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Abstract 

Background:  Inflammatory disease processes involve complex and interrelated systems of mediators. Determining 
the causal relationships among these mediators becomes more complicated when two, concurrent inflammatory 
conditions occur. In those cases, the outcome may also be dependent upon the timing, severity and compartmentali-
zation of the insults. Unfortunately, standard methods of experimentation and analysis of data sets may investigate a 
single scenario without uncovering many potential associations among mediators. However, Bayesian network analy-
sis is able to model linear, nonlinear, combinatorial, and stochastic relationships among variables to explore complex 
inflammatory disease systems. In these studies, we modeled the development of acute lung injury from an indirect 
insult (sepsis induced by cecal ligation and puncture) complicated by a direct lung insult (aspiration). To replicate mul-
tiple clinical situations, the aspiration injury was delivered at different severities and at different time intervals relative 
to the septic insult. For each scenario, we measured numerous inflammatory cell types and cytokines in samples from 
the local compartments (peritoneal and bronchoalveolar lavage fluids) and the systemic compartment (plasma). We 
then analyzed these data by Bayesian networks and standard methods.

Results:  Standard data analysis demonstrated that the lung injury was actually reduced when two insults were 
involved as compared to one lung injury alone. Bayesian network analysis determined that both the severity of lung 
insult and presence of sepsis influenced neutrophil recruitment and the amount of injury to the lung. However, the 
levels of chemoattractant cytokines responsible for neutrophil recruitment were more strongly linked to the timing 
and severity of the lung insult compared to the presence of sepsis. This suggests that something other than sepsis-
driven exacerbation of chemokine levels was influencing the lung injury, contrary to previous theories.

Conclusions:  To our knowledge, these studies are the first to use Bayesian networks together with experimental 
studies to examine the pathogenesis of sepsis-associated lung injury. Compared to standard statistical analysis and 
inference, these analyses elucidated more intricate relationships among the mediators, immune cells and insult-
related variables (timing, compartmentalization and severity) that cause lung injury. Bayesian networks are an effec-
tive tool for evaluating complex models of inflammation.
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Background
The pathogenesis of inflammation is linked to numerous 
cell types and soluble mediators which may have causal 
or simply incidental significance to a specific disease. 
Their effects vary depending upon their concentration, 
compartmentalization, timing, and relative relationships 
to other mediators [1]. This complexity may explain the 
lack of significant therapeutic breakthroughs for some 
devastating inflammatory diseases such as sepsis [2–5]. 
Although current reductionist approaches have yielded 
some results, the general failure to translate mediator-
based therapies from bench to bedside may be due to the 
narrow focus of experimental investigations [1, 6]. Ide-
ally, experimental investigations would consider multiple 
scenarios, many mediators and several body compart-
ments in order to identify the factors relevant to a dis-
ease. Unfortunately, many traditional types of analyses 
may not be able to incorporate the complexity of such a 
design or provide insight into the actual causal relation-
ships between these factors. It has been suggested that 
complex systems approaches, involving modeling, simu-
lation, systems biology, chaos theory, and network theory 
can augment the classical, hypothesis-driven approach 
that has largely failed to provide critical understanding 
and treatments for severe illness [7–9]. Therefore, a com-
plex systems approach could prove valuable in the study 
of disease processes such as the inflammation-associated 
acute lung injury that complicates sepsis.

Many of the factors that compound the development of 
acute lung injury are difficult to predict or identify in the 
clinical situation [10]. In some cases, a septic focus else-
where in the body may indirectly result in lung inflamma-
tion that may progress to actual lung failure. This tendency 
may be further compounded if the lung is injured again. 
In fact, the “two hit” theory suggests that an inflammatory 
insult such as trauma or sepsis may prime the immune sys-
tem to cause an exaggerated response to a direct lung insult 
and result in greater injury than the additive effects of the 
individual insults [11]. Several independent, soluble and 
cellular mediators have been implicated in this disease pro-
cess in independent experiments representing a static set 
of conditions. However, the actual combined effect might 
also depend upon the timing, severity and compartmentali-
zation of the two insults. This suggests the possibility that 
the role of various mediators may be altered by a number 
of extrinsic conditions. The development of effective thera-
peutic interventions is dependent upon a full understand-
ing of these mediators and, therefore, requires analysis of 
multiple intrinsic and extrinsic variables simultaneously.

We theorized that a Bayesian network (BN) could be 
used to find the inferred relationships in complex data 
sets derived from a model of dual inflammatory injuries 
to the lung. A BN is a representation of a joint probability 

distribution over a set of random variables. BNs that 
most accurately describe a given dataset can be learned 
automatically by searching through large numbers of 
network topologies and retaining the most significant 
top-scoring networks. As probabilistic models, BNs rep-
resent probabilistic relationships among variables in a 
domain. Such probabilistic relationships among vari-
ables can be inferred by the application of a BN struc-
tural learning algorithm to a relevant dataset [12]. BNs 
are not necessarily causal since the directionality is typi-
cally inferred with additional assumptions and analytics 
or direct experimental evidences [13–15]. In biology, BNs 
can identify relationships amongst sets of variables (e.g., 
genes) in various biological pathways [12, 16–19]. BNs 
are considered to be ideal for modeling complex systems 
due to many advantages. BNs are relatively agnostic to 
the complexity of the relationships predicted. A BN can 
model linear, nonlinear, combinatorial, stochastic and 
other types of relationships among variables across multi-
ple levels of biological organizations [20]. Capturing such 
relationships is difficult with more standard bioinformat-
ics tools such as Pearson correlation, clustering or prin-
cipal component analysis. Owing to their probabilistic 
nature, BN algorithms are capable of handling noisy data 
as found in biological experiments (e.g., DNA microar-
rays and protein arrays). One key advantage of BNs is 
that prior knowledge can be easily incorporated during 
modeling [21]. New variables can be easily added to the 
BN modeling based on existing data (e.g., experimental 
conditions and phenotype results). Furthermore, the BN 
modeling results, represented by directed graph includ-
ing nodes indicating variables and edges between nodes 
for statistical associations, can be easily interpreted by 
humans. Potential targets for therapeutics could then be 
based not only on lists of up- and down-regulated vari-
ables, but also on the interaction networks that relate 
biological variables.

To produce a multifactorial model of acute lung injury, 
we studied the effects of an indirect insult from septic 
peritonitis which was induced by cecal ligation and punc-
ture (CLP) in mice. This was examined in concert with 
a direct lung injury induced by aspiration. Aspiration of 
gastric contents is a leading cause of pulmonary com-
plications and acute respiratory distress in trauma and 
intensive care patients [22]. To date, experimental stud-
ies of aspiration have focused on a limited number of 
mediators found within the lung. The known response to 
aspiration of stomach acid is characterized by dramatic 
increases of local pro-inflammatory cytokines (TNF-α, 
IL-6, chemokines) and recruitment of neutrophils [10, 
23] which are key mediators of the progressive inflam-
matory response [24]. Studies of acid aspiration have 
identified the CXC chemokine human CXCL8/IL-8 and 
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its rodent counterparts, CXCL2/MIP-2α (macrophage 
inflammatory protein) and CXCL1/KC (keratinocyte-
derived chemokine) or CINC (cytokine-induced CXC 
chemokine) [23, 25, 26] as important signals for pulmo-
nary neutrophil recruitment. When acidic aspirates con-
tain gastric particulates, the lung injury is increased and 
the CC chemokine, CCL2/MCP-1 (monocyte chemotac-
tic protein), becomes an important mediator of inflam-
matory cell aggregation around the foreign material [27]. 
The inflammatory cells, primarily neutrophils and mac-
rophages, produce enzymes, oxygen radicals and other 
toxic compounds that injure the lungs. This could pro-
gressively lead to lung failure. However, the degree of 
injury could be altered by many, interrelated factors.

Therefore, we modeled septic lung injury complicated 
by aspiration. To reproduce clinically relevant scenarios, 
we induced septic peritonitis by CLP then followed that 
procedure at different intervals (0, 12, or 48  h) with an 
aspiration event of various intensities (saline, acidic solu-
tion, acid solution with particulate material). Within 6 h 
of the direct lung injury, near the time aspiration injury 
peaks, we measured multiple inflammatory and anti-
inflammatory cytokines and numerous inflammatory 
cell types in the body compartments local to the injuries 
(peritoneum and airways) and in the systemic compart-
ment (plasma). The results were analyzed by standard 
statistical tests and by Bayesian Networks for interpreta-
tion of the complex data sets.

In keeping with the two hit theory, we hypothesized that 
the combination of insults would result in exuberant pro-
duction of inflammatory mediators and greater injury 
in the lung. However, this was not the case because lung 
inflammation and injury were reduced when two insults 
were given compared to one. Bayesian analysis showed that 
both the severity of the lung insult and presence of sepsis 
influenced neutrophil numbers and lung injury. However, 
specific chemokine mediators were not strongly linked to 
the sepsis, suggesting that factors other than exacerbated 
chemokine production in the lung were involved. Bayesian 
network analysis led to an alternative theory that the two foci 
of inflammation compete for neutrophils and decrease the 
numbers available to create lung injury. Further investigation 
supported this possibility. The Bayesian network analysis of 
inflammatory mediators, together with the experimental evi-
dences, provided insight into the causal relationships govern-
ing inflammatory responses that were not readily apparent in 
standard statistical analysis of mediators.

Results
Statistical analysis demonstrated the severity of lung 
injury and the impact of concurrent sepsis
To determine the effects of dual insults, lung injury was 
induced by aspiration of saline, acid or acid +  particles 

in otherwise healthy groups of animals and compared 
to the lung injury induced by the same aspirates but in 
animals with concurrent septic peritonitis induced by 
CLP (0,12, 48 h between insults). Within 6 h of the aspi-
ration insult, samples of bronchoalveolar lavage (BAL) 
fluid, peritoneal lavage (PL) fluid, and plasma were tested 
for concentrations of proinflammatory (Table  1) and 
anti-inflammatory (Table  2) cytokines relevant to the 
inflammatory injuries. Of particular interest, chemot-
actic cytokines responsible for the recruitment of cells 
into sites of inflammation, were also measured (Table 3). 
The cell counts of numerous leukocytes were also deter-
mined (Table 4). Albumin concentration, an indicator of 
the loss of vascular integrity, was also measured in BAL 

Table 1  Pro-inflammatory cytokines

Acronym Cytokine

TNF- α Tumor necrosis factor-α

IL-6 Interleukin-6

IL-1β Interleukin-1β

IL-12 Interleukin-12

IFN-γ Interferon-γ

IL-13 Interleukin-13

IL-4 Interleukin-4

IL-5 Interleukin-5

IL-18 Interleukin-18

IL-2 Interleukin-2

Table 2  Anti-inflammatory cytokines in Bayesian network 
analysis

Acronym Cytokine

IL-10 Interleukin-10

TNFsr1 Tumor necrosis factor soluble receptor-1

TNFsr2 Tumor necrosis factor soluble receptor-2

IL-1ra Interleukin-1 receptor antagonist

Table 3  Chemokines in Bayesian analysis network

Acronym Chemokine Systematic name

MIP-2α Macrophage inflammatory protein-2α CXCL2

KC Keratinocyte-derived chemokine CXCL1

LIX Lipopolysaccharide-induced CXC 
chemokine

CXCL5

MCP-1 Monocyte chemoattractant protein-1 CCL2

MIP-1α Macrophage inflammatory protein-1α CCL3

RANTES Regulated on activation normal T cell 
expressed and secreted

CCL5

Eotaxin Eotaxin CCL11
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fluid. From a standard comparison of the means among 
the groups with lung insult only (No CLP), the data 
demonstrated progressive and significant increases in 
the BAL fluid neutrophil counts, as the intensity of the 
pulmonary insult increased (saline  <  acid  <  particles) 
(Fig. 1a). In addition, the albumin levels demonstrated a 
similar pattern, indicating a progressive increase in lung 
injury associated with the increasing inflammation. How-
ever, when the aspiration insult was combined with sep-
sis, the recruitment of neutrophils and accumulation of 
albumin to the airspaces was actually reduced (Fig.  1a, 
b). This suppression in animals with CLP was signifi-
cant (p < 0.05) for each kind of aspirate at all of the time 
points and contradicted the “two hit” theory. Although 
timing had an effect at the 12 h insult interval, there was 
no consistent pattern across the different insult intervals.

Previous studies have shown that neutrophil recruit-
ment is a function of chemotaxis induced by CXC 
chemokines (CXCL1/KC, CXCL2/MIP-2α, and CXCL5/
LIX) and also influenced by the CC chemokine, CCL2/
MCP-1 [22–24]. The chemokines CXCL1/KC and 
CXCL2/MIP-2α have been linked to the recruitment of 
neutrophils after aspiration and their levels correlate with 
the amount of subsequent lung injury. In this study, the 
chemokine concentrations found in animals with only 
aspiration (No CLP) demonstrated a progressive increase 
as the severity of the aspiration increased (Fig.  2a, b). 
However, when animals with a specific type of aspira-
tion (No CLP) were compared to animals with the same 
aspiration paired with sepsis, there were no significant 
differences in chemokine levels, except for an increase of 
CXCL2/MIP-2α levels at 0 Hours. This was unusual. Pre-
vious literature suggests that the lower neutrophil counts 
and albumin levels found in animals with aspiration 
and concurrent sepsis would have been accompanied 
by lower chemokine levels than animals after aspira-
tion without sepsis. The results were similar for other 
chemokines such as CXCL5/LIX and CCL2/MCP-1 (data 
not shown). Our current findings are consistent with pre-
vious reports that the type of aspirate definitely affects 
chemokine concentrations and subsequently the neutro-
phil counts. However, this offers no explanation for the 
decrease in neutrophils when aspiration is associated 

with sepsis or why those neutrophil counts do not trend 
with the chemokine concentrations when an aspiration 
insult is paired with sepsis. Consequently, we used Bayes-
ian Networks to examine the same data.

Bayesian network analysis demonstrated  
the relative impact of sepsis and aspiration differed 
between compartments
The type of lung insult (saline, acid, or particles), the 
injury interval (0, 12, 48  h) and the presence of sepsis 
(CLP) were factored directly into the analysis to deter-
mine their effects on the mediators. Separate networks 

Table 4  Cells in Bayesian analysis network

Acronym Inflammatory cells

WBC Total white blood cell

NE Neutrophil

MO Monocyte/macrophage

LY Lymphocyte

EO Eosinophil

Fig. 1  Pulmonary inflammation and injury after aspiration. IT 
injections of saline, acid, or acid + particles were given to groups 
of mice (No CLP). In additional groups of mice, cecal ligation and 
puncture was performed followed by identical IT injections. CLP 
was performed either immediately before the IT injection (0 Hours) 
or preceded the IT injections by 12 or 48 h (12 Hours or 48 Hours). 
All mice were euthanized at 6 h post-IT injection and bronchoal-
veolar lavage was performed. a Neutrophil counts from BAL fluid. b 
Albumin levels in BAL fluid. n = 10–12/group. Results are expressed 
as mean ± SEM. *p < 0.05, S = p < 0.05 compared to No CLP Saline 
group, A = p < 0.05 compared to No CLP Acid group, P = p < 0.05 
compared to No CLP Particles group; S0, A0, or P0 = p < 0.05 as com-
pared to Saline, Acid or Particles group with 0 Hours interval between 
insults
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were generated for each compartment. Most striking, 
it was evident that the two disease processes did not 
directly influence all of the body compartments. For 
instance, it appeared that the type of Lung Insult was not 
directly linked to mediators in the distant compartments, 
peritoneum (Fig. 3) or blood (Fig. 4). However, both the 
Type of Lung Insult and CLP were directly related to 
the inflammation in the lung compartment (Fig. 5). This 
finding was similar to the conclusions eventually drawn 
from statistical analysis of BAL fluid. However, the Bayes-
ian network analysis recognized this and designated this 
relationship independent of inferences by an investigator.

Bayesian network analysis demonstrated variability 
in relationships between compartmentalized cytokines
The Bayesian networks for individual compartments 
showed that the relative relationships among cytokine 
and cell mediators were different in the peritoneal lavage 

fluid (Fig. 3), blood (Fig. 4), and BAL fluid (Fig. 5). This 
suggests that the relative importance and interactions 
of the mediators may differ with location. For instance, 
the relative relationship between the chemokines KC and 
MIP-2α changed in direction and proximity among the 
three sample types. Likewise, the relative association of 
IL-6 to the chemokines changed with the sample source. 
These changing relationships suggest that more than one 
compartment should be analyzed for a true picture of the 
inflammatory reaction that occurs after more than one 
insult.

Pulmonary neutrophil counts were influenced  
by the septic insult
In the BAL fluid (Fig.  5), the neutrophil counts were 
directly linked to two parent nodes, the CLP and the 
Lung Insult. The BN also suggested that both of these fac-
tors ultimately influenced the BAL fluid albumin levels, 
an indicator of vascular leak and amount of lung injury. 
The directed, fork-like “V” structure formed by the CLP 
and Lung Insult nodes suggests that the neutrophil activ-
ity is co-regulated by more than one factor. Such a “V” 
structure relationship is typically hard to detect by stand-
ard methods and required interpretation of multiple 
comparisons in our initial analysis. In addition, the “CLP”, 
“LungInsult”, “NE”, and “EO” form a “Y” structure (Fig. 5), 
suggesting a causal relation between neutrophil (“NE”) 
and eosinophil (“EO”) [15]. Therefore, Bayesian network 
analysis allowed more rapid identification of likely causal 
relationships. However, it is also noted that the confirma-
tion of the inferred directionality usually needs other evi-
dences, such as the experimental results from the direct 
perturbation at the upstream lung insult variable.

Compartmentalized cytokine levels were not always 
dependent upon the septic insult
In the peritoneal cavity (Fig.  3) and plasma (Fig.  4), the 
proinflammatory cytokines present (IL-6, TNF-α, and 
IL-1β) were linked to the CLP and the injury interval. 
However, the pro-inflammatory cytokines in the BAL 
fluid (Fig.  5) were connected to the kind of Lung Insult 
that was given and appeared largely independent of the 
CLP. Likewise, the chemokine levels were dependent 
upon the type of Lung Insult and not directly associated 
with the CLP sepsis (Fig. 5). This was interesting because 
the neutrophils in the BAL fluid were directly connected 
to the CLP. Therefore, the BN analysis suggested that fac-
tors other than chemokines are important to the relative 
neutrophil recruitment when aspiration is current with 
septic peritonitis and that the factor(s) are related to the 
CLP.

According to the BN analysis, the CLP was the primary 
factor in determining the peritoneal neutrophil count 

Fig. 2  Pulmonary chemokines after aspiration. IT injections of saline, 
acid, or acid + particles were given to groups of mice (No CLP). In 
additional groups of mice, cecal ligation and puncture was per-
formed followed by identical IT injections. CLP was performed either 
immediately before the IT injection (0 Hours) or preceded the IT injec-
tions by 12 or 48 h (12 Hours or 48 Hours). All mice were euthanized at 
6 h post-IT injection and bronchoalveolar lavage was performed. a KC 
concentrations from BAL fluid. b MIP-2α concentrations in BAL fluid. 
n = 10–12/group. Results are expressed as mean ± SEM. *p < 0.05, 
P = p < 0.05 compared to No CLP Particles group, P0 = p < 0.05 
compared to Particles group with 0 Hours interval between insults, 
P48 = p < 0.05 compared to Particles group with 48 Hours between 
intervals
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and the localized lung injury did not affect these counts. 
Based on this finding, we theorized that the lung com-
petes for neutrophils with the peritoneum. To test this, 
peritoneal lavage fluid was harvested from mice (n = 10/
group) at 0, 12, 48 h after CLP. This corresponds to the 
times after CLP at which the lung injury would have been 
delivered. The peritoneal neutrophil counts were signifi-
cantly higher at 12 h than at 0 h (Fig. 6), suggesting a sig-
nificant number of neutrophils were present at the site of 
the infection and not available for transport to the lung 
in spite of high chemokine levels. This neutrophil “sink” 
would have been stimulated by the CLP, as suggested by 
the BN, and demonstrates a relative pattern of neutrophil 
counts that is the opposite of that seen in the BAL fluid 
of mice when any lung insult was delivered at that time 
point (Fig. 1).

Discussion
Since the term “Bayesian networks” was coined by Judea 
Pearl in 1985 [28] and the BN field formally established 
in the late 1980s [29, 30], BN has been widely studied 
at different levels [12, 18, 19, 31]. However, its applica-
tion in clinical fields is still limited and its real usage in 
biomedical research has not been vigorously demon-
strated. To our knowledge, our study is the first to apply 
BN analysis to the protein and cellular components of 
sepsis-associated organ failure. The generally accepted 
explanation behind the “two hit” theory is that an initial 
immune response will prime the host for an exaggerated 
response to a second injury. However, this did not explain 
the results in our study. Bayesian Network analysis of the 
data provided further characterization of this complex 
problem and avenues for further investigation.

CLP

MIP1-α

IL2 KC

LIX

TNFSR2 WBC

NE

LY

MO

LungInsultInjuryInterval

IL6

IL1-β

IL4

IL10

IL18

MIP2

Eotaxin

TNF

IFN-γ

IL1RA

IL5

IL12

IL13

MCP TNFSR1 RANTES EO

Fig. 3  Consensus Bayesian network obtained for peritoneal lavage sample data sets. Mice (n = 10–12/group) were given IT injections of saline, 
acid, or particles (lung insult) with or without the additional insult of cecal ligation and puncture (CLP). CLP was performed at intervals relative to the 
aspiration injury (injury interval), either immediately before the IT injection (0 h) or preceding them by 12 or 48 h. There were a total of 12 combina-
tions of CLP, lung insult and insult interval. All mice were euthanized at 6 h post-IT injection. Peritoneal lavage fluid was collected for cell counts and 
cytokine levels. The data sets were analyzed in Bayesian Networks. When interactions occurred in the same direction in all of the networks, these are 
represented as directed edges (arrows), whereas those appearing at least once in an opposing direction are represented as undirected edges (no 
arrowhead). CLP refers to the presence of sepsis. Injury interval is the time interval between the induction of sepsis (none, 0, 12, or 48 h) and Lung 
Insult refers to the aspiration (saline, acid, or particles)
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In our study, the BN proved useful in the predictive 
analysis of data derived from a clinically relevant design 
incorporating multiple scenarios of insult type and tim-
ing of the insult. The analysis suggested that the lung 
inflammation actually had little influence on other body 
compartments even in the face of concurrent inflamma-
tory disease. However, the neutrophil counts and the pro-
inflammatory cytokines in the BAL fluid were affected 
not only by the kind of Lung Insult but also by the CLP, 
suggesting the peritoneal response had some influence or 
communication with the lung. Interestingly, the BN sug-
gested this was not necessarily due to the direct effects of 
chemokine levels measured near the peak of lung injury. 
This disconnect could be explained by several possi-
bilities. First, chemokine concentrations in the lung may 

peak earlier in the course of aspiration lung injury [25, 32, 
33], prior to the peak in neutrophil recruitment. Further 
analysis with a dynamic Bayesian Network Analysis over 
several time points could demonstrate that relationship 
in a temporal pattern [9]. Second, the directed chemot-
axis of neutrophils is not solely dependent on the abso-
lute chemokine concentration. It may be a function of 
chemokine gradients between compartments [34]. These 
relationships were not defined in our analysis and could 
provide additional answers. Finally, factors other than the 
induction of chemokine concentrations could explain the 
influence of the first insult, CLP.

We further examined the possibility that the perito-
neum is a neutrophil “sink” after CLP which inhibits 
neutrophil flux to the secondary lung insult. Previous 

CLP

IL1RA

MCP TNFSR1

IL2

LYMO

LungInsultInjuryInterval

MIP2 KC

NE

EO

IL1-β

IL4

IL10 IL18

Eotaxin IL6

TNF LIX

MIP1-α

IL5IL12

IFN-γ IL13 TNFSR2

RANTES

WBC

Fig. 4  Consensus Bayesian network obtained for blood data sets. Mice (n = 10–12/group) were given IT injections of saline, acid, or particles 
(lung insult) with or without the additional insult of cecal ligation and puncture (CLP). CLP was performed at intervals relative to the aspiration 
injury (injury interval), either immediately before the IT injection (0 h) or preceding them by 12 or 48 h. There were a total of 12 combinations of 
CLP, lung insult and insult interval. All mice were euthanized at 6 h post-IT injection. Blood was collected and plasma obtained for cell counts and 
cytokine levels. The data sets were analyzed in Bayesian Networks. When interactions occurred in the same direction in all of the networks, these are 
represented as directed edges (arrows), whereas those appearing at least once in an opposing direction are represented as undirected edges (no 
arrowhead). CLP refers to the presence of sepsis. Injury Interval is the time interval between the induction of sepsis and the lung insult (none, 0, 12, 
or 48 h) and Lung Insult refers to the aspiration (saline, acid, or particles)
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studies have shown that peritoneal neutrophil counts 
increase within hours of CLP and remain elevated for 
several days. Blood neutrophil counts severely decline 
by 24 h and gradually rebound over several days [25, 35, 
36]. Likewise, studies have shown that proinflammatory 
cytokines in the plasma and peritoneum show distinctive 

patterns, with significant increases over the first 24 h fol-
lowed by rapid decline by 48 h [25, 36]. These predictable 
patterns reinforce the BN analysis. The neutrophil counts 
in blood and the pro-inflammatory cytokines in blood 
and peritoneum, (Figs.  1, 2, respectively) were depend-
ent on the timing (insult interval) not just the occurrence 
of the second insult. Further study in our model demon-
strated that the peritoneal neutrophil counts present at 
the time of the aspiration insult were inversely related 
to the subsequent BAL fluid counts. Likewise, our stud-
ies also showed that the blood neutrophils were signifi-
cantly lower (p < 0.05) 12 h after CLP (0.8 ±  0.2 ×  103 
neutrophils/µl) than at the time of CLP (1.9 ± 0.2 × 103 
neutrophils/µl). These results suggest the availability of 
peripheral neutrophils for lung recruitment was finite, 
regardless of chemokine concentrations. Interestingly, 
the lack of recruitment to the lung during infection 
elsewhere may serve as a survival advantage, allowing 

Fig. 6  Peritoneal neutrophil counts in response to CLP. Mice had 
CLP to induce sepsis and were euthanized at 0, 12, and 48 h later. 
Peritoneal lavage fluid was harvested to reveal neutrophil counts 
that would correspond to after the time points at which the lung 
injury was delivered in previous experiments. n-10/group. Results are 
expressed as mean ± SEM. *p < 0.05 compared to 0 and 48 h groups

CLP

NELY MO
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InjuryInterval

IL1-β

IL4

IL10 IL2

IL12

IL18

MIP2
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IL5

TNF

MCP TNFSR2 IL1RA

RANTES

IL13

IFN-γ

IL6

L IX TNFSR1
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Albumin
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Fig. 5  Consensus Bayesian network obtained for BAL fluid data sets. 
Mice (n = 10–12/group) were given IT injections of saline, acid, or 
acid + particles (lung insult) with or without the additional insult of 
cecal ligation and puncture (CLP). CLP was performed at intervals rela-
tive to the aspiration injury (injury interval), either immediately before 
the IT injection (0 h) or preceding them by 12 or 48 h. There were a 
total of 12 combinations of CLP, lung insult and insult interval. All mice 
were euthanized at 6 h post-IT injection. Bronchoalveolar lavage fluid 
was collected for cell counts and cytokine levels. The data sets were 
analyzed in Bayesian Networks. When interactions occurred in the 
same direction in all of the networks, these are represented as directed 
edges (arrows), whereas those appearing at least once in an oppos-
ing direction are represented as undirected edges (no arrowhead). 
CLP refers to the presence of sepsis. Injury interval is the time interval 
between the induction of sepsis and the lung insult (none, 0, 12, or 
48 h) and Lung Insult refers to the aspiration (saline, acid, or particles)
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recruitment of phagocytic cells to the site of infection 
while protecting the lung from inflammation. Further 
investigations of the mechanisms behind this advantage 
could prove useful to protect organs during other inflam-
matory disease processes.

Conclusions
In conclusion, the study of inflammatory disease processes 
involves an extensive group of mediators and experimen-
tal factors that cannot be fully appreciated with standard 
methods of analysis. The examination of single factors or 
mediators may yield some basic information. For instance, 
studies of simple aspiration have demonstrated that the 
production of chemokines in the lung leads to neutro-
phil recruitment and subsequent lung injury, manifested 
by increased albumin leakage into airways. A more com-
prehensive understanding of the disease process may only 
be derived from consideration of multiple, concurrent 
factors. In this case, the Bayesian Network analysis pro-
vided a tool for early interpretation of the inferred rela-
tionships between these factors and helped direct further 
investigations. Such a BN analysis is generic. Therefore, it 
can be used to address additional scientific problems in 
the sepsis field and other research areas. In addition, the 
procedures and methods used in our experimental anal-
ysis can be applied to the practical design of other BNs, 
stimulating more usage of this valuable tool in biomedical 
research including clinically oriented fields.

Methods
Experimental study design
Mice were randomized into groups. A cecal ligation and 
puncture (CLP) was performed to induce sepsis in one 
group, the other had no surgery. Within each group, the 
mice were randomized to receive an intratracheal instilla-
tion of one of three aspirates (lung insult): saline, acid, or 
acid with particles. In groups with CLP plus Lung Insult, 
the groups were further randomized for timing of the 
lung insult relative to the CLP (Injury Interval) at one of 
three intervals (0, 12, or 48 h). These time points marked 
the time at which septic inflammation would be none, 
high, or resolving, respectively. Therefore, there were 
a total of 12 groups and 10 mice/group. All mice were 
euthanized at 6 h after the lung insult to allow equal time 
for development of pathology and evaluation within the 
time considered the peak of lung inflammation follow-
ing aspiration. Blood, bronchoalveolar lavage (BAL) fluid, 
and peritoneal lavage (PL) fluid were obtained from each 
mouse for multiple cell counts and cytokine analysis.

Animals
Female ICR mice (23–25  g) were obtained from Har-
lan Sprague–Dawley, Inc. (Indianapolis, IN). The mice 

were housed in a temperature-controlled room with a 
12-h dark/light cycle. Food and water were given ad libi-
tum. All of the experiments were approved in a protocol 
(08521) reviewed by the University Animal Care and Use 
Committee at the University of Michigan.

Cecal ligation and puncture (CLP)
Mice were anesthetized with isoflurane. The peritoneum 
was opened and the cecum ligated with silk suture. Two 
punctures were made with a 26-gauge needle which 
induces a non-lethal peritonitis. Post-surgery, the mice 
were given 1.0 mL of warmed saline subcutaneously.

Aspiration
Mice were anesthetized with isoflurane and given aspi-
rates by the oropharyngeal route as previously described 
[30]. Aspirates, delivered in two, 40 μl increments per 
mouse, consisted of one of the following: normal saline 
(Saline), normal saline titrated to a pH of 1.15 with 
hydrochloric acid (Acid), or the acidic solution with gas-
tric particles (Particles). Gastric particles were obtained 
from the stomach contents of healthy mice as previously 
described [24]. The gastric material was washed with 
saline, filtered through a 200  µm mesh, autoclaved and 
resuspended in saline (40 mg/ml). The pH was titrated to 
1.15.

Sample harvest
Mice were anesthetized with 87  µg ketamine (Keta-
set; Fort Dodge Laboratories, Inc.) and 13  µg xylazine 
(Rompun; Bayer Corporation) per gram body weight of 
mouse. Then, 20 µl of EDTA anti-coagulated blood were 
obtained from a tail vein for blood counts. Additional 
whole blood was collected in 50 U of porcine derived 
heparin (Elkines-Sinn, Inc.). Animals were then eutha-
nized by cervical dislocation. A bronchoalveolar lav-
age was performed with Hank’s Balanced Salt Solution 
(without CaCl2, Mg2SO4, and phenol red) by collecting 
two, one milliliter increments. Peritoneal lavage was per-
formed by injecting 10 ml of HBSS into the abdomen and 
retrieving 8 ml.

Peripheral blood analyses
Complete blood counts were performed with a Hemavet 
Mascot Hematology System Counter 1500R (CDC Tech-
nologies, Inc.). The remaining blood samples were centri-
fuged (2000g, 5 min) and plasma was stored at −20 °C for 
later cytokine analysis.

Bronchoalveolar lavage (BAL) and peritoneal lavage (PL) 
fluid cell counts
The BAL and PL fluids were centrifuged (600g, 5  min). 
Supernatants were stored at −20 °C. The pellets from the 
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two samples were pooled, red blood cells lysed with Zap-
Oglobin II® (Coulter Corp. Miami, FL, USA), and total 
cell counts performed with a Coulter Counter model Z1. 
Slides were loaded with 1 × 105 cells, centrifuged (700g, 
3 min) and stained with Diff-Quick (Baxter, Detroit, MI, 
USA). Differentials (300 cells) were counted and used to 
calculate absolute cell counts.

Albumin enzyme‑linked immunosorbent assay (ELISA)
Standards (mouse albumin, Sigma) and BAL samples were 
diluted in borate buffer. After overnight incubation at 
4 °C, Blocker™ Casein in PBS (Pierce) was used to inhibit 
non-specific binding. Rabbit polyclonal antibodies against 
mouse albumin were allowed to incubate for 1 h (6.9 µg/ml 
in 10 % Blocker™ Casein in PBS) followed by 1 h incubation 
of goat anti-rabbit IgG conjugated to horse-radish peroxi-
dase (Jackson ImmunoResearch Laboratories; 1:8000). 3, 
3′, 5, 5′ tetramethyl benzidine (TMB) was used as the color 
reagent and 1.5 N sulfuric acid was used to stop the reac-
tion. The absorbance was read at 465 and 590 nm.

Cytokine microarray
All cytokines except KC were measured with a microarray 
immunoassay [37]. The microarray quantified cytokines 
considered to be pro-inflammatory (Table 1) or anti-inflam-
matory (Table 2). In addition, the microarray included sev-
eral chemokines (Table  3). Capture antibodies (R and D 
Systems) were applied to ELISA plates using a non-contact 
(Piezorray) spotting system. Plates were blocked with Block-
ing Buffer (LI-COR, Inc.) for 1  h and then washed with 
buffer (Schleicher and Schuell). Standards and samples were 
incubated overnight at room temperature with constant 
shaking. After washing, the matched antibodies, conjugated 
to biotin, were incubated for 1 h. The plates were washed 
and streptavidin (IRDye 800, 1.0 mg/ml) was incubated for 
30  min in the dark with constant shaking. The plate was 
read on an Odyssey infrared imaging system. Standard 
curves were created with Statlia software.

CXCL1/KC ELISA
A separate KC ELISA was run due to complications of 
crossreactivity with other cytokines on the microar-
ray. The BAL fluid, PL fluid and plasma were diluted 1:2, 
1:2, and 1:10, respectively. Matched antibody pairs and 
recombinant mKC (R&D Systems) were used in an indi-
rect ELISA [38] with a detection system of biotinylated 
antibody, peroxidase-conjugated streptavidin (Jackson 
ImmunoResearch Laboratories) and 1  % TMB. Absorb-
ance was read at 450 and 630 nm.

Bayesian network analysis
The BANJO BN analysis tool (http://www.cs.duke.
edu/~amink/software/banjo/) was used as the backend 

BN executor [20, 39]. BANJO includes both static and 
dynamic Bayesian network searching given an underly-
ing dataset, and either null or prior assumptions which 
can be fixed or flexibly changed. In this study, the 
BANJO software was used to discretize immunological 
data prior to simulated annealing searches of a relatively 
large network space using no structural priors and the 
Bayesian Dirichlet scoring metric [31, 40]. The BANJO 
method has been used in different studies [39, 41, 42]. 
In the current static BN analysis, raw data for each 
cytokine and cell count measured were discretized or 
binned into 3 states. The discretization criteria for indi-
vidual factors were generated manually based on expert 
evaluations, while no structural priors (or edges) in the 
network were assumed a priori to prevent any bias or 
circular reasoning. Then, separate simulations were 
run on the descretized cytokine and cell count data for 
each of the three sample sources: (1) Peritoneum, (2) 
Blood, and (3) BAL. A fourth simulation tested the rela-
tions using combined datasets from all three locations 
to identify common associations among all possible 
data. In this combinatory network analysis, we gener-
ated a variable called “type” to indicate the fluid source 
for each dataset. Three additional variables were gener-
ated. The CLP had two values 0 or 1, representing the 
implementation of CLP procedure or not. Lung injury 
had four values (states): 0 for no injury, 1 for saline 
treatment, 2 for acid treatment, and 3 for treatment 
with particles. Injury interval also had 4 states (0 HR, 
12 HR, or 48 HR representing the time between deliv-
ery of CLP and the lung insult and None denoting that 
no lung insult had been given). Each simulation was run 
for 50  h in our BN execution. For each of the sample 
sources, 5 ×  109 Bayesian networks were searched (50 
simulations with 1 × 108 networks/simulation searched 
for combined sample sources, 100 replicate simulations 
with 5 × 107 for the peritoneum, blood, or BAL sample 
sources). For each analysis, consensus networks were 
generated using the best Bayesian networks sharing the 
top log posterior probability. Interactions with arrows 
appearing in the same direction in all of the networks 
are represented as directed edges (or arrows), whereas 
those appearing at least once in an opposing direction 
are represented as undirected edges (no arrowhead). A 
direct linkage between two factors in a BN graph indi-
cates that these two factors are more closely associated 
with high probability support than those factors that do 
not have direct linkages.

Statistical analysis
Summary data were expressed as mean ± SEM. Student’s 
t test and ANOVA with post hoc Tukey’s test were used 
to analyze differences among groups.

http://www.cs.duke.edu/%7eamink/software/banjo/
http://www.cs.duke.edu/%7eamink/software/banjo/
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