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Abstract 

Background:  To demonstrate the bioinformatics capabilities of a low-cost computer, the Raspberry Pi, we present 
a comparison of the protein-coding gene content of two species in phylum Chlamydiae: Chlamydia trachomatis, a 
common sexually transmitted infection of humans, and Candidatus Protochlamydia amoebophila, a recently discov-
ered amoebal endosymbiont. Identifying species-specific proteins and differences in protein families could provide 
insights into the unique phenotypes of the two species.

Results:  Using a Raspberry Pi computer, sequence similarity-based protein families were predicted across the two 
species, C. trachomatis and P. amoebophila, and their members counted. Examples include nine multi-protein families 
unique to C. trachomatis, 132 multi-protein families unique to P. amoebophila and one family with multiple copies in 
both. Most families unique to C. trachomatis were polymorphic outer-membrane proteins. Additionally, multiple pro-
tein families lacking functional annotation were found. Predicted functional interactions suggest one of these families 
is involved with the exodeoxyribonuclease V complex.

Conclusion:  The Raspberry Pi computer is adequate for a comparative genomics project of this scope. The protein 
families unique to P. amoebophila may provide a basis for investigating the host-endosymbiont interaction. How-
ever, additional species should be included; and further laboratory research is required to identify the functions of 
unknown or putative proteins. Multiple outer membrane proteins were found in C. trachomatis, suggesting impor-
tance for host evasion. The tyrosine transport protein family is shared between both species, with four proteins in C. 
trachomatis and two in P. amoebophila. Shared protein families could provide a starting point for discovery of wide-
spectrum drugs against Chlamydiae.

Keywords:  Chlamydia, Protochlamydia, Chlamydiae, Parasite, Endosymbiont, Bioinformatics, Comparative genomics, 
Protein families, Raspberry Pi

© 2015 Robson and Barker. This article is distributed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any 
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The Raspberry Pi [1] is one of a recent wave of small, gen-
eral-purpose computers, delivering moderate computer 
power at low cost and with very modest requirements 
for electrical power [2]. It was released by the Rasp-
berry Pi Foundation in 2012, primarily with school-level 

educational in mind [3]. The various models of Raspberry 
Pi have now sold over 5 million units in total [4], and have 
found a wide range of uses in addition to those originally 
envisaged. For example, the Raspberry Pi is being used 
in university-level education in bioinformatics [5] and 
radiology [6], for field genomics with the portable, USB-
powered Oxford Nanopore MinION sequencer [7], for 
eukaryotic genome assembly [8] and in clusters [9]. The 
Raspberry Pi may have a future role in clinical diagnosis 
[10]. Computers such as the Raspberry Pi could provide a 
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cheap and reliable platform to perform powerful analysis 
in remote, rural or pandemic-stricken areas.

We present a preliminary comparative genomics 
study, carried out on the Pi as coursework for the mod-
ule BL4273 Bioinformatics for Biologists at the Univer-
sity of St Andrews in 2014. (An Open Access version of 
the BL4273 teaching material has been released as part 
of 4273π [5]). Our study is limited in scope, due to use 
of only two species. However, it uses bioinformatics 
research software typical of a current study, and leads to 
suggestions for future research. Our study and [11] dem-
onstrate the suitability of the Raspberry Pi for bioinfor-
matics research in comparative genomics.

We compare the genomes of Chlamydia trachomatis 
and Candidatus Protochlamydia amoebophila. Chla-
mydia is a genus of obligate intracellular bacteria within 
the phylum Chlamydiae. Environmental Chlamydiae 
and the clade now consisting of human-pathogenic 
Chlamydiae diverged from each other around 700 mil-
lion years ago [12]. Among the pathogens of humans 
is C. trachomatis. C. trachomatis infection is one of 
the most common sexually transmitted diseases and 
if untreated can result in trachoma, causing many ail-
ments including blindness, pelvic inflammatory disease, 
chronic pelvic pain, ectopic pregnancy and epidymitis 
[13].

The related endosymbiont Candidatus Protochlamydia 
amoebophilia was discovered living in the amoeba Acan-
thamoeba. Among the genome of P. amoebophilia, genes 
coding for type III and IV secretion machinery have been 
identified, although effector molecules have yet to be 
found [14]. C. trachomatis has a reduced genome, and 
lacks genes for various pathways present in the human 
body. For example, P. amoebophilia has all TCA cycle 
genes, whereas most pathogenic Chlamydia lack the full 
metabolic pathway [12]. Additionally, pathogenic Chla-
mydia lack other metabolic and biosynthetic genes, such 
as some amino acid synthesis genes [15].

In this preliminary investigation of the two species, we 
hope to identify groups of genes which are unique to one 
or both species, identify function and to guide further 
Chlamydia research.

Results
The genomes of C. trachomatis and P. amoebophilia code 
for a total of 917 and 2023 proteins, respectively. 224 out 
of 917 proteins were unique to C. trachomatis; 1129 out 
of 2023 proteins were unique to P. amoebophilia. Between 
the species 602 putative orthologs, 30 C. trachomatis and 
2042 P. amoebophilia putative inparalogs and 18 putative 
coorthologs were found (as defined in Mendivil Ramos and 
Ferrier [16]; in our study, predicted on the basis of sequence 
similarity). A total of 741 sequence similarity-based protein 
families were predicted (Table 1). Protein family member-
ship, with families numbered arbitrarily, is given in Addi-
tional file 1. Sequence alignment was performed using both 
the BLOSUM62 and BLOSUM45 substitution matrices, 
with only minor differences in results (Table 1; Additional 
files 2, 3, 4 and 5). Results based on BLOSUM62 were used 
for further investigation (Additional file 1).

Protein families unique to P. amoebophilia included 
F-boxes and multiple transposases which catalyse move-
ment of short DNA sections. Additionally, compared 
to single genes within C. trachomatis, multiple cop-
ies of virulence plasmid integrases, chaperonins, heavy 
metal transporters and putative antibiotic transporters 
were present (Table  2). Unique to C. trachomatis were 
five families of outer-membrane proteins, implicated in 
host evasion strategies, in addition to type III secretion 
system effectors. Present in multiple copies within both 
species were tyrosine transporters, indicating their essen-
tial function across the species as they lack the genes 
required for tyrosine biosynthesis (Table  2). Finally the 
functional interactions of some unidentified or hypo-
thetical proteins were predicted using data from genomic 
context, co-expression and text-mining using STRING 

Table 1  Analysis of protein families predicted across the genome-wide protein sets of C. trachomatis and P. amoebophila

Protein relationship Number of protein  
families using  
BLOSUM62

Number of protein 
sequences using  
BLOSUM62

Number of protein families 
using BLOSUM45

Number of protein 
sequences using 
BLOSUM45

Single in both species 590 1180 586 1172

Unique to C. trachomatis 9 28 9 25

Unique to P. amoebophila 132 448 132 443

Single in C. trachomatis but multiple 
in P. amoebophila

8 28 7 25

Single in P. amoebophila but multi-
ple in C. trachomatis

1 6 1 6

Multiple in both species 1 6 1 6
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version 9.1 [17] (Fig. 1). We regard these predicted inter-
actions as a basis for further study rather than a definitive 
result, and indeed many of these interactions are absent 
from a more recent version of STRING. Despite such 
uncertainties, the appearance of a (putative) exodoxyri-
bose chain in both sets of interactors is suggestive.

This investigation builds upon the chlamydial compari-
son by Horn et al. [12], who identified proteins of inter-
est such as virulence factors, transposases and tyrosine 
transporters. We quantify the differences in copy number 
in addition to suggesting roles for unidentified proteins.

Discussion and conclusions
The scope of the study is limited. Where a protein is 
unique to one or other species in the pair, for example, 
it may be more widely distributed (among species not 
included in our study). Also, the direction of gain or loss 
of copies or families cannot be determined from a study 
of two species alone, but would require comparison of 
the gene or protein family phylogeny with the species 
phylogeny (e.g. [18]). However, where copy number var-
ies within the pair of species study, this may indicate use-
ful directions for future research.

Table 2  Differences in proteins produced, excluding shared single copy proteins

Protein families are uniquely identified by arbitrary group numbers, whose member proteins’ accession numbers are given in Additional file 1. For notes numbered *2 
to *4, see Table 3. *1 In this category, only the largest five groups are shown. All proteins within these five groups were putative and uncharacterised, probable protein 
function was obtained by finding homologs on UniProtKB with >50 % sequence identity. For group three, although no homologs were found with >50 % sequence 
identity, it is possible that they are tetratricopeptide proteins as all within this group showed >30 % sequence identity to various tetratricopeptide proteins

Protein relationship Group number Protein name

Unique to P. amoebophila *1 1 F-box

2 Transposases

3 Putative tetratricopeptide repeat protein

4 Sel1 repeat protein4

5 Transposases

Unique to C. trachomatis 10 Polymorphic outer membrane protein

16 *2 Effector from type III secretion system

70 Polymorphic outer membrane protein

71 Hypothetical membrane associated protein

72 Hypothetical membrane associated protein

148 Deubiquitinase and deneddylase

149 Biotin synthase

150 *3 Threonine-rich GPI-anchored glycoprotein

151 Outer membrane proteins

Single in C. trachomatis but multiple in P. amoebophila 11 Virulence plasmid integrases

18 Low calcium response proteins

19 Pb, Cd, Zn and Hg transporting ATPases

36 Excinuclease ABC subunit A

38 Chaperonins

39 Putative antibiotic transporter

40 *4

41 Nucleoside diphosphate kinases

Single in P. amoebophila but multiple in C. trachomatis 9 Phosphatidylcholine-hydrolyzing phospholipase D (PLD) family

Multiple in both species 8 Tyrosine-specific transport protein

Table 3  Putative, homology-based characterisation of proteins in Table 2

Note (asterisk) Possible homolog Species Identity (%) Additional comments

2 Effector from type III secretion system Chlamydia muridarum 73 86 % positives

3 Threonine-rich GPI-anchored glycoprotein Chlamydia trachomatis 80 84 % positives

4 Unknown N/A N/A No homologs found; no secondary structure 
elements found; increased disorder at each 
terminal
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Variation between the proteomes of P. amoebophila 
and C. trachomatis was expected due to differing host 
specificity. Our analysis identified protein families: 
unique to C. trachomatis; containing multiple members 
in P. amoebophila with one member in C. trachomatis; 
containing multiple members in C. trachomatis with one 
member in P. amoebophila; and one family with multi-
ple members in both species. The latter family, with two 
members in C. trachomatis and four in P. amoebophila, 
consists of tyrosine-specific transport proteins.

To investigate the importance of the tyrosine transport 
proteins, other Chlamydia species should be investigated 
for the presence or absence of this protein family. If pre-
sent in multiple copies across all Chlamydia, it could 
serve as a starting-point for development of a universal 
drug active across Chlamydia. A possible basis of sub-
strate design would be a tyrosine analogue which binds 
irreversibly to Chlamydia tyrosine transporters only, and 
thus inactivates the transporter. This would be similar 
to the mechanisms of various NRTI class antiviral drugs 
that are nucleotide homologues e.g. AZT [19]. By target-
ing a whole protein family that is shared between species, 
any drug developed could act across the whole phylum.

Proteins unique to one species included various out-
ermembrane proteins unique to C. trachomatis and 
multiple transposases unique to P. amoebophila. The 
abundance of transposases can account for the extensive 
genome rearrangement observed in P. amoebophila [14]. 
Further investigation into unique P. amoebophila pro-
teins could reveal novel host-parasite interactions, such 

as why it causes apoptosis in human HEp-2 cells only 
when metabolically active [14]. Additionally, the pres-
ence of multiple polymorphic outer membrane proteins 
in C. trachomatis could be a mechanism of host immune 
system avoidance, especially during initial infection [20]. 
The use of STRING to predicted physical and functional 
partners could be applied to many of the groups where no 
known homology to any other sequence was found. Fur-
thermore, the abundance of unknown protein families is 
an obstacle to understanding the host-parasite relation-
ship. Characterisation of these unknown families would 
prove insightful to model many other bacterial endosym-
biotic pathogens.

Although our study does not compare in depth the 
four major families of the Chlamidiae—as was done in 
[21]—it does provide an insight into the genetic and bio-
logical differences between human pathogenic chlamydia 
and the newly discovered endosymbiont. It also acts as a 
proof of concept, showing that the use of a low-cost Rasp-
berry Pi computer in comparing genome-wide protein 
sets is successful in a bioinformatics research setting. The 
Raspberry Pi proved unproblematic for running BLAST, 
OrthoMCL and associated software and post-processing 
Perl scripts. Because of slow rendering of Web pages on 
the Raspberry Pi Model B, for convenience a desktop 
computer was used for Web access to the STRING data-
base (see “Methods”, below). However, the newer Rasp-
berry Pi version 2, not used in our study, would display 
Web pages faster [22]. One might also bypass the neces-
sity of using the Web, by storing a local copy of STRING. 

Fig. 1  Predicting functional interactions of unannotated proteins. To further investigate the function of the protein family whose members were 
all unannotated, Group 40 (Additional file 1), functional interactions were investigated using the STRING database. It was found that P. amoebophilia 
Q6MEA2 (a STRING ID pc0373) and C. trachomatis Q3KL42 (b STRING ID CTA_0708) both interact with the (putative) exodeoxyribonuclease V alpha 
chain with a high confidence score. Each query protein is in the centre of the interaction web and is coloured red. Grey dots in the key represent 
strength of evidence (darker is stronger). The sum of each distinct evidence type was used to generate the total score
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This would be particularly useful in areas without Inter-
net access.

The potential use for the Raspberry Pi or similar equip-
ment in poor or isolated regions, as a tool to help identify 
pathogens, should be further investigated [10]. Applica-
tions for low-cost, Raspberry Pi-based comparisons of 
moderate numbers of genomes could include rapid muta-
tion identification for viruses in rural areas and quick 
identification of crop moulds or pests in areas of famine.

There is also potential to democratize bioinformatics 
as a subject. Bioinformatics has abundant free software 
and sequence data, as used in our study and many others. 
These provide an exceptional starting point for democrati-
zation, but are not sufficient. Traditional barriers to wider 
uptake of bioinformatics include the cost of hardware. 
This barrier is addressed directly by relatively powerful, 
low-cost computers, including the Raspberry Pi. A persist-
ing barrier is a lack of training [23, 24]. Free bioinformat-
ics educational materials and programmes are increasing 
opportunities for training (e.g. [5, 25, 26]; for further refer-
ences see [27]). With removal of these remaining barriers, 
we predict the expansion of bioinformatics research, by 
amateurs as well as students and professionals, including 
in low-income countries. We refer to this vision as ‘perva-
sive bioinformatics’, a concept which exists in the literature 
[28]—but is, itself, not yet pervasive.

Methods
Bioinformatics software was run on a Raspberry Pi Model 
B with 521 GB RAM, under the 4273π variant of the Rasp-
bian GNU/Linux operating system [5]. Genome-wide pro-
tein sets for C. trachomatis A/HAR-13 and Candidatus P. 
amoebophila UWE25 were downloaded from the Ensembl 
Genomes database (http://ensemblgenomes.org) [29] 
(Additional files 6 and 7). Sequence similarity-based protein 
families were predicted using MCL [30] and OrthoMCL 
[31] with default settings to post-process results of 
BLASTP sequence similarity searches [32]. Separate pre-
dictions were made, based on the BLOSUM62 (Additional 
files 2, 3 and 8) and on the BLOSUM45 substitution matrix 
(Additional files 4, 5 and 9). As no major differences were 
observed between the results (Table  1), groups obtained 
with BLOSUM62 were used for further analyses. Groups 
were counted and classified (Table  2) using custom Perl 
scripts (Additional files 10 and 11). Counts were verified 
using scripts written independently [11].

Protein functions were found either by manually inte-
grating protein names from their Fasta headers, or by 
homology-based transfer of functional information from 
the UniProtKB database [33]. The five largest families 
unique to P. amoebophila were also analysed. Findings 
are presented in Table  2. An asterisk (*) indicates fami-
lies where the majority were uncharacterised proteins in 

the P. amoebophila or C. trachomatis protein set, whose 
names were obtained from homology according to the 
following procedure. If the majority of the group were 
putative uncharacterised proteins, the first three pro-
tein IDs within the group text file were used as queries in 
BLASTP searches of UniProtKB [33]. If the three proteins 
had homologues similar in function it is assumed that 
the uncharacterised proteins also had the same function. 
If no homologues were found for a particular sequence, 
then the next protein in the group was investigated until 
a triplicate consensus was reached. In one case, Group 40 
(Table  2), no homologues were found using BLAST. To 
predict protein function it was submitted to the STRING 
database, which contains data from genomic context, 
high throughput experiments and co-expression, using a 
desktop computer. To simplify the network diagram, only 
the five highest-scoring direct interactors are reported 
(Fig. 1).

Abbreviations
AZT: azidothymidine; BLOSUM: blocks substitution matrix; C. trachomatis: Chla-
mydia trachomatis; P. amoebophila: Candidatus Protochlamydia amoebophila; 
RAM: random access memory; USB: universal serial bus.
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