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The CCR5Δ32 (rs333) polymorphism is 
not a predisposing factor for severe pandemic 
influenza in the Brazilian admixed population
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Abstract 

Background: Recent studies have tried to identify host genetic variants that could explain severe cases and deaths 
in infection with Influenza A(H1N1)pdm09, especially among children and young adults. CCR5 is a chemokine recep‑
tor expressed on T cells, macrophages and dendritic cells, which is an important mediator of leukocyte chemotaxis 
during the immune response. A deletion mutation (Δ32) in this gene interferes with the response of immune cells, 
impairing viral clearance. We evaluated the CCR5Δ32 polymorphism (rs333) in individuals of the Brazilian admixed 
population with a diagnosis of Influenza A(H1N1)pdm09 infection.

Methods: A total of 330 subjects with a diagnosis of Influenza A(H1N1)pdm09, evaluated at health services in the 
northern and northeastern regions of Brazil between June 2009 and August 2010, were genotyped for the Δ32 dele‑
tion (rs333). The cases were classified according to the progression of infection into a group of hospitalized patients 
(n = 156) and a group of non‑hospitalized patients (n = 174).

Results: No significant differences in the allele or genotype frequencies of the CCR5Δ32 polymorphism were 
observed between non‑hospitalized and hospitalized patients (p = 0.289 and p = 0.431, respectively).

Conclusion: The Δ32 deletion in the CCR5 gene is not associated with an unfavorable outcome in patients infected 
with Influenza A(H1N1)pdm09 in the Brazilian admixed population.
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Background
On April 21, 2009 [1], the Centers for Disease Control 
and Prevention (CDC) announced two flu cases in chil-
dren from California, USA, caused by a new influenza 
strain originated by the quadruple reassortment between 
other already circulating influenza viruses [2]. The new 
viral subtype spread around the world, a fact that cul-
minated in the announcement by the World Health 
Organization (WHO) on June 11, 2009, of the first flu 
pandemic in the 21st century [3]. The lethality of the new 
viral strain did not add to the flu-related death statistics; 

however, the large number of severe cases and deaths 
among children and young adults called the attention of 
the scientific community [4].

Recent studies have tried to identify host genetic vari-
ants that could explain severe cases of the disease [5]. On 
the basis of the cycle of viral replication of the pandemic 
strain in human cells, genetic variants that could influ-
ence viral clearance [6] have been identified. One genetic 
variant is a 32-bp deletion in the CCR5 gene (Δ32) [7].

CCR5 is a chemokine receptor expressed on T cells, 
macrophages and dendritic cells, which is an important 
mediator of leukocyte chemotaxis during the response 
to chemokines. The interaction of this receptor with its 
ligands results in the homing of different immune cells to 
the sites of viral infection on the mucosal surface. Stud-
ies have shown that the Δ32 deletion in the CCR5 gene 
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interferes with the response of immune cells through 
CCL3, CCL4 and CCL5, impairing viral clearance [8–10]. 
In a population of 20 Canadian patients who developed 
severe forms of infection with the pandemic flu virus, the 
mutation at position 32 of the CCR5 gene (rs333) was 
detected in five patients and was associated with an unfa-
vorable clinical evolution [7]. However, the same muta-
tion evaluated in 29 Italian patients also infected with the 
pandemic strain was not associated with poor clinical 
outcome [11]. In the present study, the CCR5Δ32 poly-
morphism (rs333) was investigated in individuals from a 
Brazilian admixed population with a diagnosis of Influ-
enza A(H1N1)pdm09 infection.

Methods
Population
Between June 2009 and August 2010, the Virology Sec-
tion of the Evandro Chagas Institute (Seção de Virologia 
do Instituo Evandro Chagas—SEVIR/IEC) received 5,427 
nasal swab or nasopharyngeal aspirate samples from 
subjects with a clinical suspicion of flu-like illness who 
sought health services in the states of the northern and 
northeastern regions of Brazil. Of these, 1,524 samples 
were positive for the pandemic strain and 330 samples 
with a diagnosis of Influenza A(H1N1)pdm09 were ran-
domly included in the study. All patients enrolled in the 
study provided their written informed consent. Under-
age participants (younger than 18 years n = 115) had the 
informed consents signed by parents to participate in the 
study. The study was approved by the Ethics Committee 
of the Center of Tropical Medicine, Federal University of 
Pará (Núcleo de Medicina Tropical, Universidade Federal 
do Pará).

Laboratory diagnosis
Diagnostic confirmation was performed at the Labora-
tory of Respiratory Viruses, SEVIR/IEC, Ananindeua, 
Pará, using the SuperScript III™ One-Step qRT-PCR Sys-
tem with Platinum Taq® (Invitrogen Life Technologies, 
Carlsbad, CA, USA) according to the protocol recom-
mended by the CDC [12].

Genotyping of CCR5Δ32 (rs333)
Genomic DNA was extracted from the leukocyte aggre-
gate found in the nasal aspirate or nasopharyngeal swab 
using the QIAamp DNA Mini Kit (Qiagen, Valencia, CA, 
USA) according to manufacturer instructions. All DNA 
samples were genotyped by PCR. The primers (forward: 
CTCCCAGGAATCATCTTTACCA and reverse: TTTT-
TAGGATTCCCGAGTAGCA) were designed using the 
Primer3 software (http://www.genome.wi.mit.edu/cgi-
bin/primer/primer3) and tested with the AutoDimer 
software.

PCR was carried out in a final volume of 12.5 µL con-
taining PCR buffer 1 with 3  mM of MgCl2, 125  mM of 
each dNTP, 2 U Platinum AmpliTaq DNA polymerase 
(Invitrogen Life Technologies, Carlsbad, CA, USA) and 
10–20  ng genomic DNA. The PCR conditions were: 
11 min at 95°C; 10 cycles of 1 min at 94°C, 1 min at 60°C 
and 2 min at 70°C; 17 cycles of 1 min at 90°C, 1 min at 
60°C and 2 min at 70°C, and a final extension of 60 min 
at 60°C. For capillary electrophoresis, 1  mL of the PCR 
product was added to 8.5 mL Hi-Di formamide (Applied 
Biosystems, Foster City, CA, USA) and 0.5  mL GeneS-
can 500 LIZ Size Standard (Applied Biosystems, Foster 
City, CA, USA). The amplicons were separated in an ABI 
Prism 3130 Genetic Analyzer (Applied Biosystems, Fos-
ter City, CA, USA) and analyzed using the v3.2 GeneMa-
pper ID software (Applied Biosystems, Foster City, CA, 
USA).

Population substructure
The proportions of African, European and Amerindian 
genetic ancestry of the infected patients were estimated 
using a panel of 48 ancestry-informative markers as 
described previously [13].

Statistical analysis
Allele and genotype frequencies were estimated by direct 
counting. Deviation from Hardy–Weinberg equilib-
rium was verified by Chi squared analysis. Differences 
in quantitative and qualitative characteristics between 
the groups of hospitalized and non-hospitalized patients 
were evaluated using the Student t test, Chi squared test 
and Fisher’s exact test. Differences in the proportions of 
genetic ancestry between groups were determined using 
the Wilcoxon–Mann–Whitney test. Fisher’s exact test 
was used to analyze differences in the allele and genotype 
frequencies of the deletion studied between the groups of 
patients. Logistic regression was used to assess the effect 
of the CCR5 polymorphism on the severity of Influenza 
A(H1N1)pdm09 infection. European and African genetic 
ancestry and comorbidities (dichotomous variable, pres-
ence or not of comorbidity) were included in the model 
as confounders, as they presented differences between 
patients groups. Statistical analysis was performed using 
the SPSS 18.0 software, adopting a level of significance of 
p < 0.05.

Results
The 330 patients included in the study exhibited the clas-
sical clinical symptoms of the disease and were divided 
according to the progression of infection into two 
groups: patients that presented severe acute respiratory 
syndrome (SARS) and were hospitalized (n =  156) fol-
lowing Brazilian Ministry of Health protocol [14] and 
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patients with mild symptoms non-hospitalized (n = 174) 
(Table  1). There was a predominance of women among 
the patients studied (61.5%) and the mean patient age 

was 24.7  years (1–80  years). Forty-seven of the women 
were pregnant and 28 were hospitalized. Radiologic alter-
ations were found in 51.9% of hospitalized patients. Most 
hospitalized patients had no comorbidities (59%). How-
ever, patients with comorbidities (metabolic disorders, 
immunosuppression and obesity) were significantly more 
frequent in the group of hospitalized patients. Deaths 
occurred in 55.7% of hospitalized patients. The popula-
tion studied exhibited a mean European genetic contri-
bution of 57.4%, a mean Native American contribution 
of 26.4% and a mean African contribution of 16.2% 
(Table 1) in agreement with previously data from Brazil-
ian populations [13, 15]. In non-hospitalized patients the 
mean European contribution was 60% ranging from 4.6 
to 91.9%, the mean Native American contribution was 
25% ranging from 3.2 to 93.2%, and the mean African 
contribution was 15% ranging 2.2–61%. In hospitalized 
patients, genetic contribution was European 54.4% rang-
ing from 5.9 to 93%, Native American 28% ranging from 
3.5 to 90.6%, and African 17,6% ranging 2.4–67.6% (Addi-
tional files 1, 2). European and African genetic ancestry 
showed statistical differences between groups (p = 0.006 
and p = 0.010, respectively).

There were no significant differences in the allele or 
genotype frequencies of the CCR5Δ32 polymorphism 
between non-hospitalized and hospitalized patients 
(p =  0.289 and 0.431, respectively) (Table  2). A logistic 
regression analysis was performed to assess the effect of 
CCR5Δ32 polymorphism on infection severity control-
ling for European and African ancestry and the presence 
of comorbidities to avoid confounding effects. No associ-
ation between patients carrying the Δ32 allele and sever-
ity was found (Table 3).

Discussion
Since the demonstration of the protective role of a 32-bp 
deletion in the CCR5 gene in two individuals exposed to, 
but not infected with HIV [16], studies on the protective 
or regulatory role of this deletion have multiplied [17]. 

Table 1 Epidemiological and clinical characteristics of hos-
pitalized and  non-hospitalized patients infected with   
Influenza A(H1N1)pdm09

Age and genetic ancestry were reported as the mean ± SD. All other variables 
are reported as number (%).

Characteristics All patients Non-hospital-
ized

Hospitalized p value

N 330 174 156

Female sex 203 (61.5) 102 (58.6) 101 (64.7) 0.254

Age (years) 24.7 ± 15.3 23.8 ± 14.2 25.8 ± 16.5 0.270

Pregnant 47 (31.8) 19 (26.0) 28 (37.3) 0.140

Smoking 18 (5.5) 6 (3.4) 12 (7.7) 0.090

Signs and symptoms

 Fever 320 (97.0) 167 (96.0) 153 (98.1) 0.267

 Cough 311 (94.2) 161 (92.5) 150 (96.2) 0.158

 Shortness of 
breath

245 (74.2) 101 (58.0) 144 (92.3) <0.001

 Muscle aches 212 (64.2) 117 (67.2) 95 (60.9) 0.230

 Rhinorrhea 197 (59.7) 113 (64.9) 84 (53.8) 0.040

 Sore throat 192 (58.2) 107 (61.5) 85 (54.5) 0.198

 Chills 138 (41.8) 72 (41.4) 66 (42.3) 0.864

Joint pain 118 (35.8) 64 (36.8) 54 (34.6) 0.682

 Headache 63 (19.1) 40 (23) 23 (14.7) 0.057

 Diarrhea 55 (16.7) 24 (13.8) 31 (19.9) 0.139

 Conjunctivitis 21 (6.4) 15 (8.6) 6 (3.8) 0.076

Abnormal chest 
radiograph

81 (24.5) 0 (0) 81 (51.9) <0.001

Without  
comorbidities

220 (66.7) 128 (73.6) 92 (59.0) 0.005

With comorbidities

 Chronic lung 
disorder

65 (19.6) 29 (16.7) 36 (23.1) 0.144

 Chronic car‑
diovascular 
condition

22 (6.6) 10 (5.7) 12 (7.7) 0.470

 Metabolic 
disorder

12 (3.6) 1 (0.6) 11 (7.1) 0.002

 Immunosup‑
pression

7 (2.1) 0 (0) 7 (4.5) 0.005

 Obesity 8 (2.4) 1 (0.6) 7 (4.5) 0.021

 Hemoglobi‑
nopathy

3 (0.9) 1 (0.6) 2 (1.3) 0.490

 Chronic kidney 
disease

4 (1.2) 1 (0.6) 3 (1.9) 0.260

Death 87 (26.3) 0 (0) 87 (55.7) <0.001

Genetic ancestry

 Native Ameri‑
can

0.264 ± 0.18 0.250 ± 0.19 0.280 ± 19 0.147

 European 0.574 ± 0.20 0.600 ± 0.20 0.544 ± 19 0.006

 African 0.162 ± 0.11 0.150 ± 0.10 0.176 ± 11 0.010

Table 2 Genotype and  allele distribution of  CCR5Δ32 
in  non-hospitalized and  hospitalized patients infected 
with Influenza A(H1N1)pdm09

Non-hospitalized Hospitalized p value

Genotype

 Wt/Wt 160 (92.0) 148 (94.9) 0.431

 Wt/Δ32 13 (7.5) 8 (5.1)

 Δ32/Δ32 1 (0.6) 0 (0)

Allele

 Wt 333 (0.96) 304 (0.97) 0.289

 Δ32 15 (0.04) 8 (0.03)
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The protective role of this polymorphism in HIV infec-
tion was extensively studied and utilized as model for the 
development of new therapeutics for AIDS [18].

However, the presence of the deletion can be a deter-
minant factor of morbidity and mortality in the case 
of other infectious diseases. In a meta-analysis of four 
cohorts evaluating the deletion in patients with West Nile 
fever, genetic deficiency of the CCR5 gene was a strong 
risk factor of symptomatic arbovirus infection [19]. In 
another study comparing 129 patients with a diagnosis 
of tickborne encephalitis virus infection and 79 subjects 
with aseptic meningitis negative for tickborne encepha-
litis and 134 healthy controls, a higher frequency of the 
homozygous Δ32/Δ32 genotype was observed among 
patients with tickborne encephalitis, particularly among 
severe cases of the disease [20].

In the present study, no difference in the Δ32 deletion 
of the CCR5 gene was observed between the groups of 
individuals infected with Influenza A(H1N1)pdm09 in a 
Brazilian admixed population, who presented the classi-
cal clinical symptoms [21]. Thus, no correlation could be 
established between the presence of the mutation and a 
more severe outcome of the disease. The present results 
agree with those reported in a recent study involving an 
Italian population [11], but disagree with the findings 
obtained for a Canadian population [7].

The Brazilian population was formed by extensive 
admixture of Native American, European and African 
populations, nevertheless European genetic ancestry is 
predominantly in Brazil [13, 15]. In the population stud-
ied the mean European contribution was around 57% and 
the CCR5Δ32 allele frequency was 3.6%, similar to pre-
viously described for Brazilian populations [22]. Despite 
ethnic differences with the populations previously ana-
lyzed, in the present study thirteen heterozygous and one 
homozygous for the Δ32 deletion were found in patients 
with mild symptoms and eight heterozygous for this dele-
tion were found in hospitalized group showing no evi-
dence of this allele effect on severity.

Previous researches adopted different criteria for severe 
patients [7, 11], which could contribute for conflicting 

results among studies, but despite those differences, we 
emphasize the large size of the sample studied here com-
pared to previously published studies, supporting the 
hypothesis that the Δ32 mutation is not a predisposing 
factor for severe Influenza A(H1N1)pdm09 infection.

Conclusion
Although studies have reported an association between 
mutation Δ32 in the CCR5 gene and a more severe evo-
lution of some infectious diseases, our findings demon-
strate that the same cannot be confirmed for infection 
with Influenza A(H1N1)pdm09 in the Brazilian admixed 
population.
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Table 3 CCR5Δ32 effect on  A(H1N1)pdm09 infection 
severity

Covariates in Regression model: European and African ancestry and 
comorbidities.
a Reference genotype.
b Wt/Wt + Wt/Δ32.

Genotypes B OR CI 95% P value

Wt/Wta

Δ32 carriersb −0.582 0.559 0.22; 1.26 0.219
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