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Abstract 

Background:  In trauma research, “massive transfusion” (MT), historically defined as receiving ≥10 units of red blood 
cells (RBCs) within 24 h of admission, has been routinely used as a “gold standard” for quantifying bleeding severity. 
Due to early in-hospital mortality, however, MT is subject to survivor bias and thus a poorly defined criterion to classify 
bleeding trauma patients.

Methods:  Using the data from a retrospective trauma transfusion study, we applied a latent-class (LC) mixture model 
to identify severely hemorrhaging (SH) patients. Based on the joint distribution of cumulative units of RBCs and binary 
survival outcome at 24 h of admission, we applied an expectation-maximization (EM) algorithm to obtain model 
parameters. Estimated posterior probabilities were used for patients’ classification and compared with the MT rule. To 
evaluate predictive performance of the LC-based classification, we examined the role of six clinical variables as predic-
tors using two separate logistic regression models.

Results:  Out of 471 trauma patients, 211 (45 %) were MT, while our latent SH classifier identified only 127 (27 %) of 
patients as SH. The agreement between the two classification methods was 73 %. A non-ignorable portion of patients 
(17 out of 68, 25 %) who died within 24 h were not classified as MT but the SH group included 62 patients (91 %) who 
died during the same period. Our comparison of the predictive models based on MT and SH revealed significant dif-
ferences between the coefficients of potential predictors of patients who may be in need of activation of the massive 
transfusion protocol.

Conclusions:  The traditional MT classification does not adequately reflect transfusion practices and outcomes during 
the trauma reception and initial resuscitation phase. Although we have demonstrated that joint latent class modeling 
could be used to correct for potential bias caused by misclassification of severely bleeding patients, improvement in 
this approach could be made in the presence of time to event data from prospective studies.
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Background
Hemorrhagic shock accounts for the largest propor-
tion of mortality occurring within the first few hours of 
trauma center care, over 80 % of operating room deaths 
after major trauma and almost 50 % of deaths in the first 
24  h of trauma treatment [1]. Due to rapidly changing 

multi-system responses to injury in a relatively short-
term period, highly dynamic treatment regimes with 
blood transfusion are necessary and make compara-
tive effectiveness research in this area very challenging. 
In blood transfusion medicine, however, there are no 
established or universally accepted measures to quantify 
blood loss or the severity of continuing hemorrhage. To 
compensate for the lack of quantitative metrics for bleed-
ing severity, a single binary surrogate, namely massive 
transfusion (MT) stratification, became entrenched in 
the trauma literature, which is historically defined as the 
replacement of one’s total blood volume by transfusion 
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of 10 or more units of red blood cells (RBCs) within 24 h 
of admission. This definition has been routinely used to 
investigate when to initiate a MT protocol, or as a strati-
fication variable to account for potential confounding or 
effect modification when comparing the effectiveness of 
different resuscitation protocols [2–8]. However, there is 
a growing recognition of the pitfalls associated with the 
use of MT as a surrogate for bleeding severity and the 
need to replace this poor proxy [9–11]. The shortcom-
ings associated with this classical definition are that it 
excludes patients who died of hemorrhage-related causes 
before (1) sufficient numbers of units of blood transfused 
(e.g., 10th of RBCs) within the specified post-admission 
time frame (e.g., 24 h) to achieve successful resuscitation, 
and (2) interventions to stop further blood loss (surgi-
cal repair of damaged blood vessels and tissue) could be 
completed.

Several groups have tried to develop better definitions 
for MT to ameliorate these shortcomings. A recent inter-
national forum highlighted twelve different definitions 
for MT; the most common being ≥5 or 6 RBCs within 
4–6  h [12]. While the time period has been shortened 
from 24  h, this definition continues to exclude early 
deaths and does not account for the variability in addi-
tional blood products or other hemostatic interventions. 
An alternative approach has been considering the rate of 
transfusions. Savage et al.  [13] defined “critical adminis-
tration thresholds” (CAT) of ≥3 units of RBCs per hours 
to identify hemorrhaging patients. However, the CAT 
definition is still limited to RBC transfusions and does 
not account for plasma, platelet transfusions or crys-
talloids and colloids. More recently, Rahbar et  al.  [14] 
reported that 4 units of any resuscitative fluid including 
blood products, crystalloids and colloids, coined as the 
“resuscitation intensity”, within the first 30 min were pre-
dictive of 6 h mortality in their study. While these defini-
tions are greatly improved from the classical definition of 
MT, the predictive analysis is still based on simple logis-
tic regressions, which can be viewed as inadequate due 
to misclassification in the presence of death or informa-
tive dropouts [9]. In trauma care, these issues are criti-
cal because patient misclassification could result in 
increased risk of unnecessary blood transfusion or waste 
of limited and expensive blood resources.

In this article we propose a model-based classification 
approach for trauma patients. In the past decades, latent 
class (LC) modeling has been applied in various fields 
of sciences [15–19]. The goal of LC analysis is to take 
observed measures (e.g., presence of symptoms or mark-
ers of disease) and define a variable that is not directly 
observable the latent variable (e.g., disease status). These 
methods have been extended to jointly analyze longi-
tudinal quantitative marker and survival outcome (or 

informative dropout process), which typically combine a 
mixed model for longitudinal data and a survival model 
depending on the latent class [20–24]. Rahbar et al. [11] 
were the first to apply a LC model to classify patients with 
severe hemorrhage. This class of models assumes that the 
dependency between the risk of event and the trajectory 
of the biomarker is entirely captured by a LC structure 
rather than by individual random effects. This can avoid 
many of the numerical complexities of the shared ran-
dom-effects model under the conditional or so-called 
‘local’ independence assumption. These methods are par-
ticularly useful for characterizing heterogeneous popula-
tions to more accurately guide clinical decision making.

A unique challenge in analyzing trauma transfu-
sion data is that a terminating or informative censoring 
event such as death prevents further intervention with 
blood transfusion. In our example, the total amount of 
RBC units transfused prior to death or within 24  h of 
admission is dependent upon the duration of a trauma 
patient’s hemodynamically unstable survival. Therefore, 
the observed blood amount during resuscitation is pos-
sibly correlated with patients’ survival. Such a depend-
ency, also known as induced censoring, may produce 
spurious associations and misleading inference if not 
correctly addressed. To appropriately adjust for a simi-
lar induced dependency in medical cost analysis, Lin 
[25] proposed a linear regression model, accompanied 
by an inverse probability censoring weighting (IPCW) 
method. In this article, we consider a LC-based approach 
that utilizes comprehensive information on patient’s 
presentation, blood usage and survival outcome, with 
application to a retrospective trauma transfusion study 
[26]. Specifically, as an alternative to MT classification, 
using a logistic regression model we introduce a binary 
latent variable for severe hemorrhage (SH) that classifies 
severely injured trauma patients who may require mas-
sive blood transfusion. The class-specific logistic mod-
els for blood product utilization and survival status are 
then specified under the conditional independence (CI) 
assumption given each class membership. A benefit of 
the proposed approach is its ability to incorporate many 
observable quantities, such as vital signs upon emergency 
department (ED) admission, into all of these modeling 
components, as illustrated in Fig.  (1), which may better 
reflect practical complexities and support establishment 
of a protocol for massive blood transfusion.

Therefore, our goal is to use a LC model to account for 
induced censoring and correct potential misclassifica-
tion associated with MT. This research extends the pre-
vious work by Rahbar et al. [11] to develop an improved 
class of LC models that could be used to characterize 
SH patients. In addition, we will compare the predictive 
models developed by the new LC-based classification for 
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SH with the traditional MT definition. The remainder of 
this paper is organized as follows. First, the retrospec-
tive trauma data are briefly described. The next section 
describes the statistical model for the biomarker and 
dropout processes. The performance of our method is 
evaluated using both simulated data and the data exam-
ple. A concluding remark is provided in the last section.

The retrospective trauma transfusion study
This work was motivated by data from a retrospective 
multi-center trauma transfusion study, which enrolled 
transfused trauma patients admitted to 16 level 1 trauma 
centers in the US between July 2005 and June 2006 [26]. 
Included in the study were 1574 adult trauma patients 
who arrived from the scene and received at least 1 unit 
of RBCs in the ED, irrespective of mechanism of injury. 
Patient characteristics, including age, sex and race, 
admission vital signs, such as systolic blood pressure 
(SBP), heart rate (HR), respiratory rate (RR), tempera-
ture, hemoglobin (Hgb), and international normalized 
ratio (INR), Glasgow Coma Scale (GCS), transfusions, 
admission clinical laboratory tests, prevalence of comor-
bidity, trips to the operating room and outcome data 
such as 6- and 24-h mortality and cause of death, were 
collected from each site and entered into a database at 
the Department of Epidemiology and Biostatistics, The 
University of Texas Health Science Center at San Anto-
nio. Given that many patients were intubated upon 
arrival or in the ED, the respiratory rate was coded as 0 
to account for the poor respiratory state. Units of RBCs, 
platelets, and plasma were adjusted to standard units and 
totaled at 6 and 24 h after admission. Crystalloid and col-
loid amounts were similarly recorded. Ventilator, ICU, 
and hospital-free days were calculated based on a stay 

of 30  days. Cause of death was categorized as multiple 
organ failure, truncal hemorrhage, head injury, airway 
problems, or others, and validated at each site.

For the analysis, among 1574 patients, 471 with full 
observations on SBP, HR, Hgb, and pH were included. 
Main characteristics (in total and MT vs. non-MT) were 
summarized in Table 1. The median age was 36 (first and 
third quartiles 25–52.5)  years, and 350 patients (74.3  %) 
were male. Based on the conventional definition of MT, 

Fig. 1  Diagrams for activation of massive blood transfusion protocol. 
Actual decision making for massive blood transfusion involves several 
vital signs at hospital admission and potential risks of blood transfu-
sion and early mortality. The LC-based approach incorporates all 
these factors while MT is simply based on total utilization of RBCs

Table 1  Summary characteristics of trauma patients in the 
retrospective study

a  Mean (SD) is for continuous variables. For categorical (or binary) variables, 
count (%) are reported as indicated by the % sign

Patient characteristics Total MT Non-MT

(n = 471) (n = 211) (n = 260)

Mean (SD)a Mean (SD)a Mean (SD)a

Mortality

 Mortality, 0–24 h 68 (14.4 %) 51 (24.2 %) 17 (6.5 %)

 Mortality, 0–30 h 122 (25.9 %) 75 (35.5 %) 47 (18.1 %)

Clinical outcomes

 Ventilation days 5.57  (9.99) 5.79  (9.39) 5.44  (10.34)

 Intensive care unit days 8.55  (11.75) 9.98  (12.19) 7.38  (11.28)

 Hospital days 17.42  (20.98) 20.68  (24.23) 15.09  (18.03)

Patient characteristics

 Age (year) 41.04  (19.17) 40.48  (18.62) 41.50  (19.62)

 Gender (male) 350  (74.3 %) 163  (77.2 %) 187  (71.9 %)

 Penetrating injury 37.24  (29.39) 42.82  (33.27) 32.27  (24.46)

 Systolic blood pressure 
(mmHg)

112.25  (35.446) 103.46  (32.74) 119.38  (36.01)

 Diastolic blood pres-
sure (mmHg)

70.72  (24.11) 69.76  (22.78) 71.61  (25.29)

 Heart rate (bpm) 106.26  (27.46) 115.41  (27.40) 98.83  (25.23)

 Respiratory rate 21.42  (7.28) 22.31  (8.41) 20.78  (6.29)

 Temperature (°C) 35.91  (1.05) 35.85  (1.26) 35.96  (0.86)

 pH 7.25 (0.14) 7.21  (0.16) 7.28  (0.11)

 International normal-
ized ratio

1.44  (0.76) 1.56  (0.75) 1.33  (0.76)

 Base deficit −8.23  (6.11) −10.05  (6.50) −6.78  (5.37)

 Glasgow Coma Scale 10.53  (6.70) 9.30  (5.52) 11.54  (7.38)

 Injury severity score 27.68  (15.27) 32.35  (16.03) 23.87  (13.50)

Blood products usage

 RBC, 0–6 h (units) 8.95  (10.92) 16.91  (12.11) 2.49  (1.99)

 RBC, 0–24 h (units) 11.67  (12.32) 21.41  (12.71) 3.77  (2.17)

 Plasma, 0–6 h (units) 4.86  (6.86) 9.51  (7.75) 1.08  (2.16)

 Plasma, 0–24 h (units) 6.87  (8.90) 13.09  (9.76) 1.83  (3.06)

 Platelets, 0–6 h (units) 2.57  (6.04) 5.45  (8.01) 0.23  (1.43)

 Platelets, 0–24 h (units) 4.54  (9.43) 9.44  (12.26) 0.56  (2.01)

 Plasma/RBC ratio, 
0–24 h (units)

0.51  (0.59) 0.63  (0.37) 0.41  (0.71)

 Platelet/RBC ratio, 
0–24 h (units)

0.24  (0.40) 0.43  (0.40) 0.09  (0.32)
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211 (44.8  %) were MT and 260 (55.2  %) were non-MT. 
Some patient characteristics, such as base deficit, injury 
severity score and blood products usage, were substantially 
different across MT and non-MT. Out of all 471 patients, 
68 (14.4  %) died in 24  h and 122 (25.9  %) died in 30  h. 
Among those who died within 24 and 30 h, there were 17 
(25.0 %) and 47 (38.5 %) non-MT patients, respectively

Methods
Model and notation
We assume that there are two latent homogeneous sub-
groups and label this latent variable as SH versus non-SH, 
where SH patients are more likely to require activation of 
a MT protocol. From a statistical perspective, the meth-
odology can be easily generalized to problems with more 
than two latent classes. Suppose that we have a ran-
dom sample of n patients. For patient i ∈ {1, . . . , n}, let 
gi = (gi1, gi2), where gik is an indicator of membership of 
class k = 1, 2, and suppose that we observe the biomarker 
readings yi and the survival indicator wi at 24 h of hospi-
tal admission. By conditional independence, it is assumed 
that yi and wi are independent given the membership gi. 
The baseline covariates or treatment information will be 
incorporated into vi for the membership model or xi for 
the class-specific models. Denoting the conditional distri-
bution of A given B as [A|B] and the entire set of param-
eters by �, the log-likelihood can be decomposed as

The proposed model can be further described as follows. 
The probability πi1 = 1− πi2 that subject i belongs to 
class 1 can be modeled as a function of a vector of covari-
ates vi in a logistic regression with

where α is the vector of regression parameters. Next, we 
assume that the probability of death for class k = 1, 2, 
depends on the covariates xi through a binary logistic 
regression:

where γk is the kth class-specific coefficient for k = 1, 2. 
Here, wi = 1 corresponds to death within 24  h, 0 other-
wise. Finally, suppose the response variable yi depends on 
xi through a linear model: given gik = 1,

l(�) =

n
∑

i=1

log

(

2
∑

k=1

[gik = 1|vi][yi|xi , gik = 1][wi|xi , gik = 1]

)

.

(1)πi1(vi) = P(gi1 = 1|vi) =
exp(vTi α)

1+ exp(vTi α)
,

(2)P(wi = 1|gik = 1, xi) =
exp(xTi γk)

1+ exp(xTi γk)
,

(3)yi = xTi βk + ǫik , ǫik ∼ N (0, σ 2),

where βk is a vector of regression coefficients in class k. We 
assume equal variance for each component in order to avoid 
the unboundedness of the mixture likelihood. In our trauma 
data, yi represents the logarithm of cumulative amount 
of RBCs consumed up to 24 h or time of death, whichever 
occurs first, and wi is the survivorship status at 24 h of hos-
pital admission. However, the exact amount of RBCs trans-
fused at 24 h is observable only when a patient survives at 
least for 24 h (i.e., wi = 0), otherwise, it is censored at the 
time of death or dropout. Such a phenomenon is common 
with medical cost data, in which some study subjects are not 
followed for the full duration of interest so their total costs 
are unknown for the subjects who are censored. To correct 
the associated selection bias, Lin  [25] adapted an inverse 
probability of censoring weighted (IPCW) technique to a 
linear model. This method, however, is not applicable to our 
situation, because full assessment to survival outcomes is 
limited with the retrospective data. Instead, we assume that

that is, the observed amount of RBCs transfused (yobsi ) is 
uniformly distributed with true amount yi as the upper 
boundary. Through a simulation study, we examine the 
effect of a biased estimation in which censored observa-
tions are not adjusted with (4). Although (4) is an untest-
able assumption, we demonstrated that it is helpful in 
reducing potential bias caused by induced censoring.

Parameter estimation
Estimation of the unknown parameters in the pro-
posed mixture model can be performed using a maxi-
mum likelihood method. Based on the observed data 
O = {(yobsi ,wi, vi, xi); i = 1, . . . , n}, the observed likeli-
hood function for � = {(α,βk , γk , σ); k = 1, 2} is

where φ(·) is a standard normal density. The third equality 
in (5) follows from conditional independence assumption 
between yi and wi given all covariates and the latent variable.

(4)exp(yobsi ) ∼ Uniform[0, exp(yi)], if wi = 1,

(5)

L(�) =

n
�

i=1

[yi ,wi|xi , vi ,�]

=

n
�

i=1





2
�

k=1

πik (vi)[yi|gik = 1, xi ,�][wi|gik = 1, xi ,�]





=

n
�

i=1

� 2
�

k=1

exp(gik v
T
i α)

1+ exp(vTi α)

��

φ

�

yobsi − xTi βk

σ

�

×

�

1

1+ exp(xTi γk )

��I(wi=0)

×

�
� ∞

yobsi

e−(u−yobsi )
φ

�

u− xTi βk

σ

�

× du

�

exp(xTi γk )

1+ exp(xTi γk )

��I(wi=1)
��

,



Page 5 of 13Rahbar et al. BMC Res Notes  (2015) 8:602 

However, it would be cumbersome to maximize the 
observed-data log-likelihood (5) analytically due to com-
plexities by the presence of mixing parameters and the 
non-linearity caused by censored observations. To sim-
plify the estimation procedure, we introduce a random 
variable zi for unobservable yi for the drop out of patient i 
by death status. We treat latent variables gi and zi as miss-
ing data and invoke the expectation-maximization (EM) 
algorithm to maximize the log-likelihood. Given gi and zi, 
the complete-data log-likelihood is

In EM algorithm, we alternate between expectation step 
(E-step) and maximization step (M-step). In the E-step 
of the (s + 1)th iteration, we evaluate the expectation of 
the complete-data log-likelihood (6), conditional on the 
observed data O and the current parameter estimate, 
say �(s). This is equivalent to calculating the expected 
values of all the functions of gi and zi that appear in the 
complete-data log-likelihood. Let Ẽ(·) represent such 
an expectation and g̃ik = Ẽ[gik |�]. The posterior class-
membership probability is then

Based on the assumption (4), the zi’s have the following 
class-specific distribution:

(6)

lc(�) =

n
∑

i=1

2
∑

k=1

(vTi α)gik −

n
∑

i=1

log
{

1+ exp(vTi α)
}

−
n

2
log σ 2

−
1

2σ 2

n
∑

i=1

2
∑

k=1

gik(1− wi)(y
obs
i − xTi βk)

2

−
1

2σ 2

n
∑

i=1

2
∑

k=1

gikwi(zi − xTi βk)
2

+

n
∑

i=1

2
∑

k=1

gik [(x
T
i γk)wi − log{1+ exp(xTi γk)}].

(7)

g̃ik =
[gik = 1|vi][y

obs
i ,wi|xi, vi, gik = 1]

[yobsi ,wi|xi, vi]

=
πik(vi)[y

obs
i |xi, gik = 1][wi|xi, gik = 1]

∑2
k=1 πik(vi)[y

obs
i |xi, gik = 1][wi|xi, gik = 1]

.

(8)

p(zi|y
obs
i , gik = 1,�) =

pk(zi, y
obs
i |�)

∫∞

yobsi
pk(u, y

obs
i |�)du

=

e−(zi−yobsi )φ

(

zi−xTi βk
σ

)

∫∞

yobsi
e−(u−yobsi )φ

(

u−xTi βk
σ

)

du

,

for which we calculate Ẽk [z
r
i |�] =

∫∞

yobsi
zri p(zi|y

obs
i ,

gik = 1,�)dzi for r = 1, 2 and k = 1, 2. Let 
Q(�;�(s)) = Ẽg ,z[lc(�)|�(s)] be the expected complete-
data log-likelihood at the sth step, given by

which is maximized in the M-step with respect to �; that 
is, �(s+1) = arg max�Q(�;�(s)).

In our normal-mixture model, updating model param-
eter � in the (s + 1)th step is tantamount to calculating

where X = (x1, . . . , xn)
T, W (s+1)

k  is an n× n diagonal 
matrix with diagonal elements {g̃

(s+1)
ik , i = 1, . . . , n} , 

ỹ
(s)
k = (ỹ

(s)
1k , . . . , ỹ

(s)
nk )

T, where ỹ(s)ik = yobsi  if wi = 0, other-
wise, ỹ(s)ik = Ẽk [zi|�

(s)]. The EM-based maximum-like-
lihood algorithm updates βk by a weighted least squares 
estimate in the M-step as φ(·) is a normal density. The 
EM algorithm is initiated from an initial value �(0), after 
which one oscillates between the E-step and M-step until 
convergence is achieved. In order to avoid local maxima 
for the examples in this paper, the maximization process 
was repeated 20 times with random starting values. Thus, 
the reported estimates represent the maximizer over the 

Q(�;�(s)) =

n
∑

i=1

2
∑

k=1

(vTi α)g̃
(s)
ik

−

n
∑

i=1

log
{

1+ exp(vTi α)
}

−
n

2
log σ 2

−
1

2σ 2

n
∑

i=1

2
∑

k=1

g̃
(s)
ik {(1− wi)(y

obs
i − xTi βk)

2

+ wiẼk [(zi − xTi βk)
2|�(s))]}

+

n
∑

i=1

2
∑

k=1

g̃
(s)
ik [(xTi γk)wi

− log{1+ exp(xTi γk)}],

α(s+1) = arg maxα

n
∑

i=1

[

(vTi α)g̃
(s+1)
ik

− log
{

1+ exp(vTi α)
}]

,

β
(s+1)
k = (XTW

(s+1)
k X)−1XTW

(s+1)
k ỹ

(s)
k ,

γ
(s+1)
k = arg maxγk

n
∑

i=1

[g̃
(s+1)
ik (xTi γk)

wi − g̃
(s+1)
ik log{1+ exp(xTi γk)}],

σ 2(s+1) =
1

n

n
∑

i=1

2
∑

k=1

g̃
(s+1)
ik {(1− wi)(y

obs
i − xTi β

(s+1)
k )2

+ wiẼk [(zi − xTi β
(s+1)
k )2|�(s)]},



Page 6 of 13Rahbar et al. BMC Res Notes  (2015) 8:602 

20 maximizations. The use of multiple starting points is 
quite standard in application of LC models and not ter-
ribly onerous for practical purpose. For the examples in 
this paper, the algorithm converged fairly quickly, and, 
for the most part, the global maximum was not hard to 
find.

Standard error estimation
We estimate standard errors of the estimated class-con-
ditional model and the mixing parameters, using the 
empirical observed information matrix under the EM 
algorithm framework,

where Sc(Oi; �̂) represents the ith individual complete-
data score function with respect to the vector of param-
eters �, evaluated at the maximum likelihood estimate 
�̂. The covariance matrix of the parameter estimates is 
then approximated by the inverse of the empirical Fisher 
information (9). The appeal of this approach is that all the 
terms in (9) are by-products of the M-step and provide a 
reasonable way to estimate standard errors for all model 
parameters. Wald’s test can then be performed based on 
the estimated variance-covariance matrix.

Classification
Once the model is fitted, patients can be classified into 
one of several latent subgroups. In our data example, 
latent groups can have substantive meaning, such as a 
group of SH patients for future MT protocol. Although 
we focus on a two-mixture model, the proposed meth-
odologies can be easily generalized to problems with 
K ≥ 2 latent classes. Patients’ membership in various 
subgroups will be determined based on estimated poste-
rior probabilities. We have that P(gik = 1) = πik, termed 
prior probability; this class probabilities πik represent the 
likelihood that ith patient belongs to group k but with-
out using information from characteristics of patients, 
blood usage and survival status. In contrast, the posterior 
probability of patient i belonging to the kth group is given 
by (7). This represents how likely is that the ith patient 
belongs to group k, taking into account the observed 
response yobsi  as well as the survival status wi of that 
patient. Using these posterior probabilities, we classify 
patient i into class k if and only if g̃ik = maxj{g̃ij}. How-
ever, in  situations where two or more posterior prob-
abilities are almost equal, classification becomes nearly 
random, which could result in misclassifications. In 
general, we can vary the number of latent groups K and 
explore the sensitivity of the classification to the num-
ber of latent classes considered. Also, we may use several 

(9)Ic(�̂;O) =

n
∑

i=1

Sc(Oi; �̂)Sc(Oi; �̂)T ,

cut-off points for posterior probabilities and examine 
whether the results remain consistent.

Results
Numerical study
In order to assess performance of LC analysis for iden-
tifying subpopulations we conducted a simulation study, 
in which 1000 data sets were simulated, each contain-
ing measurements and covariate information from 250 
and 500 patients. Mimicking the retrospective trauma 
study, the LC variable in the model is assumed to split the 
patient into two latent subgroups. Component probabili-
ties for the LC mixture model follow the logistic model:

which involves one covariate vi ∼ N (0, 1). We let 
α = (α0,α1)

T = (0.5, 1)T so that approximately 60  % of 
patients belong to class 1. For the binary survival status, 
the logistic regression is based on a binary random vari-
able xi ∼ Bernoulli(0.5):

The parameters in these models, γ (k) = (γ
(k)
0 , γ

(k)
1 )T , 

differ for both latent classes with γ (1) = (1,−1)T and 
γ (2) = (−1, 1)T, corresponding to mortality rates of 62 
and 38 % for class 1 and class 2, respectively. Finally, loga-
rithm of observed RBCs at 24 h were generated from the 
class-specific linear model that allowed censoring: when 
gik = 1,

where

That is, true cumulative RBC units can be meas-
ured only when the patient is alive (wi = 0), oth-
erwise, observed values will be lower than or 
equal to the true measurement but at random. We  
let β(1) = (β

(1)
0 ,β

(1)
1 ,β

(1)
2 )T = (log(15),−1, 1)T and 

β(2) = (β
(2)
0 ,β

(2)
1 ,β

(2)
2 )T = (log(8), 1,−1)T , so that 

patients in class 2 will receive generally smaller amount 
of cumulative RBC units. We consider three scenarios 
with σ = 0.5, 1 and 2, respectively. In this setting, class 
1 may represent the SH subgroup which requires more 
blood products transfusion. By contrast, conventional 
MT definition will identify MT patients by the rule: 
exp(yobsi ) ≥ 10.

πi1(vi) = 1− πi2(vi) =
exp(α0 + α1vi)

1+ exp(α0 + α1vi)
,

P(wi = 1|gik = 1, xi) =
exp(γ

(k)
0 + γ

(k)
1 xi)

1+ exp(γ
(k)
0 + γ

(k)
1 xi)

, k = 1, 2.

(10)yobsi = β
(k)
0 + β

(k)
1 vi + β

(k)
2 xi +�

(k)
i + ǫi, ǫi ∼ N (0, σ 2),

exp(�
(k)
i ) =

{

1, if wi = 0,
Uniform[0, 1], if wi = 1.
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Table  2 contains the results of our simulation study. 
We calculated the bias of estimates, the empirical stand-
ard error (SSE), the average of estimated standard errors 
(ASE). Besides comparing the mean estimates and 
true values of the parameters through the bias, we also 
reported the mean squared error (MSE) that simultane-
ously involves bias and precision. Simulation results show 
that bias seems negligible and SEEs and ASEs match rea-
sonably well for all model parameters in three scenarios. 
Both bias and standard error become smaller as the sam-
ple size grows. For the estimation of σ, we observed some 
discrepancy between sample and estimated standard 
errors, but there is no significant impact on the estima-
tion of other regression parameters of interest.

As true value of σ increases, the associated error term 
in model (10) has large variation and thus two latent 
subgroups are less separable. This was reflected in the 
increased magnitude of MSE with large σ. We also 
note that the proportions that true latent variable coin-
cides with the MT class were about 66, 53 and 38 % for 
σ = 0.5 , 1, 2, respectively, when n = 500. On the other 
hand, the corresponding proportions that the estimated 
posterior probability from (7) correctly predicts the 
latent class were about 82, 74, and 62 %, implying that the 
LC-based classification consistently outperforms naïve 
MT classification.

Application to the data from the retrospective trauma 
transfusion study
We illustrate application of the proposed method to the 
data from the retrospective trauma study [26]. The pro-
posed LC model was applied to identify severely hemor-
rhaging (SH) patients who might need intensive massive 
transfusion care, assuming that the trauma patients could 
be split into two or more latent subgroups. The base-
line covariates used in our analysis include the following 
binary patients’ characteristics at admission: (1) systolic 
blood pressure (SBP) <90  mmHg; (2) heart rate (HR) 
≥120 bpm; (3) pH <7.25 and (4) Hemoglobin (Hgb) <9. 
These covariates were selected by exploratory analysis 
and included in models (1)–(3), respectively. In addi-
tion, the 24-h blood products ratio, (5) plasma:RBC ratio 
and (6) platelet:RBC ratio, were considered as treat-
ment information in models (2) and (3). These two vari-
ables are categorized as (ratio = 0), (0 < ratio ≤ 1), and 
(ratio > 1) . From the observed data, twe can only observe 
the total amount of RBCs transfused at 24  h or up to 
death, whichever comes first.

The proposed LC model was also fitted for different 
numbers of classes. The values of BIC as the number of 
classes varied from 1 to 5 were 1689.6, 1362.7, 1366.8, 
1368.4, and 1402.1 respectively, and the associated num-
bers of parameters were 25, 47, 73, 99, and 125. The 

one-class model is inferior compared with those with 
more latent classes. The two-class model has the small-
est BIC value and may be the favored approach to the 
data. Hence, the analysis below was based on a two-mix-
ture model for SH (class 1) versus non-SH (class 2). The 
class-membership probability, given SBP, HR, pH and 
Hgb, can be calculated through estimated coefficients 
of the logistic model (1). To predict the log-transformed 
24-h cumulative RBC transfusion, we used a class-spe-
cific linear model (3) and treated 24-h survivorship as a 
binary response in class-specific logistic models (2), both 
based on the cumulative 24-h ratios (plasma:RBC and 
platelet:RBC ratios). The results of the joint LC analy-
sis with (1)–(3) are summarized in Table  3. For com-
parison purposes, we also carried out separate analyses 
of the three component models with conventional MT 
definition.

Overall, the SH group is characterized by significantly 
higher units of RBC transfusion than those of the non-
SH group (nearly 3 times higher in logarithmic scale), 
representing that on average the SH patients received 
more than 10 units of RBCs within 24 h. The effects of 
the plasma:RBC ratio and the platelet:RBC ratio on the 
cumulative 24-h RBC transfusion and the dropout pat-
tern show a clear difference by latent classification. In 
the SH subgroup, the higher ratios of plasma/RBC and 
platelet/RBC were consumed, the lower dropout (death) 
rates were obtained. The SH classification will depend 
on the magnitude of cut-off for posterior probabil-
ity (7). Because the LC mixture model considered here 
only contains two latent groups, we merely need to look 
at one of the posterior probabilities, e.g., the posterior 
probability that the patient belongs to class 1. Based on 
this, the patients can be classified following the sug-
gested cut-off values in Table 4. If the posterior probabil-
ity lies between 0.45 and 0.55, it is uncertain to which 
group the patient can be classified. Only 9 out of 471 
patients in the trauma data are in this situation. For the 
most patients, 450 (95.5 %), it is more clear into which 
group they can be classified as their posterior probability 
is above 0.60.

When the SH and MT classifications are applied to the 
same patients, the observed data can be summarized in 
Table 5. By regarding SH as “true” binary bleeding status, 
sensitivity and specificity are 82.7 and 69.2  %, implying 
the possibility that a non-ignorable proportion of trauma 
patients unnecessarily received MT intervention. Among 
68 patients who died before 24 h, a non-ignorable portion 
of patients (17, 25 %) were not classified as MT but the 
SH group included 62 patients (91  %) who died during 
the same period. Among 22 patients who were non-MT 
but classified as SH, 14 died before 24 h post admission, 
while only 3 out of 106 MT but non-SH patients died. 
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Table 2  Summary statistics for the simulation studies for the two-component LC mixture model under different scenarios 
(σ = 0.5, 1, and 2) and two sample sizes (n = 250 and 500)

SSE sample standard errors, ASE average of estimated standard errors, MSE mean squared error

Scenario Parameter True n = 250 n = 500

Est SSE ASE MSE Est SSE ASE MSE

σ = 0.5 α0 0.5 0.514 0.201 0.201 0.040 0.502 0.139 0.133 0.017

α1 1.0 1.027 0.232 0.226 0.052 1.009 0.157 0.155 0.024

β
(1)
0

2.708 2.708 0.071 0.073 0.005 2.710 0.050 0.050 0.002

β
(1)
1

−1.0 −1.002 0.055 0.054 0.003 −1.002 0.038 0.037 0.001

β
(1)
2

1.0 0.998 0.101 0.105 0.011 0.995 0.071 0.071 0.005

β
(2)
0

1.609 1.605 0.141 0.133 0.017 1.610 0.096 0.094 0.009

β
(2)
1

1.0 1.001 0.094 0.090 0.008 1.001 0.062 0.062 0.004

β
(2)
2

−1.0 −1.001 0.156 0.151 0.022 −0.999 0.108 0.108 0.012

γ
(1)
0

1.0 1.011 0.325 0.322 0.104 1.008 0.225 0.215 0.046

γ
(1)
1

−1.0 −1.005 0.405 0.398 0.158 −1.012 0.281 0.270 0.073

γ
(2)
0

−1.0 −1.015 0.389 0.388 0.150 −1.024 0.268 0.261 0.068

γ
(2)
1

1.0 1.010 0.500 0.487 0.237 1.034 0.345 0.330 0.110

log(σ ) −0.693 −0.718 0.032 0.063 0.005 −0.703 0.022 0.044 0.002

σ = 1 α0 0.5 0.522 0.272 0.267 0.072 0.507 0.187 0.185 0.034

α1 1.0 1.034 0.281 0.283 0.079 1.009 0.190 0.183 0.034

β
(1)
0

2.708 2.709 0.149 0.153 0.023 2.706 0.104 0.104 0.011

β
(1)
1

−1.0 −1.006 0.112 0.113 0.012 −0.998 0.077 0.077 0.006

β
(1)
2

1.0 1.001 0.206 0.203 0.043 1.003 0.147 0.145 0.021

β
(2)
0

1.609 1.577 0.276 0.277 0.078 1.601 0.188 0.194 0.037

β
(2)
1

1.0 0.986 0.185 0.182 0.033 1.002 0.124 0.121 0.014

β
(2)
2

−1.0 −0.980 0.298 0.301 0.091 −0.995 0.206 0.213 0.045

γ
(1)
0

1.0 1.005 0.366 0.348 0.121 1.005 0.253 0.251 0.063

γ
(1)
1

−1.0 −1.003 0.443 0.415 0.172 −1.003 0.307 0.298 0.089

γ
(2)
0

−1.0 −1.014 0.44 0.427 0.182 −1.012 0.308 0.310 0.096

γ
(2)
1

1.0 1.016 0.558 0.516 0.266 1.021 0.385 0.400 0.160

log(σ ) 0.0 −0.027 0.065 0.065 0.005 −0.012 0.045 0.042 0.002

σ = 2 α0 0.5 0.568 0.505 0.538 0.294 0.524 0.372 0.388 0.151

α1 1.0 1.108 0.406 0.431 0.198 1.046 0.278 0.289 0.085

β
(1)
0

2.708 2.749 0.336 0.350 0.124 2.717 0.239 0.240 0.057

β
(1)
1

−1.0 −1.051 0.262 0.266 0.073 −1.023 0.188 0.193 0.037

β
(1)
2

1.0 1.020 0.436 0.450 0.203 0.996 0.311 0.322 0.104

β
(2)
0

1.609 1.520 0.599 0.698 0.496 1.576 0.409 0.438 0.192

β
(2)
1

1.0 0.951 0.406 0.453 0.207 0.971 0.271 0.284 0.081

β
(2)
2

−1.0 −1.036 0.596 0.615 0.380 −1.008 0.418 0.422 0.178

γ
(1)
0

1.0 1.001 0.483 0.458 0.209 1.017 0.345 0.313 0.098

γ
(1)
1

−1.0 −1.014 0.564 0.532 0.284 −1.023 0.397 0.359 0.129

γ
(2)
0

−1.0 −0.955 0.565 0.533 0.286 −1.002 0.404 0.395 0.156

γ
(2)
1

1.0 0.962 0.686 0.652 0.427 1.004 0.484 0.476 0.227

log(σ ) 0.693 0.652 0.130 0.067 0.006 0.674 0.092 0.047 0.003
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Almost half of SH patients were characterized by early 
mortality and may be misclassified by the MT definition.

Table  6 presents a summary of comparison between 
the MT patients who were in the SH and the non-SH 
groups. This shows that patients in SH and MT are char-
acterized by higher death rates (46  %) and higher aver-
age RBC units transfused (22 units) and relatively lower 
average blood pressure (96 mmHg) at admission. In con-
trast, non-SH and MT patients had much lower death 
rate (3 %) and consumed fewer blood products than the 
SH group. Further comparisons are illustrated in Fig.  2. 
Patient identification by the observed amount of RBC 
appears to be less distinct, compared to classification by 
the posterior probability. Figure  2 further displays the 
distribution of the predicted RBC units given latent class, 
by replacing censored observations with their expecta-
tions under assumption (4). Clearly, patients in SH had 
higher RBC transfusions, ranging from 2 to 4, while RBC 
units in the non-SH group ranged from 1 to 4. This also 
indicates that patients who received a large volume of 
RBCs may not necessarily belong to the SH group.

In practice, it is critical to expeditiously identify 
patients mostly likely to need activation of massive 
transfusion early in trauma care. Since clinician have 
been using MT definition as a way to identify early pre-
dictors of the need for MT protocol, one could use 

Table 4  Classification of  patients based on  the posterior 
probabilities

Posterior probability Classification No. of patients

0.80–1.00 Group SH 83

0.60–0.80 Likely group SH 34

0.55–0.60 Doubtful, maybe group SH 6

0.45–0.55 Uncertain 9

0.40–0.45 Doubtful, maybe group non-SH 7

0.20–0.40 Likely group non-SH 61

0.00–0.20 Group non-SH 271

Table 5  Observed number of patients classified by the LC 
analysis and conventional MT classification

LC analysis Conventional Total

Non-MT MT

Non-SH 238 106 344

SH 22 105 127

Total 260 211 471

Table 6  Summary statistics of  106 non-SH and  105 SH 
patients both in the MT group

P values were obtained by comparing two subgroups

Non-SH and MT SH and MT P value
Mean (SD) Mean (SD)

Patient characteristics

 Age (year) 40.01 (17.58) 40.94 (19.69) 0.720

 Gender (male) 80 (76 %) 83 (78 %) 0.538

 SBP (mmHg) 110.84 (30.79) 96.00 (33.09) 0.000*

 pH 7.24 (0.14) 7.16 (0.17) 0.001*

 Heart rate (bpm) 116.28 (27.17) 114.53 (27.72) 0.644

 Respiratory rate 21.38 (7.83) 23.40 (8.97) 0.128

 Hemoglobin 10.76 (2.68) 10.80 (2.68) 0.915

 Death, 0–24 h 3 (3 %) 48 (46 %) 0.000*

 Death, 0–30 h 19 (18 %) 56 (53 %) 0.000*

Blood product usage

 RBC, 0–6 h (units) 12.08 (7.39) 21.79 (13.90) 0.000*

 RBC, 0–24 h (units) 16.18 (8.28) 26.67 (14.18) 0.000*

 Plasma, 0–6 h (units) 7.66 (5.92) 11.38 (8.87) 0.001*

 Plasma, 0–24 h (units) 11.20 (6.80) 14.98 (11.76) 0.005*

 Platelets, 0–6 h (units) 5.15 (7.73) 5.75 (8.29) 0.586

 Platelets, 0–24 h (units) 9.21 (10.10) 9.65 (14.14) 0.795

 Plasma/RBC ratio, 0–24 h 0.71 (0.35) 0.55 (0.36) 0.001*

 Platelet/RBC ratio, 0–24 h 0.48 (0.34) 0.37 (0.44) 0.037*
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the new SH classification for identifying early predic-
tors of SH. It is important to note that for both defini-
tions, MT and SH, one needs to observe patients until 
hour 24-h. To demonstrate whether prediction mod-
els based on MT and SH differ, we performed a mul-
tivariable logistic regression using 325 patients and 
utilizing information from the following variables: SBP 
of less than 90 mmHg, Hgb of less than 11 g/dL, HR of 
greater than or equal to 120  bpm, temperature of less 
than 35.5  °C, INR of less than 1.5, and base deficit (BD) 
of less than 6. The Wald scores (Table  7) demonstrate 
the relative weighted influence of each variable, where 
INR, hemoglobin and heart rate appear to have signifi-
cant predictability on SH. The predictive equation was 
log[p/(1− p)] = −0.5224 + (0.3010× SBP)+ (0.6628

×HR)+ (0.9256×Hgb)+ (1.6726× INR)+ (0.1057×

Temperature)− (0.1648× BD) with a receivers operat-
ing characteristics (ROC) value of 0.73. The correspond-
ing sensitivity, specificity, positive and negative predictive 
values are 69, 86, 38, and 96  %, respectively. We also 
reported the results from naïve analysis, where com-
parison was made between MT patients and non-MT 
patients. With respect to percentage of correct decision 
making, a positive INR (72 %) seems the best individual 
MT predictor followed by HR (69  %), SBP (68  %), Hgb 
(63 %). Importantly, all the individual rules remained sig-
nificant negative predictors (NPV ≥75 %) with SH. Given 
the clinical utility of the laboratory parameters, particu-
lar work may be undertaken to obtain and validate these 
parameters within the LC framework as we proposed in 
this paper.

Discussion
In this study we have used a joint latent class model to 
improve identification of severely hemorrhaging trauma 
patients. Because severely bleeding patients may benefit 
from rapid massive blood transfusion while those with 
mild blood loss could be potentially harmed by massive 
blood transfusion, their distinction is critically important 

but suffers from lack of predictive measurements. Our 
approach toward this end is to utilize posterior probabili-
ties obtained by the LC method, given information from 
patient’s characteristics and survival information at 24-h 
post ED admission. The work presented here is consid-
ered as an extension of our earlier findings on this topic 
[11]. The advantage of the proposed method is that it uses 
admission vital signs to determine the latent variable rep-
resenting the unknown amount of blood lost (i.e. degree 
of hemorrhage) in each submodel. Our model-based 
definition steers away from potential selection biases 
that could arise when a MT definition depends on a fixed 
quantity or rate of blood transfusion within a fixed time 
period. In this study, we found that out of a total of 68 
patients who died before 24 h, 62 (91 %) were identified as 
SH. The fact that the MT classification misses about 66 % 
(=91–25 %) of these patients highlighted a major limita-
tion of the classical definition. As a result, the MT defini-
tion is not a reasonable surrogate for building predictive 
models to guide massive blood transfusion protocol.

A number of trauma studies have examined other MT 
definitions, for example, ≥10 units in 6  h [2], ≥5 units 
in 4 h [7], or assigning patients who died of hemorrhage 
before receiving 10 units of RBCs into MT as well [27]. 
Alternatively there have been a few other approaches 
using rates of transfusions like CAT and ‘resuscitation 
intensity’ [13, 14]. However, all of these ad-hoc defini-
tions could under- or over-represent patients who die 
early, and conversely, may include patients who do not 
present with critical hemorrhage but develop a need for 
MT intervention later during the course of their surgical 
and intensive care phase. Furthermore, it turns out that 
different MT definitions imply differences in transfusion 
practices [7, 8, 27]. It should be noted that selection bias 
from early mortality can be adjusted by using the IPCW 
technique [25], but such inclusion criteria, solely based 
on the amount of RBCs, may not fully reflect transfusion 
practice, which is involved with many other clinical fac-
tors, such as usage of other blood products.

Table 7  Predictive models for SH and MT using a multivariate logistic regression

SH MT

Est. SE Wald p value Est. SE Wald p value

(Intercept) −0.5224 0.4348 −1.20 0.2296 0.0280 0.3910 0.07 0.9429

SBP <90 0.3010 0.3422 0.88 0.3790 0.3286 0.2895 1.14 0.2564

HR ≥120 0.6628 0.3195 2.07 0.0381 0.8856 0.2729 3.25 0.0012

Hgb <9.0 0.9256 0.4316 2.14 0.0320 0.9077 0.4611 1.97 0.0490

INR ≥1.5 1.6726 0.3301 5.07 0.0000 1.1429 0.3171 3.60 0.0003

Temp <35.5 0.1057 0.3597 0.29 0.7689 0.2092 0.2809 0.74 0.4564

BD <6 −0.1648 0.3697 −0.45 0.6558 0.0126 0.2904 0.04 0.9653
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Using our new SH definition, we have developed pre-
dictive models to identify early predictors of the need 
for MT protocol. Although this definition of SH could 
be further improved by using time to event data from 
prospective studies, the purpose of our effort in building 
predictive models using the definition of SH is to demon-
strate differences in the coefficients of predictive models 
based on SH and MT definitions when using the same 
variables in these predictive models. The data presented 
in this paper clearly demonstrate a significant difference 
in the parameter estimates of these predictive models 
based on the SH and MT classifications.

It should be noted that this study is limited in being a 
retrospective review of data on trauma patients entered 
prospectively, and thus complete information, such as 
time to death, detailed timing of treatments and blood 
product utilization was partially available. Consequently, 
our approach has to rely on a relatively simple paramet-
ric model. With full time to event information (e.g., exact 
time of death), the mortality model in our proposal may 
be replaced by survival models, such as Cox model. Upon 
availability of such information, we can also relax the strict 
‘local’ independence assumption, which is likely to be vio-
lated in practice. This approach may be applied to a more 
comprehensive data set from the PRospective Observa-
tional Multicenter Major Trauma Transfusion (PROM-
MTT) study, which is the first large scale, prospective 
study of trauma patients admitted directly from the injury 
scene to 10 level-1 trauma centers [10, 28]. The LC analysis 
with application to PROMMTT is currently undertaken by 
our research team, in which we will study broad endpoints 
of mortality, competing risks and adverse events, such as 
multisystem organ failure and acute lung injury, etc.

Conclusions
An accepted definition of MT for trauma resuscitation is 
vital as it is commonly used to select a study population 
and drives trauma resuscitation guidelines. The classical 
MT definition of receiving ≥10 units of RBCs in 24 h of 
admission does not adequately reflect transfusion prac-
tice and outcome during the ED admission and initial 
resuscitation phase. Consideration of LC models permits 
useful joint analysis of biomarker and dropout data and 
enables bias-corrected estimation of the impact of prog-
nostic features on the main endpoint associated with MT. 
It also permits full and exact posterior inference for pre-
dictive quantity of interest.
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