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Abstract 

Background:  Increased expression of the epidermal growth factor receptor (EGFR) is observed in more than 90% 
of all head and neck squamous cell carcinomas (HNSCC). Therefore, EGFR has emerged as a promising therapeutic 
target. Nevertheless, drug resistance remains a major challenge and an important potential mechanism of drug 
resistance involves the hypoxic tumor microenvironment. Therefore, we investigated the cytotoxic effect of the EGFR-
targeting agents cetuximab and erlotinib under normoxia versus hypoxia.

Findings:  Three cetuximab-sensitive HNSCC cell lines (SC263, LICR-HN2 and LICR-HN5) were treated with either 
cetuximab or erlotinib. Cells were incubated under normal or reduced oxygen conditions (<0.1% O2) for 24 or 72 h 
immediately after drug addition. Cell survival was assessed with the sulforhodamine B assay. Cetuximab and erlotinib 
established a dose-dependent growth inhibition under both normal and prolonged reduced oxygen conditions in 
all three HNSCC cell lines. However, a significantly increased sensitivity to cetuximab was observed in SC263 cells 
exposed to hypoxia for 72 h (p = 0.05), with IC50 values of 2.38 ± 0.59 nM, 0.64 ± 0.38 nM, and 0.10 ± 0.05 nM under 
normoxia, hypoxia for 24 h and hypoxia for 72 h, respectively. LICR-HN5 cells showed an increased sensitivity towards 
erlotinib when cells were incubated under hypoxia for 24 h (p = 0.05).

Conclusions:  Our results suggest that both EGFR-inhibitors cetuximab and erlotinib maintain their growth inhibitory 
effect under hypoxia. These results suggest that resistance to anti-EGFR therapy in HNSCC is probably not the result of 
hypoxic regions within the tumor and other mechanisms are involved.
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Background
Personalized medicine using targeted therapies is a prom-
ising alternative to the current conventional treatment 
strategies (surgery, chemotherapy and radiation), which 
are only effective in 50% of head and neck squamous cell 
carcinoma (HNSCC) patients [1]. Increased expression of 
the epidermal growth factor receptor (EGFR) is frequently 

observed in most HNSCC and leads to a number of cellu-
lar processes involved in proliferation, differentiation, anti-
apoptotic signaling, angiogenesis and metastasis, thereby 
driving the malignant behavior of tumor cells [2–4]. Con-
sequently, therapies targeting EGFR are among the most 
promising molecular therapeutics for HNSCC. However, 
drug resistance limits the clinical efficacy of these EGFR 
targeting agents and no predictive biomarker has entered 
the clinic yet. Although the response rate to the anti-EGFR 
directed monoclonal antibody cetuximab as a monother-
apy is as low as 10–13%, it does provide a clinical ben-
efit when used in conjunction with radiation alone or in 
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combination with chemotherapy [5–7]. The lack of clini-
cal responses to EGFR-directed therapies may be caused 
by multiple intrinsic and extrinsic/acquired resistance 
mechanisms that can compensate for reduced EGFR sign-
aling and/or modulate EGFR-dependent signaling [8]. In 
HNSCC, however, no consistent genetic alteration appears 
to confer resistance or sensitivity to these EGFR targeting 
agents [8]. One of the important potential mechanisms of 
drug resistance is attributable to the tumor microenviron-
ment and many components of this microenvironment are 
potential targets for therapeutic interventions.

Tumor hypoxia, or low oxygen concentration, is a result 
of disordered vasculature found in almost all solid tumors, 
including HNSCC, and is evoked by rapid rate of tumor 
growth, poor tumor perfusion or transiently disrupted 
tumor blood flow. Cells exposed to prolonged hypoxia 
accumulate changes in their growth properties and DNA, 
leading to chemo- and radioresistance and enhanced meta-
static potential [9, 10]. In HNSCC patients, tumor hypoxia 
has been identified as a negative prognostic factor [11, 12].

Tumor cells will adapt quickly to the hypoxic stress 
by regulating the expression of various genes such as 
hypoxia-inducible factors (HIFs) and vascular endothelial 
growth factor (VEGF). The HIFs are transcription fac-
tors that play an essential role in the cellular response to 
hypoxic stress, as they are able to activate the EGFR sign-
aling pathway. Several studies have shown that hypoxic 
regions within the tumor have an increased expression of 
EGFR compared to normoxic regions [13–15]. Hypoxia 
activated EGFR signaling in turn stimulates HIF signal-
ing to improve cellular survival, induces epithelial to 
mesenchymal transition (EMT) and activates AKT, a 
downstream EGFR signaling molecule [16–19]. All these 
factors maintain or contribute to the malignant behavior 
of the tumor. An in-depth summary describing the cross-
talk between EGFR and hypoxia is beyond the scope of 
this introduction. For a more detailed description, we 
recommend the extensive review by Wouters et al. [20].

Given the link between hypoxia and EGFR signaling, 
we hypothesized that hypoxia and its subsequent signal-
ing might be responsible for anti-EGFR drug resistance. 
Therefore, the present study investigates cell survival 
after treatment with the EGFR-targeting monoclonal 
antibody cetuximab and the EGFR tyrosine kinase inhibi-
tor erlotinib under normoxic versus hypoxic conditions, 
in three cetuximab-sensitive HNSCC cell lines.

Methods
Cell culture
Three cetuximab-sensitive, EGFRvIII negative HNSCC cell 
lines SC263, LICR-HN2 and LICR-HN5 were included in 
this study. All cell lines were grown as monolayers in Dul-
becco’s Modified Eagle Medium (DMEM), supplemented 

with 10% fetal calf serum, 2 mM glutamine and 1% peni-
cillin/streptomycin. All media and supplements were 
obtained from Invitrogen (Merelbeke, Belgium). Cultures 
were maintained in exponential growth in a humidified 
5% CO2/95% air atmosphere at 37°C. Cells were tested for 
mycoplasma infection through regular testing (MycoAlert™, 
Plus Mycoplasma detection kit, Lonza, Verviers, Belgium).

Oxygen conditions
Hypoxic conditions (0% O2, 5% CO2, 95% N2) were 
achieved in a Bactron IV anaerobic chamber (Shel Lab, 
Cornelius, OR, USA) and we used the hypoxia model previ-
ously optimized and characterized [21, 22]. Measurements 
with ToxiRae II air oxymeter (Rae BeNeLux, Hoogstraten, 
Belgium) confirmed that the oxygen tension in the gas 
phase was stable at <0.1% O2. Hypoxic incubation was initi-
ated after cells had been cultured under normoxic condi-
tions overnight, allowing attachment to culture dishes.

Pharmaceuticals
Cetuximab (Merck, Darmstadt, Germany) was diluted 
in sterile PBS and erlotinib (Selleck Chemicals, Houston, 
USA) was diluted in DMSO.

Growth inhibition experiments
Cytotoxicity studies were performed in 48 well plates and 
optimal seeding densities for each cell line were determined 
to ensure exponential growth during the assay. After an 
overnight recovery period, cells were treated either with 
0–10 nM cetuximab for 168 h or with 0–20 μM erlotinib 
for 72  h. Cells were incubated under normal or reduced 
oxygen conditions for 24 or 72 h immediately after addition 
of the drug. After incubation, cell survival was evaluated 
by the sulphorhodamine B assay, as previously described 
[23]. Optical density (OD) was determined at 540 nM with 
the iMark microplate reader (Bio-Rad, Temse, Belgium). 
The percentage of cell survival was calculated for each 
concentration by the following formula: (ODtreated/ODun-

treated) × 100. The IC50 value, representing the drug concen-
tration reducing cell growth to 50%, was calculated using 
WinNonlin software with pharmacodynamic model 107. 
All experiments were performed in triplicate.

Statistical analysis
All experiments were performed at least in triplicate. 
Results are presented as mean ± standard deviation. Pos-
sible significant differences (p  ≤  0.05) were evaluated 
with Mann–Whitney U test using SPSS v20.0 software 
(Chicago, IL, USA).

Results
As the presence of tumor hypoxia may confer resistance 
to EGFR inhibitors, we performed growth inhibition 
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experiments under normoxic and hypoxic conditions for 
the tyrosine kinase inhibitor erlotinib and the monoclo-
nal antibody cetuximab on three human, cetuximab sen-
sitive HNSCC cell lines.

Cytotoxicity of the tyrosine kinase inhibitor erlotinib, 
under normoxic and hypoxic conditions
The cytotoxicity profiles of the HNSCC cell lines under 
normoxic and hypoxic conditions (24 and 72 h) for erlo-
tinib (0–20  µM) are shown in Figure  1. IC50 values of 
these three oxygen conditions were calculated for each 
cell line (Table 1).

Erlotinib established a dose-dependent growth inhibi-
tion under both normal and reduced oxygen conditions in 
all three HNSCC cell lines. Furthermore, LICR-HN5 cells 
were more sensitive to erlotinib when exposed to hypoxia 
for 24  h compared with normoxic LICR-HN5 cells 
(p = 0.05). However, this increased sensitivity to erlotinib 

was not observed when exposed to hypoxia for 72 h. As 
such, our results suggest that resistance to erlotinib could 
not be elicited by hypoxic incubation for 24 or 72 h.

Cytotoxicity of the monoclonal antibody cetuximab, 
under normoxic and hypoxic conditions
The cytotoxicity profiles of the HNSCC cell lines under 
normoxic and hypoxic conditions (24 and 72  h) for 
cetuximab (0–10 nM) are shown in Figure 2. IC50 values 
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Figure 1  Cytotoxic effect of erlotinib. Dose–response curves of 
LICR-HN2 (a), LICR-HN5 (b) and SC263 (c) cells after 72 h of erlotinib 
treatment under normoxia and hypoxia (24 and 72 h).

Table 1  IC50 values (μM) of erlotinib treatment in three 
HNSCC cell lines (mean ± standard deviation)

Cell line Normoxia 24 h hypoxia 72 h hypoxia

LICR-HN2 2.26 ± 0.83 1.06 ± 1.42 3.34 ± 1.25

LICR-HN5 1.16 ± 0.35 0.60 ± 0.23 1.49 ± 0.60

SC263 1.05 ± 0.12 0.95 ± 0.16 0.81 ± 0.12
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Figure 2  Cytotoxic effect of cetuximab. Dose–response curves of 
LICR-HN2 (a), LICR-HN5 (b) and SC263 (c) cells after 168 h of cetuxi-
mab treatment under normoxia and hypoxia (24 and 72 h).
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of these three oxygen conditions were calculated for each 
cell line (Table 2).

The effect of cetuximab on cell survival was not affected 
by the presence or absence of oxygen in LICR-HN2 and 
LICR-HN5 cells. However, SC263 cells were more sen-
sitive to higher concentrations of cetuximab when cells 
were incubated under reduced oxygen tension for 24 
or 72  h, resulting in significantly decreased IC50 values 
(p = 0.05 in both cases). Overall, our results showed that 
no therapeutic resistance towards cetuximab could be 
evoked by prolonged hypoxia in these HNSCC cells.

Discussion
As the tumor and its surrounding microenvironment can 
affect each other and the (extremely) low prevalence of 
EGFR and K-Ras mutations in HNSCC would likely pre-
clude a major role for these mutations as predictive bio-
marker [24, 25], drug resistance might occur from the 
tumor microenvironment. Furthermore, this microen-
vironment is often hypoxic. Therefore, we hypothesized 
that hypoxia might induce anti-EGFR therapeutic resist-
ance. To test this hypothesis, we evaluated the cytotoxic-
ity of the EGFR-blocking monoclonal antibody cetuximab 
and the small molecule EGFR tyrosine kinase inhibitor 
erlotinib in three HNSCC cell lines under hypoxic condi-
tions for 24 and 72 h. We previously validated induction 
of HIF-1α and its downstream targets as well as induc-
tion of HIF activity in our experimental model [21].

In HNSCC patients, high levels of hypoxia-associated 
factors are associated with relapse following induction 
therapy that included cetuximab, and co-localization of 
EGFR and hypoxia markers are associated with poor out-
come [12, 26]. With regard to resistance towards EGFR 
therapy, HIF-1α, the regulatory subunit of the HIF-1 
transcription factor, is an important protein, as increased 
expression of HIF-1α has been reported to confer resist-
ance to cetuximab in human vulvar squamous carcinoma 
cells and downregulation of HIF-1 alpha is required for 
cetuximab-induced anti-proliferative effects [27, 28].

In contrast, however, our study demonstrated that 
prolonged hypoxia (24 and 72  h) did not induce resist-
ance towards cetuximab and erlotinib therapy in three 
HNSCC cell lines. Therefore, no predictive biomark-
ers with regard to drug resistance and hypoxia could be 

identified. In line with our observations, only few papers 
were able to illustrate hypoxia-induced treatment resist-
ance [26, 29] and most studies on EGFR-targeting agents 
supported a markedly increased antitumor potency of 
both monoclonal antibodies and tyrosine kinase inhibi-
tors under hypoxic conditions [20, 30, 31].

Concerning the EGFR-targeted monoclonal antibod-
ies, it has been speculated that hypoxia enhances the 
sensitivity to the cytotoxic effect of these drugs. For 
example, cetuximab was more cytotoxic against hypoxic 
than well-oxygenated A431 lung cancer cells grown 
in vitro and it reduced the overexpression of hypoxia 
markers like HIF-1α, CA9 and VEGF [32]. In addition, 
it was observed that cetuximab could clearly downreg-
ulate HIF-1α levels in cancer cells that were sensitive 
to EGFR inhibition and it was shown that HIF-1α was 
required, although it might not be sufficient, to medi-
ate the response of cancer cells to cetuximab [27, 28, 
33]. Furthermore, radiosensitization of HNSCC cell 
lines is shown to be partly attributable to inhibition of 
radiation-induced upregulation of HIF-1α [34]. Moreo-
ver, together with the demonstrated antiproliferative 
and proapoptotic effects, the antiangiogenic activity of 
cetuximab is now believed to contribute to its overall 
antitumor activity in vivo. For example, immunohis-
tochemical analysis of HNSCC tumor xenografts after 
systemic administration of cetuximab demonstrated 
inhibition of the expression of tumor angiogenesis 
markers, including VEGF and Factor VIII [35].

Similarly, considering the effect of EGFR-targeting 
tyrosine kinase inhibitors under reduced oxygen con-
ditions, several studies indicated that treatment with 
gefitinib or erlotinib was associated with a dramatic 
reduction in the proportion of viable hypoxic tumor 
cells [27, 28, 31, 36–40]. These effects are, at least in part, 
attributable to decreased VEGF production and secre-
tion, decreased production of HIF-1α and increased 
vascular normalization [27, 28, 31, 36–40]. For exam-
ple, Pore et al. [38] demonstrated that gefitinib and erlo-
tinib decreased VEGF mRNA expression and decreased 
the secretion of VEGF protein in response to hypoxia 
in SQ20B HNSCC cells. Likewise, treatment of human 
HNSCC xenografts with gefitinib significantly reduced 
vessel formation and inhibited the early angiogenic pro-
cess by targeting endothelial cells [41], ultimately result-
ing in vascular normalization, improved blood flow and 
thus improved oxygenation.

Conclusions
Our results suggest that both anti-EGFR therapeutics 
cetuximab and erlotinib maintain their efficacy both 
under 24  h and 72  h of reduced oxygen tension in the 
HNSCC cell lines included in our study. Furthermore, 

Table 2  IC50 values (nM) of cetuximab treatment in three 
HNSCC cell lines (mean ± standard deviation)

Cell line Normoxia 24 h hypoxia 72 h hypoxia

LICR-HN2 0.08 ± 0.03 0.12 ± 0.05 0.08 ± 0.08

LICR-HN5 0.42 ± 0.10 0.37 ± 0.09 1.17 ± 0.47

SC263 2.38 ± 0.59 0.64 ± 0.38 0.10 ± 0.05
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an increased sensitivity to cetuximab was observed in 
SC263 cells exposed to hypoxia for 72 h and LICR-HN5 
cells exhibited an increased sensitivity to erlotinib when 
exposed to hypoxia for 24 h. Our results, therefore, sug-
gest that resistance to anti-EGFR therapy in HNSCC is 
most likely not the result of hypoxic regions within the 
tumor and, hence, other mechanisms are involved. One 
important limitation of our in vitro study is the lack of 
the real microenvironment that surrounds tumors in 
vivo. As our research was based on cell lines in vitro, no 
other factors of the tumor microenvironment were taken 
into account. Therefore, further studies using tumor ani-
mal models would certainly be warranted.
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