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TECHNICAL NOTE

Optimizing the process of nucleofection 
for professional antigen presenting cells
Christina Susanne Mullins1,2, Tabea Wegner1, Ernst Klar1, Carl‑Friedrich Classen2 and Michael Linnebacher1*

Abstract 

Background:  In times of rapidly increasing numbers of immunological approaches entering the clinics, antigen 
delivery becomes a pivotal process. The genuine way of rendering antigen presenting cells (APC) antigen specific, 
largely influences the outcome of the immune response. Short peptides bear the demerit of HLA restriction, whereas 
the proper way of delivery for long peptide sequences is currently a matter of debate. Electroporation is a reliable 
method for antigen delivery, especially using nucleic acids. The nucleofection process is based on this approach 
with the twist of further ensuring delivery also into the nucleus. Beside the form of antigen, the type of APC used for 
immune response induction may be crucial. Dendritic cells (DC) are by far the most commonly used APC; however B 
cells have entered this field as well and have gained wide acceptance.

Results:  In this study, we compared B cells to DC with regard to nucleofection efficiency and intensity of resulting 
antigen expression. APC were transfected either with plasmid DNA containing the reporter gene green fluorescent 
protein (GFP) or directly with in vitro-transcribed (IVT) GPF mRNA as a surrogate antigen. Out of nearly 100 different 
nucleofection programs tested, the top five for each cell type were identified and validated using cells from cancer 
patients. Flow cytometric analyses of transfected cells determining GFP expression and viability revealed a reverse 
correlation of efficiency and viability. Finally, donor dependant variances were analyzed.

Conclusion:  In summary, nucleofection of both DC and B cells is feasible with plasmid DNA and IVT mRNA. And 
no differences with regard to nucleofectability were observed between the two cell types. Using IVT mRNA omits 
the danger of genomic integration and plasmid DNA constructs permit a more potent and longer lasting antigen 
expression.
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Background
The proper presentation of antigens is a crucial step in 
the orchestration of immune responses. In this context, 
antigen presenting cells (APC) take up antigens, process 
them and present epitopes in the respective major histo-
compatibility complex (MHC) molecules [1]. Generally, 
two cell types are recognized as so called professional 
APC: the more prominent representatives are den-
dritic cells (DC) frequently utilized in all sorts of cellular 

immunotherapies [2, 3]. However, B cells have also gained 
wide acceptance as APC [4–7]. Different methodologies 
have been successfully developed to render these anti-
gen presenters most potently antigen-specific. The sim-
plest approach is to exogenously load peptides onto the 
MHC molecules. Major drawbacks hereby are restriction 
to selected MHC molecules and lack of (endogenous) 
antigen procession [8, 9]. More refined approaches use 
nucleic acids as source of antigen. With regard to the 
nucleic acids, DNA is easier to handle than RNA: clon-
ing DNA sequences into respective eukaryotic expression 
vectors is longstanding routine, and manipulation of cells 
by viral transduction is commonly performed [10–13]. 
DNA can be easily amplified by PCR approaches and, 
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as opposed to the peptide synthesis, allows simple and 
fast testing and optimization of responses to different 
antigens also in preclinical research laboratories. Since 
nucleic acids can easily be designed to be recognized by 
the cellular protein synthesis machinery, they will sub-
sequently be properly translated into long peptides or 
proteins [14]. Then, the latter will also be substrates of 
the endogenous antigen processing machinery, resulting 
in efficient presentation on the cells’ MHC repertoire, 
thus overcoming the MHC restriction issue [15]. On the 
downside, manipulation with DNA may lead to stable 
integration and potentially transgenic cells are a red flag 
for subsequent clinical applications [16]. RNA may be 
synthesized from in vitro transcription (IVT) constructs, 
and so far, no risk of genomic integration has been rec-
ognized [17]; au contraire it is considered safe for clini-
cal approaches [18]. In this line of argumentation, the 
method applied for APC transformation is of importance. 
Viral transductions bear the risk of stably creating trans-
genic cells [19, 20]. Thus, non-viral delivery methods are 
of great interest. Nucleofection is such a technique; by 
combining standard electroporation with special carrier 
and buffer solutions, it ensures direct nuclear delivery of 
the constructs [21].

In this study, we wanted to compare the two major 
APC types and test nucleofectability using plasmid DNA 
and IVT mRNA samples. The goal was to optimize the 
nucleofection process using cells of healthy volunteers 
and validating the results with—clinically relevant—
patient-derived cells.

Results and discussion
Non-viral delivery of nucleic acids to APC is necessary in 
many clinical settings; especially in the context of cellular 
immunotherapies. We optimized the process of nucleo-
fection, a method—which is applicable both for plasmid 
DNA and IVT mRNA.

Nucleofection of DC
In a first step, we assessed the differentiation stage at 
which nucleofection of monocyte derived DC would best 
be applied. Therefore, we analyzed the nucleofection effi-
cacy—as measured by green fluorescent protein (GFP) 
positive cells post nucleofection with pmaxGFP plas-
mid—in monocytes, immature and mature DC (Fig.  1). 
Nucleofection was most efficient in immature DC with 
all three programs tested (U-022, V-001 and X001) and 
viability tended to be highest in immature DC as well 
(Fig. 1; Additional file 1: Figure S1). In a next step, nucle-
ofection of immature DC with 98 different programs was 
performed to determine optimal settings (see Additional 
file 2: Table S1 for a detailed list). The percentage of vital 
GFP positive cells with the top ten programs ranged from 

30 % (±4) to 45 % (±8) with a mean viability rate of 51 % 
(Fig. 2).

Nucleofection of B cells (plasmid DNA)
B cells have gained acceptance as APC, so we wanted to 
compare their nucleofectability to that of DC. A total of 
81 programs (see Additional file  2: Table  S1, Additional 
file 3: Table S2 for a detailed list of B cell lines and pro-
grams) was tested on an EBV immortalized B cell line (Bc 
ML) and the ten most effective programs were then veri-
fied using two further B cell lines (Bc WR and Bc 736). 
Nucleofection efficacy was comparable to that achieved 
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Fig. 1  Comparison of nucleofection for monocytes, immature and 
mature DC. The figure depicts the percentage of viable GPF positive 
cells post DNA plasmid nucleofection of monocytes, immature (iDC) 
and mature DC (mDC). The bars represent the average percentage 
(+standard deviation) for two donors and three programs (U-022, 
V-001 and X-001)

Fig. 2  Top 10 DC nucleofection programs. The percentage of GFP 
positive cells (green) as well as viability (blue) of immature DC with 
plasmid DNA for the ten most potent nucleofection programs are 
represented, the average percentage (+standard deviation) for three 
donors is given
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with DC; it ranged from 32  % (±15) to 43  % (±7) with 
a mean viability rate of 53 % (Fig. 3). Since we aimed at 
transferring the process to patient derived B cell lines, 
the top five programs were selected taking nucleofection 
efficiency and viability into account and subsequently 
tested further on three patient derived B cell lines. Here, 
the efficacy ranged from 38 % (±19) to 52 % (±19) with a 
mean viability of 32 % (Fig. 4).

Nucleofection of B cells (IVT mRNA)
The risk of stable integration into the host genome makes 
DNA less favorable with regard to clinical approaches. The 
nucleofection of B cells using IVT mRNA was thus investi-
gated next. Therefore, two patient derived B cell lines were 
analyzed using the top five programs as determined with 
plasmid DNA. The efficacy ranged from 38  % (±27) to 
48 % (±25) with a mean viability of 34 % (Fig. 5). Contrary 
to what is described in literature [22] and thus to some 
extend surprising, the efficacy was not higher for IVT 
mRNA compared to plasmid DNA. We thus performed a 
time kinetics analysis; assessing the percentage of vital GFP 
positive cells 4, 8, and 20 h post nucleofection (Fig. 6). GFP 
expression was well detectable already 4 h after nucleofec-
tion, peaked at 8  h and started decreasing thereafter but 
was still detectable 20 h post nucleofection (Fig. 6). Even 
longer expression periods have been described for IVT 
mRNA-nucleofected GFP of DC [22, 23]. Although (anti)
gene transduction efficiency is by far not the only factor 
determining the overall antigen presentation capacity of 
APC, enhanced efficiency of (anti)gene delivery is likely to 
improve antigen processing and presentation resulting in 
increased levels of induced immune responses (reviewed 
by Garg and colleagues in [24]).

We finally assessed the influence of the IVT mRNA 
amount used on the efficacy of nucleofection. We com-
pared the effects using 3 and 10 µg IVT mRNA in addi-
tion to 1  µg plasmid DNA nucleofection (Fig.  7). Here, 
10 µg IVT mRNA was most effective.

Comparison of nucleofection with plasmid DNA and IVT 
mRNA
The amount of nucleic acid necessary for highly suc-
cessful nucleofection is tenfold higher for IVT mRNA 
compared to plasmid DNA (Fig.  7). With regard to the 
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Fig. 3  Top 10 B cell nucleofection programs. The percentage of 
GFP positive cells (green) as well as viability (blue) of B cells with 
plasmid DNA for the ten most potent nucleofection programs are 
represented, the average percentage (+standard deviation) for three 
donors is given
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Fig. 4  Top 5 B cell nucleofection programs. The percentage of GFP 
positive cells (green) as well as viability (blue) of B cells with plasmid 
DNA for the five most potent nucleofection programs are repre‑
sented, the average percentage (+standard deviation) for three 
cancer patients is given

0

10

20

30

40

50

60

70

80

V-003 V-015 W-003 Y-015 Z-030

%
 G

FP
 e

xp
re

ss
io

n 
/ v

ia
bl

e

GFP

viability

Fig. 5  B cell nucleofection with IVT mRNA. The percentage of GFP 
positive cells (green) as well as viability (blue) of B cells with IVT mRNA 
for the five most potent nucleofection programs are represented, the 
average percentage (+standard deviation) for two cancer patients is 
given
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intensity of protein expression—as determined by fluo-
rescence intensity in flow cytometry—plasmid DNA 
is more potent than IVT mRNA (Fig.  8). Yet, for IVT 
mRNA an increase in efficacy could be achieved by using 
more RNA (3 vs. 10 µg); this was not the case for plasmid 
DNA, where rather a decrease in viability was observed 
(data not shown). Finally, in terms of viability, no great 
differences were observed between the two types of 
nucleic acids (Additional file  4: Figure S2, Additional 
file 5: Figure S3).

Non viral delivery of nucleic acids to APC using the 
technology termed nucleofection was feasible and suc-
cessful for both major types of antigen presenters (DC 
and B cells) coming from healthy donors as well as from 

tumor patients. Very recently Maeß and colleagues pub-
lished an optimized process for nucelofecting of mac-
rophages—a further important player in the immune 
system. More precisely nucleofection was performed on 
the human macrophage and monocyte cell line THP-
1. Although they only present nucleofection of this cell 
line with one program, the process was analyzed for plas-
mid DNA and siRNA [25]. A great variance, in especially 
with regard to efficacy, between different individuals 
was observed in our analysis (see SD in Figs.  1, 2, 3, 4, 
5). However, the individual most efficient program was 
among the top five programs selected for the respective 
cell type. Thus, we do not propose one overall best nucle-
ofection program but rather a handful carefully selected 
programs to choose amongst.

The nucleofectability of DC and B cells were compara-
ble both with regard to efficacy and handling of cells in 
the process. Since generation of monocyte derived DC 
is laborious, expensive and purity as well as efficiency 
of DC generation differs largely between donors, B cells 
are favorable in this regard. Besides, they can easily be 
expanded in vitro which DC cannot [4].

In comparison to B cells from healthy donors, the 
nucleofection of patient derived B cells was more suc-
cessful. Yet, the viability was lower. So, the approach is 
very well applicable in a pathological setting (at least in 
cancer patients).

Improved transfection efficacy may be achieved, but at 
the expense of viability. Nevertheless, the nucleofection 
process should be performed at optimal conditions: min-
imize time of cells in nucleofection buffer (do not exceed 
15 min), pre-heat subsequent culture media (37 °C), pre-
pare material (culture dishes, pipettes, cuvettes) and wash 
cells out of the cuvette immediately after nucleofection.

Electroporation is an effective (anti)gene transduction 
method which has in the context of APC not only been 
proven to allow effective targeting of CD8+ T cells [26] 
but also of CD4+ T cells via the MHC class 2 pathway 
[27].

Finally, we would like to point out that the manner for 
handling APC prior to and during nucleofection is cru-
cial. Cell densities should not be too high; we recom-
mend splitting B cells, change media and resuspend the 
cells the day before nucleofection.

Conclusions
In summary, we here successfully optimized nucleofec-
tion of both APC types used in (pre)clinical settings, DC 
and B cells, for plasmid DNA and IVT mRNA. Subse-
quent studies profit from our major findings: (1) patient-
derived APC are well-suited, (2) due to high individual 
differences, however, five programs should be tested, (3) 
DC have to be nucleofected in the immature state, (4) 
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Fig. 6  Time kinetic of B cell nucleofection with IVT mRNA. The 
percentage of GFP positive B cells 4, 8 and 20 h post nucleofection 
with IVT mRNA using the five most potent nucleofection programs 
are represented
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Fig. 7  Influence of IVT mRNA quantity on B cell nucleofection. The 
percentage of GFP positive B cells nucleofected with either 1 µg plas‑
mid DNA, 3 or 10 µg IVT mRNA are depicted for one cancer patient 
comparing two programs
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plasmid DNA permits a more potent and longer last-
ing antigen expression, (5) achievable levels of antigen 
expression are similar for B cells and DC.

Methods
Cell culture
The human colon cancer cell line HROC24, established 
in our lab [28], was cultured in DMEM/Ham’s F12 (1:1) 
and all EBV B cell lines (for detailed list see Additional 
file 3: Table S2) were cultured in IMDM. DC were gen-
erated as described before [29]. Monocytes were isolated 
by MACS cell separation of peripheral blood mononu-
clear cells using human CD14 MicroBeads (Miltenyi, 
Bergisch Gladbach, Germany), incubated in RPMI sup-
plemented with Il-4 (20 ng/ml; Immunotools, Friesoythe, 
Germany) and GM-CSF (1,000  IU/ml; Immunotools) 
for 5 days and matured using TNFα (120 ng/ml; Immu-
notools) and Il-1β (120  ng/ml; Immunotools) for two 
additional days. All culture media were supplemented 
with 10 % fetal calf serum (FCS Gold, PAA Cölbe, Ger-
many), 2  mmol/l  l-glutamine and 1  % penicillin–strep-
tomycin. Cell cultures were incubated at 37 °C with 5 % 
CO2. Media and supplements, if not indicated otherwise, 
were purchased at Pan Biotech (Aidenbach, Germany). 
Maturation states of the DC were routinely checked as 
described before [30].

Nucleic acids
Nucleofection of plasmid DNA was performed using 
the pmaxGFP plasmid (Lonza, Basel, Switzerland). For 
mRNA nucleofection, the GFP gene was cloned from 
the pCR2.1-EGFP plasmid using EcoRI (Promega, Madi-
son, United States) into the PGEM-3-Z vector (Promega) 
especially designed for highly efficient IVT. 1  µg NarI 
(Promega) linearized PGEM-3-Z-GFP plasmid served 
as template for mRNA synthesis using AmpliScribe T7 
Flash, Poly(A) Polymerase Tailing Kit and ScriptCap 
m7G Capping System reagents by epicentre (Madison, 
United States) according to the manufacturer’s instruc-
tions to produce capped IVT mRNA with a poly(A) tail. 
All nucleic acid concentration determinations were done 
using a NanoDrop (Thermo-Scientific, Waltham, United 
States).

Nucleofection
Cells were harvested, washed, and resuspended in solu-
tion V (Lonza; i.e. 90 mM Na2HPO4, 90 mM NaH2PO4, 
5 mM KCl, 10 mM MgCl2 and 10 mM sodium succinate 
dissolved in bi-distilled water): DC (1 × 104/µl if not indi-
cated otherwise) or Bc (3 × 104/µl if not indicated oth-
erwise). Subsequently, 100 µl of the cell suspension was 
mixed with 1 µg plasmid DNA or 10 µg IVT mRNA (if 
not indicated otherwise), and electroporated in a 0.2 cm 
cuvette using the Nucleofector™ II device (Lonza). 

Fig. 8  Comparison of B cell nucleofection with plasmid DNA and IVT mRNA. The dot plots for flow cytometric analyses of a cancer patient’s B cells 
post nucleofection with either 1 µg plasmid DNA, 10 µg IVT mRNA or without any nucleic acid (serving as reference) are depicted
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Various nucleofection programs (see Additional file  2: 
Table S1) were compared in order to assess their effect on 
transfection efficiency. One million HROC24 cells were 
nucleofected for each batch IVT mRNA (3 µg) to assure 
consistent quality.

Flow cytometry
GFP-transfected cells were checked for GFP expres-
sion  20  h (if not indicated otherwise) after nucleofec-
tion by flow cytometry. Briefly, cells (5 × 105 cells) were 
washed once in PBS and resuspended in 200  µl PBS. 
Propidium iodine at a final concentration of 20  µg/ml 
was added directly prior to flow cytometric analysis on a 
FACScalibur analytical flow cytometer (Becton–Dickin-
son, Heidelberg, Germany) to allow for exclusion of dead 
cells and thus to simultaneously assess cell viability and 
GFP positivity. Viability was calculated as follows: 100 % 
minus  % Propidium iodine positive cells.

Nucleofection efficiency
The efficiency (defined as the percentage viable-GFP pos-
itive cells) for each program and cell line was calculated 
as follows:

Abbreviations
APC: antigen presenting cell; DC: dendritic cell; GFP: green fluorescent protein; 
IVT: in-vitro transcription; MHC: major histocompatibility complex.
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100/(total % viable cells) × (total % GFP positive cells).
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Additional file 1: Figure S1. Viability of monocytes, immature and 
mature DC after nucleofection. The figure depicts the percentage of viable 
cells post DNA plasmid nucleofection of monocytes, immature (iDC) and 
mature DC (mDC). The bars represent the average percentage (+ standard 
deviation) for two donors and three programs (U-022, V-001 and X-001).

Additional file 2: Table S1. List of programs used for nucleofection.

Additional file 3: Table S2. List of B cell lines.

Additional file 4: Figure S2. Viability of B cells after nucleofection with 
plasmid DNA and IVT mRNA. The figure depicts the percentage of viable B 
cells of a cancer patient post nucleofection with either GFP plasmid DNA 
or IVT mRNA. The viability for untransfected cells and mock transfected 
cells are given as reference values.

Additional file 5: Figure S3. Comparison of DNA and IVT mRNA nucleo‑
fection of B cells.The figure depicts dot plots for non-transfected B cells (= 
control) on the left side. The dot plots for DNA (1μgplasmid DNA; upper 
right) and IVT mRNA (10μg IVT mRNA; lower right) are shown on the right 
side. B cells(3x106 B419A) were nucleofected using the W-003 program. 
GFP fluorescence intensity is shown on the Xaxisand PI positivity on the 
Y-axis.
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