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Spatial profiles of markers of glycolysis, 
mitochondria, and proton pumps in a rat 
glioma suggest coordinated programming 
for proliferation
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Abstract 

Background:  In cancer cells in vitro, the glycolytic pathway and the mitochondrial tricarboxylic acid (TCA) cycle are 
programmed to produce more precursor molecules, and relatively less ATP, than in differentiated cells. We address the 
questions of whether and where these changes occur in vivo in glioblastomas grown from C6 cells in rat brain. These 
gliomas show some spatial organization, notably in the upregulation of membrane proton transporters near the rim.

Results:  We immunolabeled pairs of proteins (as well as DNA) on sections of rat brains containing gliomas, meas-
ured the profiles of fluorescence intensity on strips 200 µm wide and at least 3 mm long running perpendicular to 
the tumor rim, and expressed the intensity in the glioma relative to that outside. On averaged profiles, labeling of a 
marker of the glycolytic pathway, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), was, as expected, greater 
in the glioma. Over distances up to 2.5 mm into the glioma, expression of a marker of the TCA cycle, Tom20, a pre-
protein receptor on the translocation complex of the mitochondrial outer membrane, was also upregulated. The 
ratio of upregulation of Tom20 to upregulation of GAPDH was, on average, slightly greater than one. Near the rim 
(0.4–0.8 mm), GAPDH was expressed less and there was a peak in the mean ratio of 1.16, SEM = 0.001, N = 16 pairs of 
profiles. An antibody to V-ATPase, which, by pumping protons into vacuoles contributes to cell growth, also indi-
cated upregulation by about 40%. When compared directly with GAPDH, upregulation of V-ATPase was only 0.764, 
SD = 0.016 of GAPDH upregulation.

Conclusions:  Although there was considerable variation between individual measured profiles, on average, mark-
ers of the glycolytic pathway, of mitochondria, and of cell proliferation showed coherent upregulation in C6 gliomas. 
There is a zone, close to the rim, where mitochondrial presence is upregulated more than the glycolytic pathway, in 
agreement with earlier suggestions that lactate is taken up by cells near the rim.
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Background
Glioblastomas, which derive from the astrocyte lineage 
and are almost invariably fatal, are among that majority 

of cancers initiated by stochastic errors of DNA replica-
tion and not caused by genetic predisposition or environ-
mental carcinogens [1]. Surgical resection, conventional 
radiation therapy and anti-angiogenic chemotherapy [2] 
have had only limited success in their treatment. Hence 
new therapies are required and their development might 
benefit from a better understanding of the physiology. 
Although there is considerable variety in the molecular 
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phenotypes of human glioblastomas [3], the more malig-
nant ones colonize the brain by growth of the tumor 
mass and by migration of individual cells away from the 
tumor rim [4–7], so we focus here on the rim.

The tumor grown in Wistar rat brain from the C6 cell 
line of transformed rat astrocytes colonizes the brain in a 
manner similar to many human glioblastomas [8–10]. By 
analyzing the distribution of antibodies to marker mol-
ecules on tissue sections, we have previously shown that 
the rim of a C6 glioma shows a degree of organization 
that is statistically significant when several spatial pro-
files are averaged. Notably, expression of the membrane 
Na+/H+ exchanger, NHE1 (SLC9A12), which contrib-
utes to cell migration by extruding protons [11–17] and 
interacting with the cytoskeleton [12, 18], is upregulated 
in a peak at the rim [19]. The internal H+ binding site of 
NHE1 is modified in cancer cells so that NHE1 continues 
to export protons even when the intracellular pH (pHi) 
rises higher than in normal cells [11, 12, 20–23]. The 
exported protons contribute to lowering extracellular pH 
(pHe) below the normal 7.3, and this acidic pHe assists 
invasion of host tissue by killing differentiated cells [24] 
and by activating metallo matrix proteases, which break 
down extracellular matrix and facilitate cell migration 
into host tissue [12, 25, 26].

The export of protons on NHE1 is intimately depend-
ent on energy metabolism, since Na+/H+ exchangers 
require an inward gradient of [Na+], which is maintained 
by the ATP-consuming Na+ pump (or Na+-K+ ATPase). 
In differentiated cells, nearly all the ATP is produced 
by oxidative phosphorylation associated with the TCA 
cycle in mitochondria, the mitochondria being fuelled 
by pyruvate produced by the Embden-Meyerhof gly-
colytic pathway. In cancer cells, and other proliferating 
cells in culture, the glycolytic pathway and the TCA cycle 
are reprogrammed to produce intermediates necessary 
for the synthesis of the macromolecules of cell growth, 
rather than a maximum of ATP [27–31]. As part of this 
reprogramming, much of the pyruvate is converted to 
lactate, and tumors show a net excretion of lactate [32–
34]. Lactate export (and import) is mediated by mem-
bers of the monocarboyxlate transporter (MCT) family. 
In some tumors, including C6 gliomas, expression of the 
lactate transporter MCT1 is upregulated near the tumor 
rim [19, 35] an arrangement which has led to the hypoth-
esis that some of the lactate produced deeper in a tumor 
diffuses towards the rim where it is taken up and oxidized 
[19, 35–37]. If this is true, then the ratio of oxidative 
phosphorylation to glycolysis in the rim might be greater 
than in the bulk of the tumor, and one aim of the present 
work is to see if there is evidence for this.

Also involved in both cell metabolism and the creation 
of an acidic pHe is the vacuolar H+-ATPase (V-ATPase), 

a proton pump. In addition to being a consumer of ATP 
[38–40], V-ATPase contributes to the metabolism of pro-
liferating cells by transporting H+ into vacuoles (includ-
ing endosomes, lysosomes and the Golgi apparatus) that 
are the sites of synthesis and degradation of macromol-
ecules [39–42]. Upregulation of V-ATPase in cancer cell 
lines is associated with increased invasiveness [40, 43, 44] 
and V-ATPase has repeatedly been proposed as a target 
for cancer therapy [45–50]. In C6 cells, it is present on 
the plasma membrane [51] as well as vacuoles [43, 52]. 
It would be interesting to know how upregulated expres-
sion of V-ATPase compares with expression of the Emb-
dem-Meyerhof pathway and this is the second question 
we address.

Nearly all of the extensive work on cancer metabolism 
and signaling has been done on cells in culture (see, e.g. 
[30, 53–55]); our aim here is to complement this with a 
description of spatial organization in a tumor. The mean 
distances from the rim to the peaks of NHE1 and MCT1 
in C6 gliomas have been measured as 0.33 and 1.05 mm, 
respectively [19]. To obtain comparable spatial profiles 
(with resolution <10  µm over distances of millimeters), 
we tile-scanned tissue sections labeled with antibodies to 
marker molecules, and measured intensity profiles along 
strips perpendicular to the glioma rim, as previously [19]. 
Intensities were normalized with respect to the host tis-
sue and a number of profiles from different sections 
were aligned and averaged (see “Methods”). The choice 
of markers was more limited than for cells in culture (for 
example, the mitochondrial label MitoTracker does not 
work on dead tissue), and we concentrated on obtaining 
statistically significant results for three markers. We used 
antibodies against glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) as a marker of the glycolytic pathway, 
Tom20, a receptor for pre-proteins that forms part of the 
translocase complex of the outer mitochondrial mem-
brane [56, 57], and V-ATPase.

Methods
Ethics statement
All procedures involving animals conformed to Euro-
pean Council Directive 2010/63/UE and the study was 
approved by the Ethical Committee of the Grenoble-
Institut des Neurosciences, agreement ID 004. Facilities 
for animal housing and procedures were approved by the 
French Ministry of Agriculture, licence B 38 516 10008 
and all experimenters held personal licenses. The rats 
were sacrificed before the appearance of marked clinical 
symptoms.

Preparation of the tumor model
C6 cells [8, 10] from the American Type Culture Collec-
tion were grown in DMEM containing 25  mM glucose 
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and 2  mM  l-glutamine (product 31966-021 from Invit-
rogen, Cergy Pontoise, France) to which was added 10% 
FBS (Invitrogen) and antibiotics. The rat glioma model 
was prepared as described [58]: male Wistar rats (200–
230 g) were anesthetized with isoflurane and 105 C6 cells 
in DMEM were injected stereotaxically in the right cau-
date nucleus. The growth of the tumor was monitored 
by MRI under isofluorane anesthesia at 4.7 T (Avance III 
console; Bruker, Grenoble MRI Facility IRMaGe) using 
a T2-weighted sequence (TR/TE  =  4,000/33  ms, with 
repetition time 4,000  ms, and echo time 33  ms [59]). 
When the tumor diameter was 5–7 mm (20–25 days after 
implantation), the rat was decapitated, the brain was 
rapidly removed and frozen in isopentane at −80°C, and 
10 µm coronal cryosections were cut at −20°C.

Antibodies
Antibody against a conserved peptide of the E subunit 
of V-ATPase (SVSAEEEFNIEKLQLVEAEKKKIRQ) was 
prepared by Genemed Synthesis Inc. CA, USA and used 
at 1/500. This antibody labels V-ATPases in plants [60] 
and rat endothelial cells [61]. The antibody for GAPDH 
was a goat polyclonal NB300-320 from Novus Biologi-
cals, used at 1/500. The antibody for Tom20 was a mouse 
monoclonal (Novus Biologicals H00009804_M01; called 
TOMM20) raised against a 146 AA recombinant protein, 
and used at 1/500. Immunolabeling of Tom20 has been 
shown to colocalize with the outer membranes of mito-
chondria in fish embryos [62].

Secondary antibodies were anti rabbit Alexa 488 or 
633, anti-mouse Alexa 488, or 568, and anti-goat Alexa 
546, all at 1/500 and from Invitrogen.

Immunofluorescence labeling
The sections were fixed for 10 min in 4% paraformalde-
hyde, washed and incubated for 1 h in 3% BSA at room 
temperature, then incubated with a pair of first antibod-
ies in 3% BSA for 16 h at 4°C. After three rinses in PBS, 
the secondary antibodies were applied for 1  h at room 
temperature. After three more rinses, the sections were 
mounted in GelMount (MM, France) containing bisben-
zimide trichlorohydride (Hoechst 33342, 1 µg/ml).

Imaging
Fluorescence labeled sections were observed on a Zeiss 
LSM 510 META. Tumors were initially located by bis-
benzamide fluorescence using a xenon lamp and full field 
illumination. Tile scans were made with a ×10 EC Plan-
Neofluor objective over areas that included a 200  µm 
wide strip perpendicular to the tumor rim (e.g., 1 ×  6 
or 3 × 5 frames). Each frame was 512 × 512 pixels and 
intensity was coded at 8 bits. Each tile scan was opened in 
ImageJ and, if necessary, the image was rotated, so that a 

border, well-defined by bisbenzamide, was approximately 
vertical, the tumor being to the right. A horizontal strip 
200 µm wide and 4–5 mm long covering intra- and extra-
tumoral tissue was selected. On the tile scan image of the 
second antibody, the same strip was selected in ImageJ 
by reference to the coordinates. The “Plot Profile” func-
tion was applied and the listed values pasted in GraphPad 
Prism. For each strip, the edge of the tumor was identi-
fied on the graph of the bisbenzamide labeling and the 
x-scale shifted so that the tumor edge was defined as 
x =  0. Intensity values over 1  mm or more outside the 
tumor were selected, pasted in a new project, and aver-
aged. These baseline values were then used to normalize 
the complete profiles. The abscissae of all the profiles for 
each antibody were then aligned, and the profiles aver-
aged. Ratios were calculated in Excel (Additional files 1, 
2).

Statistics
Significance was calculated with Student’s t test. No out-
liers were excluded.

Results
GAPDH and Tom20 are upregulated throughout C6 
gliomas
A section of a rat brain containing a C6 glioma stained 
with hematoxilin-eosin is shown in Figure  1a. Immu-
nolabeled gliomas were visualized by fluorescence from 
bisbenzamide (Hoechst 33342) labeling (Figure  1b, e). 
Labeling of both GAPDH and Tom20 was detected 
outside tumors, and labeling was more intense within 
tumors. This is illustrated qualitatively in a section of a 
small tumor shown in Figure  1b–d with brightness and 
contrast enhanced. At higher magnification, GAPDH 
appeared to be localized near the peripheries of cells, 
while Tom20 was concentrated in small objects that 
could be mitochondria (Additional file 3). To determine 
profiles of mean upregulation across the tumor rim in 
several brain sections, tile scans were made and radial 
strips selected (Figure  1e). In unenhanced images, fluo-
rescence was often barely perceptible to the eye, but 
upregulation within the tumor was apparent on intensity 
profiles (Figure 1f, g).

The averages of 16 pairs of profiles are shown in  
Figure 2a where it is seen that labeling of both GAPDH and  
Tom20 increased rapidly over the first 0.2  mm into the 
tumors. The mean intensity relative to outside the tumor 
over the range 1.5–2.0 mm into the tumor was calculated 
for each of the 16 profiles. Over this distance, the mean 
upregulation of GAPDH was 1.57, SD =  0.32, N =  16, 
and of Tom20, 1.50  ±  0.44. The upregulation of both 
GAPDH and Tom20 was significant with p < 0.0001 and 
p  =  0.0004 respectively. Mean upregulation of Tom20 
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from 0.2 to 2 mm was generally slightly greater than that 
of GAPDH. To examine this, the ratios of the upregu-
lation Tom20/GAPDH were calculated for each pair 
of profiles (Additional file 1), and the mean and SEM 

plotted (Figure 2b). The greatest difference was over the 
range ≈  0.4–0.8  mm (dashed lines in Figure  2b) where 
the mean ratio was 1.159, SEM =  0.001, N =  16 pairs 
of profiles, which is significantly greater than 1 with 
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Figure 1  Upregulation of GAPDH and Tom20 in C6 gliomas. a A section of rat brain stained with hematoxilin and eosin to show a glioma produced 
by implantation of C6 cells in the right caudate nucleus. In this case, cells also grew in the region of the syringe needle track through the cortex. 
(b–d). A small glioma labeled by bisbenzamide (b) and with antibodies against Tom20 (c) and GAPDH (d). The brightness and contrast have been 
increased. e Illustration of a strip perpendicular to the rim of a glioma (labeled with bisbenzamide) and along which intensity profiles were meas-
ured. f, g Tom20 and GAPDH fluorescence along such a strip (barely visible without enhancement). The graphs show the raw intensity values given 
by ImageJ.
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p < 0.0001. Even deeper into the tumor (2.0–2.5 mm) the 
mean increase in Tom20 labeling was statistically greater 
that of GAPDH, the mean ratio over 2.0–2.5 mm being 
1.084 (SEM. 0.001, N =  11 profiles, p  <  0.0001). These 
results suggest that in this sample of gliomas mitochon-
drial presence was, on average, upregulated slightly more 
than the glycolytic pathway up to at least 2.5  mm from 
the rim, with a peak in the ratio near the rim. There 
was, however, considerable variation from one profile to 
another (Figure 2c).

V‑ATPase upregulation
Upregulated glycolysis and mitochondrial activity sug-
gest cell proliferation, for which acidic intracellular vac-
uoles are required. As expected, labeling of V-ATPase 
was upregulated within the gliomas (Figure  3a). When 
the intensity relative to outside over the distance 0.5–
2.0  mm into the glioma was calculated for each profile, 

the mean value for the nine profiles was 1.61, SD = 0.34, 
p  <  0.0001. GAPDH was labelled on the same sections 
and the ratio of V-ATPase upregulation to GAPDH 
upregulation for each pair of profiles was calculated and 
averaged (Additional File 2). V-ATPase was upregulated 
less than GAPDH, the mean ratio over 0.5–2.0 mm being 
0.764, SD =  0.016, p  <  0.0001 (Figure  2b). The sections 
were from gliomas different from those of Figure  2; the 
upregulation of GAPDH was greater and was not com-
pared directly with upregulation of Tom20 (Figure 3c).

Discussion
Antibody labeling of GAPDH, Tom20 and V-ATPase was, 
on average, markedly increased relative to labeling out-
side the C6 gliomas, an increased level extending from 
the tumor rim to at least 2.5  mm into the tumor. This 
pattern is very different from that shown previously for 
NHE1, which is upregulated in a peak at the rim, and for 
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the carbonic anhydrase, CAIX, which is not upregulated 
in this zone [19]. These radical differences appear to rule 
out the possibility that the observed profiles of antibody 
labeling are the result of some artifactual tumor-specific 
increase in the efficacy of antibody binding, or a reduc-
tion in the extracellular space fraction, rather than a true 
increase in protein expression.

There was considerable variation in the measured 
intensity of the labeling (always expressed relative to the 
intensity outside the glioma) from one profile to another 
and one glioma to another. For example, when the mean 
value for each profile over the distance 0.5–1 mm was cal-
culated for the series of sections for which both GAPDH 
and V-ATPase were labeled, the coefficients of varia-
tion (SD/mean) for the 9 pairs of profiles were 0.229 for 
V-ATPase and 0.251 for GAPDH. A possible artifactual 
contributor to this variance is tissue distortion caused by 
stretching or compression of parts of sections. When the 
corresponding ratio V-ATPase/GAPDH was calculated, 
its coefficient of variation was much less, being 0.103. i.e., 
the ratio of expression of V-ATPase relative to expres-
sion of GAPDH is quite tightly controlled. Inspection of 
Figure 2b, c suggests that the same is true of Tom20 and 
GAPDH. These results strongly suggest that the different 
components of cell activity are well-coordinated in C6 
gliomas. An unknown factor is how tightly the expression 
of GAPDH, Tom20 and V-ATPase are regulated in nor-
mal brain.

Upregulation of Tom20
The production of lactate by tumors has sometimes 
obscured the fact that oxygen consumption is, in most 
tumors, greater than in normal tissue [34, 63]. In rat glio-
mas, the oxygen saturation in much (or all) of the volume 
is as high as in normal brain tissue [64], although zones 
of hypoxic necrosis can develop [65]. In keeping with this 
expected availability of oxygen in C6 gliomas, expres-
sion of CAIX, which is upregulated by Hypoxia Inducible 
Factor 1 alpha (HIF1alpha; [66]) has been found not to 
be upregulated over at least 2 mm in from the rim [19]. 
It is therefore unsurprising that Tom20, a component of 
mitochondria, should be present, as we find.

Comparison of Tom20 and GAPDH
The metabolic pathways associated with glycolysis and 
with mitochondria can be programmed in either of two 
directions, to produce a maximum of ATP, or to produce 
precursor molecules for cell growth and proliferation, 
the latter function becoming predominant in proliferat-
ing cells [28, 67]. That both Tom20 and GAPDH were 
upregulated with a ratio close to 1 is reminiscent of the 
finding by Gullino et al. [34], in various types of tumor, 
that “glucose consumption and lactate elimination were 

in direct proportion to the oxygen utilized and a lack of 
oxygen blocked both of them”.

Although the upregulation of Tom20 compared to 
upregulation of GAPDH was greatest near the rim, 
Tom20 upregulation was still significantly higher than 
GAPDH deeper (>1  mm) into the tumor, although 
only by <10% (Figure  2b). Since C6 gliomas release lac-
tate, there is presumably less pyruvate available to feed 
into the TCA cycle. Instead, part of the upregulation of 
Tom20 may be necessary to metabolize glutamine, sup-
plied by the blood and a major entrant of the TCA cycle 
in cancer cells [27, 68–70].

Closer to the rim (<0.8  mm), on sections in which 
Tom20 was compared directly with GAPDH, GAPDH 
expression was somewhat reduced so that there was a 
marked peak in the ratio Tom20/GAPDH. The periph-
eral location of MCT1 in cervix squamous carcinoma 
has led to the hypothesis that there can be net produc-
tion of lactate within a tumor and that some of this is 
taken up close to the rim as a fuel for oxidative phos-
phorylation [35, 36]. A peak in MCT1 near the rim has 
also been reported in C6 gliomas [19]. Transfer of lac-
tate, or other metabolic fuel, from one cell to another, 
is well known as a physiological phenomenon in mus-
cle and nervous tissue [71–74]. The observed excess 
of Tom20 over GAPDH near the rim seems to fit well 
with the hypothesis of lactate transfer in C6 gliomas 
(Figure 4).

V‑ATPase
The presence of V-ATPase has been reported in several 
types of tumor where it subserves the handling of mol-
ecules for cell growth in intracellular vacuoles, and also 
contributes to the export of protons across the plasma 
membrane [40, 43, 44, 51, 52]. For the C6 gliomas of 
Figure  3a, the mean upregulation of V-ATPase expres-
sion was about 1.7 compared to normal brain, and it was 
tightly regulated against GAPDH (Figure  3b). In these 
sections, expression of GAPDH was upregulated more 
than V-ATPase. A possible explanation is that upregu-
lation of glycolysis in C6 gliomas serves two functions: 
to support an increase in production of biomass (which 
requires V-ATPase) and also to produce pyruvate for 
ATP production (which does not require V-ATPase).

Conclusions
The upregulation of expression of V-ATPase and markers 
of glycolysis and mitochondria illustrate the co-ordinated 
programming of these engines of anabolism. This coor-
dination extends to some stochastic spatial organization 
supporting the prediction that some of the fuel for oxi-
dative phosphorylation in the tumor rim is supplied by 
glycolysis deeper into the tumor. The relatively simple 
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technique we have used has obvious extensions to ques-
tions including transmembrane transport of glutamine 
[68, 69] and HCO3

− [75].
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