVM-based analysis 25 out of them were confirmed
as DNA-binding, whereas 20 Pfam-B domains were
444

PF01833

DBD-Threader prediction

Pfam Domains

n overlaps with two independent Pfam domains.



Table 2 New DNA-binding and non-DNA-binding domain types

DBD DBD DBD non-DBD*

Homeobox_KN zf-C2H2_6 Maf1 PBC

MCM2_N zf-C2H2_4 zf-H2C2_5 zf-C2H2_2

CBFD_NFYB_HMF TFIID-18 kDa Exo_endo_phos TFIIA

SKIP_SNW TFIIB DUF3432 SCAN

Ku DNA_methylase Toprim Prox1

Pax2_C TFIID_20kDa SSXRD

TAFII28 ResIII HJURP_C

DUF2028 FAD_binding_7 Ku_N

Histone RNA_pol_Rpb1_1 DNA_photolyase

zf-H2C2_2 SOXp SNF2_N

zf-met DNA_topoisoIV TIG

*After filtering predicted DBDs for false positives.

Figure 4 A Venn diagram for distribution of PTMs across TFs.
The diagram shows that PTMs tend to co-occur, possibly due to
experimental bias.
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identified as non-DNA-binding. The 25 possibly DNA-
binding Pfam-B domains were found in 27 TFs, but 24
of these TFs had at least one DNA-binding Pfam-A
domain, and had therefore already been identified as
DNA-binding TFs.
The number of TFs with a clear DBD is certainly

a conservative estimate, as DBD-Threader could not
reliably identify all Pfam domains that are known DBDs
according to literature annotation. However, as we also
have shown that this affects mainly the less frequently
occurring DNA-binding domains, we believe that the
estimate is at least close to the real value.

Mapping of PPIs and PTMs
Ravasi et al. tested 1222 TFs experimentally for protein–
protein interactions and found 762 actual interactions
for 482 TFs [17]. These interactions were included in
the data set. For the mapping of PTMs, we retrieved
information for each TF from the PTM-specific files
from Phosphosite [26]. The distribution of PTMs is
shown in Figure 4.
Based on these data sources, including the analysis of

DBDs described above, we then made a final annotated
set of transcription factors. The main properties are
listed in Table 3, and the full table is available [see
Additional file 3].

Using the annotated TFs for data analysis
We now want to illustrate how such data can be used
to analyze sets of TFs. We used two main approaches.
In the first approach we used properties in the TF
table to split the set of TFs into subsets, and analyzed
these subsets using either enrichment analysis against
other properties in the TF table, or against Gene
Ontology data or annotation-based property data,
using GOrilla [27,28] and DAVID [29]. As a more
general approach we also used external data to define
subsets of TFs, and then analyzed these subsets using
enrichment analysis against properties in the TF
table.

Subsets analyzed with GOrilla and DAVID
Here subsets were defined based on properties in the TF
table, like DNA-binding or acetylation, and these subsets
were analyzed with GOrilla and DAVID, using the full
set of relevant TFs as background. Selected results for
GOrilla are shown in Table 4, and comprehensive results
for GOrilla and DAVID are given in Table S1 and S2
[see Additional file 2].
The results show a particularly clear difference be-

tween TFs with and without a DBD. The DNA-binding
TFs are enriched in sequence-specific DNA-binding,
receptor properties, dimerization and core promoter
interactions. The non-DNA-binding TFs are enriched
in RNA-binding and cofactor activity, but also in cata-
lytic activity, histone binding and related processes.



Table 3 Overview of TF annotation data

Information Type TFs with data Positives* Average**

Uniprot ID protein ID 1978 1978 1

Pfam non-DBD domain IDs 1978 753 2.16

Pfam DBD domain IDs 1978 1225 1.33

PPI protein IDs 1222 482 1.58

PTM - acetylation positions 1978 884 3.55

PTM - methylation positions 1978 376 3.22

PTM - O-GlcNAc positions 1978 41 2.90

PTM - phosphorylation positions 1978 1797 13.12

PTM - sumoylation positions 1978 190 1.77

PTM - ubiquitination positions 1978 896 4.38

*Number of TFs that actually have the property. **Average number of occurrences in the positive TFs.
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This shows that the list of TFs includes some epigen-
etic factors. In order to verify this we compared the TF
list used here to a list of epigenetic factors (F. Drabløs,
unpublished data). This indicates that the list included
322 genes (16%) that also could be classified as
Table 4 Selected enriched terms according to GOrilla

Description

DNA_Binding DNA binding

core promoter sequence-specific DNA binding

protein dimerization activity

Non_DNA_Binding catalytic activity

RNA binding

transcription cofactor activity

histone binding

ubiquitin-protein transferase activity

methylated histone binding

Acetylation transcription factor binding

structure-specific DNA binding

Non_Acetylation sequence-specific DNA binding

Methylation protein binding

chromatin binding

O-GlcNAc protein binding

histone deacetylase binding

Phosphorylation protein binding

PTM protein binding

Sumoylation sequence-specific DNA binding

core promoter binding

chromatin binding

Ubiquitination protein binding

transcription cofactor activity

Non_Ubiquitination DNA binding

PPI transcription factor binding
epigenetic factors. This is probably an overestimate, as
the list of epigenetic factors includes some TFs that
recruit epigenetic factors. However, it confirms that
subsets of genes on the list from Ravasi et al. are not
classical TFs.
P-value FDR q-value Enrichment (N, B, n, b)

2.11E-185 1.72E-182 1.28 (1939,1475,1206,1174)

7.87E-5 1.79E-3 1.37 (1939,60,1206,51)

4.00E-8 1.13E-6 1.24 (1939,254,1206,196)

1.07E-49 8.75E-47 2.01 (1939,305,735,232)

3.95E-34 1.62E-31 2.00 (1939,222,735,168)

9.56E-12 4.61E-10 1.42 (1939,359,735,193)

1.03E-10 3.39E-9 2.07 (1939,60,735,47)

2.29E-10 7.21E-9 2.40 (1939,33,735,30)

3.80E-10 1.11E-8 2.54 (1939,26,735,25)

2.12E-6 2.17E-4 1.28 (1939,292,879,169)

2.27E-5 7.76E-4 1.38 (1939,136,879,85)

1.36E-6 1.11E-3 1.11 (1939,887,1061,537)

2.67E-8 3.12E-6 1.21 (1939,1135,372,264)

3.93E-7 2.48E-5 1.62 (1939,264,372,82)

6.83E-6 2.80E-3 1.54 (1939,1133,41,37)

2.71E-4 7.41E-2 6.31 (1939,45,41,6)

4.93E-5 2.02E-2 1.02 (1939,1133,1782,1065)

3.12E-6 2.55E-3 1.02 (1939,1135,1827,1093)

3.00E-12 4.1E-10 1.73 (1939,617,189,104)

1.86E-7 8.03E-6 2.90 (1939,92,189,26)

1.92E-7 7.86E-6 1.98 (1939,264,189,51)

3.71E-30 3.04E-27 1.24 (1939,1133,888,641)

3.27E-8 8.12E-7 1.28 (1939,359,888,211)

6.99E-14 5.73E-11 1.09 (1939,1473,1052,869)

1.38E-4 4.83E-2 1.31 (1203,185,475,96)
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Associations between individual PTM properties
The modification of transcription factors by PTMs
like phosphorylation, acetylation, methylation, ubiquiti-
nation, sumoylation and O-GlcNAc may affect their
activity. It is therefore relevant to see how these modifi-
cations are correlated, and whether they are correlated
with other properties. This is shown in Table 5, and in
Table S5 [see Additional file 2].
The results show significant associations between most

of the PTMs. It is likely that this shows an experimental
bias in the data set, where TFs tested for a given PTM
also are more likely to have been tested for other PTMs,
thereby creating artificially strong associations. Figure 4
seems to indicate this, as for example almost all proteins
that are methylated are also phosphorylated. We also see
that there is in general a negative correlation between
PTMs and DNA-binding properties, possibly indicating
that PTMs are less important for classical TFs than for
TFs involved for example in chromatin organization.
This may indicate that processes at the chromatin level
are more actively regulated at the PTM level than TF
binding itself, which seems reasonable based on current
knowledge.

Association between DNA-binding and PPI
It is relevant to look further into possible associations be-
tween DNA-binding and PPI propensity, as stabilization
through PPI is a possible mechanism for stable binding
Table 5 Associations between property-based subgroups

Property pair P-value Benjamini Corr.

Phosphorylation Acetylation 1.84E-10 5.15E-09 0.190

Phosphorylation Ubiquitination 1.94E-10 2.72E-09 0.190

DNA_Binding Methylation 2.08E-10 1.94E-09 −0.156

Phosphorylation Methylation 2.42E-10 1.70E-09 0.127

Methylation Acetylation 2.78E-10 1.56E-09 0.202

Ubiquitination Methylation 2.85E-10 1.33E-09 0.204

DNA_Binding Ubiquitination 3.16E-10 1.26E-09 −0.280

Ubiquitination Acetylation 3.39E-10 1.19E-09 0.289

Acetylation Sumoylation 5.99E-09 1.86E-08 0.131

Ubiquitination Sumoylation 4.03E-08 1.13E-07 0.124

DNA_Binding Acetylation 6.30E-08 1.60E-07 −0.122

Methylation O-GlcNAc 1.24E-05 2.90E-05 0.110

Phosphorylation Sumoylation 1.51E-05 3.24E-05 0.086

Acetylation O-GlcNAc 3.45E-04 6.91E-04 0.083

Ubiquitination O-GlcNAc 3.82E-03 7.13E-03 0.067

PPI Sumoylation 1.23E-02 2.16E-02 0.072

Methylation Sumoylation 1.49E-02 2.46E-02 0.056

Phosphorylation O-GlcNAc 2.85E-02 4.43E-02 0.046

DNA_Binding PPI 3.43E-01 4.37E-01 −0.027
despite lack of strong DBDs in TFs. As seen from Table 5,
there is not any significant non-random association be-
tween having a DNA-binding domain and participating
in PPI (p-value 0.343).
However, this is a rather general analysis, and it may

be relevant to look closer into more specific cases, where
one, both or none of the TFs have a DBD. These results
are shown in Table 6. The results show that all cases are
significant after Benjamini correction, in particular for
cases with no DBD in any of the partners, where we see
more pairs than expected. For the other two cases,
where at least one TF is DNA-binding, we see fewer
pairs than expected. A reasonable initial hypothesis
would have been that TFs without a DBD will tend to
associate with TFs with a DBD, in order to recognize
regulatory regions, but this analysis indicates the oppos-
ite. The data make sense for cases where both TFs have
DBD, and therefore do not need PPI to bind, but we do
not have a good explanation for the other two cases,
although participation in large complexes may be a
possible hypothesis.

Enrichment of domains and domain pairs in PPI
PPIs are often achieved through interactions between
specific domains. It is therefore interesting to see whether
specific Pfam domains, or pairs of Pfam domains, are
enriched in the PPI data.
As previously described there were 762 PPIs involving

482 transcription factors, and these TFs contained 518
different Pfam domains. Each Pfam domain was tested
for association with PPI. This identified 73 enriched
Pfam domains [see Additional file 4].
Subsequently we tested pairs of Pfam domains, rather

than individual occurrences. First we tested all possible
pairs for the 73 Pfam domains (see above), which identi-
fied 227 enriched pairs of Pfam domains. However, there
is a risk that some interactions are significant as pairs
even though they are not significant individually. We
therefore relaxed the criteria so that at least one of the
two Pfam domains had to be significantly associated
with PPI [see Additional file 4]. In total we identified
347 pairs of Pfam domains as enriched in PPI data after
Benjamini correction. However, 177 out of the 347 pairs
were observed just once [see Additional file 4]. The main
pairwise interactions, except for RNA polymerases and
Pfam-B domains, are plotted in Figure 5. All interactions
are shown in Figure S3 [see Additional file 2]. The plot
Table 6 Occurrence of DBDs in 762 PPI pairs

DBD found in Expected Observed P-value Benjamini

both TFs 255 229 0.046 4.58E-02

only one TF 371 343 0.042 4.58E-02

none TFs 135 190 7.50E-07 2.25E-06



Figure 5 A matrix representation of enriched domain pairs in PPI data. Homodimers are indicated in orange. RNA polymerases and Pfam-B
domains are not included; please see Figure S2 [in Additional file 2] for the full data set.
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shows that the network of domains that are enriched
(and possibly involved) in PPI is quite sparse. Although
more than half (66%) of the domain pairs are found in
pair with more than one other domain type, this is in
most cases limited to two different domains, and often
involve related types (like Kelch domains).

Analysis of externally defined sets of TFs
To illustrate how such annotated lists can be used to
analyze data from different types of experiments, we an-
alyzed gene lists from three recent papers. The software
used for this analysis is available with the paper
[Additional file 5].
A paper by Tuomela et al. discusses early changes in

gene expression during differentiation of human Th17
cells from CD4+ T-cells [34]. Expression levels were
measured with microarrays, and differentially expressed
genes were identified. One of the largest groups of dif-
ferentially expressed genes was transcription factors.
Groups of genes with similar temporal changes in ex-
pression patterns were identified by clustering into 10
groups (see the paper for details). Some of these groups
showed similar general trends, like groups 1, 2 and 3
(up-regulation), 4, 5 and 6 (down-regulation), and 7, 8, 9
and 10 (no change). All the individual groups, as well as
the indicated combinations, were tested for enrichment
[see Additional file 6]. The results (Table 7; full results
in Table S4 [see Additional file 2]) show that in particu-
lar ubiquitination is clearly enriched, in particular in the
combined cluster with down-regulated expression pat-
tern (4, 5, and 6). It may make sense that proteins of
down-regulated genes are ubiquitinated, in order to
speed up the process of down-regulation. It is also inter-
esting that there is a clear depletion of DNA-binding in



Table 7 Results for TF expression changes during cell differentiation

Category* Term Observed Expected Pvalue Benjamini MCC

1 Ubiquitination 4 1 4.20E-02 3.36E-01 0.049

Sumoylation 2 0 4.84E-02 1.93E-01 0.062

6 O-GlcNAc 3 0 9.69E-03 7.75E-02 0.086

Ubiquitination 16 9 1.58E-02 6.31E-02 0.058

Methylation 9 4 2.35E-02 6.27E-02 0.059

8 Ubiquitination 17 9 1.36E-03 1.09E-02 0.074

PPI 10 5 2.39E-02 9.58E-02 0.070

1,2,3 PPI 9 4 1.57E-02 1.26E-01 0.072

4,5,6 Ubiquitination 43 29 1.48E-03 1.18E-02 0.074

Methylation 21 12 1.03E-02 4.11E-02 0.061

Sumoylation 12 6 2.98E-02 7.93E-02 0.054

O-GlcNAc 4 1 4.53E-02 9.07E-02 0.052

7,8,9,10 DNA_Binding 28 38 7.49E-03 5.99E-02 −0.062

Ubiquitination 38 28 1.32E-02 5.29E-02 0.058

*Indicates TFs with similar expression profiles: 1, 2, 3 - Up-regulated; 4, 5, 6 - Down-regulated; 7, 8, 9, 10 - No clear change.
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genes with a stable (housekeeping-like) expression pat-
tern. It is possible that these transcription factors rely on
interaction with open chromatin initiated by other tran-
scription factors, and are therefore less actively regulated
than such key factors.
A paper by Lawrence et al. identified somatic point

mutations in exome sequences from 4742 human can-
cers with matched normal-tissue samples across 21 can-
cer types [35]. Frequently mutated genes were identified
and analyzed according to whether the gene was mainly
mutated in a single cancer, or across many cancers. This
made it possible to identify subsets of genes, here identi-
fied as gene set I (mainly mutated across many cancers),
II (highly mutated in a few cancers), and III (highly mu-
tated across many cancers). The last set could further be
divided into IIIA and IIIB, where B consists of the genes
that are most broadly mutated [see Additional file 7].
The analysis shows that many features are enriched, but
often represented by a small number of genes (Table 8,
full results in Table S5 [see Additional file 2]). The most
significant enrichments are for PTMs. However, it is
possible that this is influenced by experimental bias, as
known cancer genes may have been more frequently
tested for PTMs. We also see that DNA-binding again is
depleted, possibly indicating that TFs with a strong and
easily identified DBD are more essential to cellular func-
tion, and therefore less frequently mutated. Also some
Pfam domains show a small enrichment, in particular
for the SET and PHD domains. These domains are found
frequently for example in members of the MLL family,
which catalyze H3K4 methylation as part of a large mul-
tiprotein complex containing several chromatin remod-
eling factors. More than 70% of infant leukemia and
approximately 10% of adult human leukemia display
chromosomal translocations of the MLL (KMT2A) gene,
and 450 functionally diverse MLL fusions having been
identified. However, it is interesting that in all fusion
proteins the C-terminal SET domain is lost and conse-
quently they lack H3K4 methyltransferase activity [36].
The PLU-1/JARID1B is a nuclear protein which is
expressed in a high proportion of breast cancers. Two
PHD domains in PLU-1/JARID1B are involved in tran-
scriptional repression. Indeed the interaction between
the class II HDACs (histone deacetylase) and PLU-1/
JARID1B depends on functional PHD domains, and is
responsible for transcriptional repression [37].
Vaquerizas et al. [16] have published an analysis of

1391 manually curated sequence-specific DNA-binding
transcription factors. They looked into the tissue distri-
bution of TF expression, and identified a bi-modal distri-
bution; 37% of the TFs showed significant expression in
at least one tissue, 32% of these were expressed in most
tissues, whereas the majority was expressed only in a
subset (typically 1–3 tissues). We used these three sub-
sets (general tissue distribution, specific distribution, and
unknown; [see Additional file 8]) as input for analysis.
The results are shown in Table 9 (full results in Table S6
[see Additional file 2]). They show an expected enrich-
ment for DNA-binding, since this particular dataset has
been selected for DNA-binding TFs. They also show a
depletion of PTMs and PPIs in the set with unknown
tissue distribution. This most likely indicates the same
problem as before with respect to data bias; many of
these TFs have been less studied, and the lack of PTMs
most likely reflects a lack of experimental data, and not
that they are less frequently modified. It is probably
more relevant that the tissue-specific TFs are more likely
to be sumoylated or be hormone receptors than the



Table 8 Selected results for TFs that are frequently mutated in cancer

Category* Term Observed Expected Pvalue Benjamini MCC

II + IIIAB Acetylation 48 26 1.823E-08 1.46E-07 0.125

Ubiquitination 47 27 2.08E-07 8.31E-07 0.118

Methylation 26 11 1.21E-05 3.23E-05 0.110

PF00856(SET) 6 0 1.21E-05 8.80E-03 0.164

PF13771(zf-HC5HC2H) 4 0 4.90E-05 1.78E-02 0.175

PF00628(PHD) 8 1 1.78E-04 2.58E-02 0.114

Sumoylation 14 5 1.14E-03 2.28E-0 0.082

O-GlcNAc 5 1 7.03E-03 1.12E-02 0.078

II Acetylation 21 12 1.67E-03 1.33E-02 0.073

Ubiquitination 20 12 6.61E-03 2.64E-02 0.063

Methylation 11 5 1.23E-02 3.28E-02 0.062

O-GlcNAc 3 0 1.89E-02 3.78E-02 0.073

IIIB Sumoylation 5 1 3.51E-03 2.80E-02 0.085

I + IIIAB Ubiquitination 32 16 2.69E-07 2.15E-06 0.114

Acetylation 30 16 6.44E-06 2.12E-05 0.101

Methylation 19 7 7.94E-06 2.12E-05 0.114

PF00856(SET) 5 0 1.67E-05 5.78E-03 0.178

PF00628(PHD) 7 1 4.70E-05 8.56E-03 0.136

PF13771(zf-HC5HC2H) 3 0 3.17E-04 2.25E-02 0.168

Sumoylation 10 3 1.82E-03 3.64E-03 0.082

DNA_Binding 15 22 9.56E-03 1.53E-02 −0.061

IIIAB Acetylation 27 14 5.47E-06 2.56E-05 0.102

Ubiquitination 27 14 6.39E-06 2.56E-05 0.101

PF00628(PHD) 6 0 1.82E-04 2.64E-02 0.125

PF00439(Bromodomain) 4 0 4.78E-04 4.35E-02 0.132

Methylation 15 6 2.79E-04 7.44E-04 0.091

Sumoylation 9 3 2.28E-03 4.56E-03 0.081

DNA_Binding 12 19 5.45E-03 8.71E-03 −0.065

I Methylation 4 0 5.47E-03 4.38E-02 0.078

*Indicates TFs with similar mutation profiles: I - Mainly mutated across many cancers; II - Highly mutated in a few cancers; IIIA - Highly mutated across many can-
cers; IIIB - Even more highly mutated across many cancers.

Table 9 Selected results for TFs with differences in tissue specificity

Category* Term Observed Expected Pvalue Benjamini MCC

General DNA_Binding 126 85 1.36E-10 1.09E-09 0.166

Specific DNA_Binding 306 205 1.92E-10 1.53E-09 0.280

Sumoylation 57 31 1.85E-06 7.39E-06 0.115

PF00104(Hormone_recep) 28 7 2.32E-11 1.69E-08 0.179

PF01352(KRAB) 16 40 9.20E-07 1.67E-04 −0.103

Unknown DNA_Binding 702 486 2.82E-10 2.26E-09 0.459

Ubiquitination 229 355 3.19E-10 1.28E-09 −0.263

Methylation 105 149 1.68E-07 4.47E-07 −0.116

PPI 146 172 1.48E-03 2.37E-03 −0.091

PF01352(KRAB) 200 96 2.11E-10 7.66E-08 0.324

*Indicates TFs found in many tissues (general), a few tissues (specific), or unknown (due to very low or no expression).
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general ones, as this may reflect mechanisms for tissue-
specific regulation (see e.g. [38]). It is also interesting
that the KRAB domain is depleted in the tissue-specific
set, but enriched in the unknown (not expressed) set, as
KRAB is a known transcriptional repressor domain [39].

Conclusions
A combination of literature-based curation and predic-
tion methods has been used to build a comprehensive
list of transcription factor properties, and this list has
been applied towards investigating relationships between
TF properties, TF–TF (protein–protein) interactions,
and external data, and used to find significant correla-
tions and enriched or depleted features. The results
show that the comprehensive list is a useful data analysis
resource for researchers working on gene regulation.
However, it also shows that such analyses are easily
biased by incomplete data or by how the gene sets have
been selected. This mirrors to some extent the recent
results by Rolland et al. [40], where they identified a
strong bias in existing PPI data towards well-studied
proteins.
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