
Daniluk et al. BMC Res Notes (2015) 8:628
DOI 10.1186/s13104-015-1622-x

TECHNICAL NOTE

WeBIAS: a web server for publishing
bioinformatics applications
Paweł Daniluk1,2*, Bartek Wilczyński3 and Bogdan Lesyng1,2

Abstract 

Background:  One of the requirements for a successful scientific tool is its availability. Developing a functional web
service, however, is usually considered a mundane and ungratifying task, and quite often neglected. When publish-
ing bioinformatic applications, such attitude puts additional burden on the reviewers who have to cope with poorly
designed interfaces in order to assess quality of presented methods, as well as impairs actual usefulness to the scien-
tific community at large.

Results:  In this note we present WeBIAS—a simple, self-contained solution to make command-line programs acces-
sible through web forms. It comprises a web portal capable of serving several applications and backend schedulers
which carry out computations. The server handles user registration and authentication, stores queries and results,
and provides a convenient administrator interface. WeBIAS is implemented in Python and available under GNU
Affero General Public License. It has been developed and tested on GNU/Linux compatible platforms covering a vast
majority of operational WWW servers. Since it is written in pure Python, it should be easy to deploy also on all other
platforms supporting Python (e.g. Windows, Mac OS X). Documentation and source code, as well as a demonstration
site are available at http://bioinfo.imdik.pan.pl/webias.

Conclusions:  WeBIAS has been designed specifically with ease of installation and deployment of services in mind.
Setting up a simple application requires minimal effort, yet it is possible to create visually appealing, feature-rich inter-
faces for query submission and presentation of results.

Keywords:  Bioinformatics, Programming, Software engineering, Web services

© 2015 Daniluk et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Our experience shows that one of the most ungratifying
tasks when developing a novel computational method
is preparing a publicly accessible server. Only the most
prominent research groups have resources to maintain an
integrated web portal with such extended functionalities.
Although there exist excellent Web Services frameworks
like Soaplab [1] or Opal Toolkit [2], which were designed
to provide a machine access to services via protocols like
WSDL, they require significant installation effort and
expert knowledge, and are most useful in case of popular,
high-demand applications. They are, however, less attrac-
tive when taking into account user experience, lacking

features like user registration, easy retrieval of old results
or customized presentation of results.

More advanced environments for work-flow design and
visualisation like Galaxy [3] and Taverna [4] have vibrant
communities, but require significant effort from new-
comers who would like either to publish their own ser-
vices or use existing ones.

In turn, the GMOD (Generic Model Organism Data-
base) project has developed a framework based on the
Drupal CMS [5]. It is well suited for developing services
requiring an efficient database backend, but it has sev-
eral dependencies which make its installation and setup
difficult.

Néron et al. in their article presenting Mobyle frame-
work [6] propose several concepts for a bioinformat-
ics server such as homogeneous user interfaces to
heterogeneous programs, persistent user workspaces,

Open Access

*Correspondence: pawel@bioexploratorium.pl
1 Bioinformatics Laboratory, Mossakowski Medical Research Centre,
Pawińskiego 5, 02‑106 Warsaw, Poland
Full list of author information is available at the end of the article

http://bioinfo.imdik.pan.pl/webias
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-015-1622-x&domain=pdf

Page 2 of 7Daniluk et al. BMC Res Notes (2015) 8:628

XML description of interfaces and a network-ena-
bled tools. Their web framework—Mobyle—has been
designed with these in mind. It can be used to host a large
number of services, and establish a network of servers
which may forward requests to other Mobyle sites. This
set of features is particularly useful for creating a large
bioinformatics hub with various services and workflows
available to users. It is inevitable, that such functionality
comes at a price of the overall complexity.

Web BioInformatics Application Server (WeBIAS) has
been designed to fill the need for easily configurable,
feature rich bioinformatics portals. It makes it possible
to create a rudimentary version of a new service start-
ing from scratch in less than an hour. It is based on an
advanced template engine allowing unlimited possibili-
ties of rendering computed results including embedding
rich media content. It also fulfills all concepts proposed
by Néron et al., except cooperation between multiple
sites.

Most, if not all, scientific computation tools can be
packaged as standalone programs. WeBIAS provides
infrastructure to wrap such programs with a web GUI,
facilitate job submission and scheduling, and present
computation results whenever they are ready. In princi-
ple any command line program or script can be used. It is
only required that it returns results in an XML format.1 It
may also generate several output files (e.g. images) which
are automatically stored. Since computations may require
significant resources and time, and may have to be sched-
uled for later execution, WeBIAS handles job scheduling
by itself or may use external schedulers like Torque/PBS
or SLURM. Computations can be carried out on any
number of servers.

Architecture
WeBIAS comprises two main components: a web server
front end and a computational backend (see Fig. 1). The
front end is responsible for receiving queries and presen-
tation of results. It also provides user interface for all fea-
tures discussed below. The backend schedules, runs and
supervises programs which perform computations.

In most cases it is infeasible to perform computations
on the machine running a web server for performance
and security reasons. Computations may require access
to resources which should not be stored on the most
exposed machines. We presume that most research
groups have access to HPC servers, which could be used
to process queries collected by a web service. However,
bridging a gap between a web server exposed to the inter-
net and HPC machines without compromising security is

1  In case of programs which cannot or should not be modified, this can be
easily achieved with an additional wrapper script.

difficult to be done in an ad-hoc manner. In WeBIAS, the
web front end communicates with its computational
backends only through an SQL database. All queries
accepted by the web server are stored in the database.
Backend instances periodically check for unserviced que-
ries and schedule them for computation. This separation
guarantees that even if the computer running the front
end gets compromised, there is no practical way to gain
control of the computational environment by ordering
execution of arbitrary tasks.2

Most applications in addition to numerical results
produce several output files (e.g. images, biological
sequences or structures, large tables etc.). WeBIAS uses
its database to store these. Computational backend loads

2  Unless programs used for computations are badly designed and do not
sanitize their parameters properly.

HPC
server

WeBIAS
scheduler

Q

WeBIAS
server

SQL
database

Torque/PBS

HPC cluster

HPC
server

WeBIAS
scheduler

Q R

WeBIAS
scheduler

Fig. 1  WeBIAS architecture. WeBIAS comprises a web server and one
or more schedulers. Web server provides a user interface allowing
query submission and result presentation. Queries and results are
stored in the SQL database. Schedulers grab unprocessed queries,
oversee computations and store results in the database

Page 3 of 7Daniluk et al. BMC Res Notes (2015) 8:628

all result files into the database, and the frond end serves
them to users. This solution is much better than using a
file system shared between computing environment and
a web server, or using separate file systems with a file rep-
lication scheme. The latter solution is a potential security
breach, and in several cases might not even be technically
feasible.

WeBIAS allows running several backend instances con-
currently. Each instance may be configured to utilize dif-
ferent computational resources (e.g. clusters, job queues,
etc.) and perform computations for a subset of applica-
tions. Such flexibility enables optimal utilization of lim-
ited resources and does not require exclusive allocation
of servers. This is particularly important for smaller
research groups which own a limited number of servers
or use shared infrastructure.

Although these features make WeBIAS useful in com-
plex environments, it can be very easily deployed on a
single server. Minimalistic configuration requires prepar-
ing only a single configuration file, and starting two pro-
grams (front- and backend).

Methods
WeBIAS is written in Python and uses the CherryPy
engine [7]. The web front end is a standalone web server,
which can be run independently or integrated into exist-
ing web infrastructure. All data is stored in the relational
SQL database which is accessed using SQLAlchemy
object-relational mapping framework [8].

The backend is run independently from the web sever
component, and communicates with it only via the SQL
database. It periodically checks for unserviced queries,
and runs appropriate computations either directly or
using a job scheduling system.3 It also monitors running
jobs, and stores results in the database when they finish.
Several instances of a backend component may be run
concurrently. If more than one instance is capable of han-
dling a particular job, they may compete for it. SQL lock-
ing mechanisms are used to avoid eventual deadlocks and
race conditions.

Our goal was to design a server which would provide
a rich user experience without requiring significant
effort from application developers. There are two basic
application dependent functionalities which have to be
customized: job submission form and result presenta-
tion. Sophisticated forms can be designed by providing
an XML definition containing descriptions of fields and
their arrangement. Definition of a simple application is
presented in Fig. 2.

3  Presently Torque/PBS and SLURM are supported. Support for other
queuing systems may be easily added by providing methods for queuing a
job and checking whether it has finished.

At present WeBIAS supports single value fields of
common types (integer, float, boolean, string), as well as
parameter groups with definable semantics (e.g. contain-
ing parameters which are mutually exclusive). Dynamic
forms with variable number of parameters are also sup-
ported with a client side Javascript. Input is validated
before actual submission takes place to allow easy cor-
rections without relying on the browser “back button”
feature. WeBIAS also offers specialized fields for input
of bioinformatics data by either giving a database acces-
sion code or uploading a file. Currently it links to pub-
lic databases of molecular structures such as PDB and
SCOP, and provides verification of files in PDB format.
These features depend on the Biopython toolset [9].
Gnosis Utils [10] are used to convert XML definitions to
Python objects. Thus an application description is auto-
matically converted to a hierarchy of objects which con-
tains objects belonging to classes corresponding to field
types with all relevant methods for field behavior and
validation. In order to extend WeBIAS to support a new
parameter type, it is enough to subclass an existing field
type. This will automatically extend the set of XML tags
allowed in application definition.

Custom field types can be used to provide special input
validation and/or preprocessing. This is, for example, the
case of bioinformatics data fields, where a database acces-
sion code is converted to an actual data file. Similarly, one
can implement a field which converts various file formats
to the one required by an application or checks whether a
supplied file has particular features required for compu-
tation. This approach has an advantage over postponing
such operations until the job is being processed, because
a user can be interactively informed about problems in
his submission.

Clear and visually pleasing presentation of results may
not correlate with scientific value of a bioinformatic tool.
Nevertheless, it may have a significant impact on its pop-
ularity among users, and thus contribute to a success of
a tool or an underlying publication. In many cases, how-
ever, rapid deployment is of greater value than a sophis-
ticated interface. WeBIAS addresses these contradicting
demands through separation of computed results, which
are stored in XML format, from their presentation. The
conversion of the former into HTML content, which is
rendered in user’s web browser, is done using a template
engine (Genshi [11]). An example of a dynamic webpage
presenting results in shown in Fig. 3. A template may be
modified at any time, and such update will apply to all
already computed results. If a template is not supplied,
WeBIAS falls back to a default template which presents
data in a tabular layout. Default behavior comprises a set
of rules which preserve the treelike structure of an XML
encoding of a result. Default templates may be used for

Page 4 of 7Daniluk et al. BMC Res Notes (2015) 8:628

testing, and also whenever instant deployment of an
application is required.

There are several security considerations, which should
be taken into account when designing such a web server.
Potential eavesdropping and man-in-the-middle attacks
are prevented by using SSL encryption. WeBIAS uses
CherryPy SSL features or, if it is installed behind a proxy
server which handles encryption, it discerns safe
encrypted connections from unencrypted ones by cus-
tom headers introduced into HTTP requests by a proxy
server. WeBIAS manages its own user authentication and
authorization. Anyone may use publicly available services
without providing any identification. This is usually a
requirement in case of services, which are peer reviewed
in order to preserve anonymity of reviewers.4 Users may
also provide an e-mail address to receive job status
updates, or register to gain access to its full functionality.
Logins and passwords are stored in the SQL database.
Before a new account is enabled, verification of the e-mail
address is performed. Also, it is impossible to submit a
job with an e-mail of a registered user without being
logged in. These measures were introduced to prevent
maliciously inducing WeBIAS to send unsolicited

4  However, one always has to bear in mind, that connection origin may
sometimes reveal identity, if the number of persons potentially involved is
limited.

e-mails. All requests are stored on the server for future
perusal. Requests submitted anonymously are publicly
available to everyone knowing an UUID. This applies also
to requests submitted with an e-mail address by unregis-
tered users. However, after registration all requests,
including those made before registration, become pass-
word protected. Therefore, registered users can reasona-
bly expect that their queries and computation results
remain private. On the other hand, queries submitted
anonymously can be shared by public at large.

For larger installations, where several authors may
publish their services on the portal, there is an option of
promoting certain users to the power user role to give
them administrative access to their applications and
schedulers. Power users may be granted rights to access
yet unpublished applications in order to perform tests
in production environment before actual publication,
enable/disable applications, view submitted requests and
schedule reports on application health and activity. These
rights are independently set for each application to allow
access to people’s own services without compromising
security of others. In this manner developers may be
allowed to test their applications in the production envi-
ronment, and group members or collaborators may gain
access to a yet unpublished service.

All files (supplied by users as parameters, and com-
puted) are stored in the database. Backend instances are

<bias>
<application id="Hello" name="Hello" info="Hello World.">

<description>
This is the simplest application.

</description>
<author>Our lab</author>
<email>admin@lab.org</email>
<setup>

<help_url>/media/hello-help.html</help_url>
<param_template>/var/webias/examples/hello.py --name="${name.PCDATA}" --mood=${mood.PCDATA}</param_template>
<param_table_template>examples/hello/param_table.genshi</param_table_template>

</setup>

<parameters>
<email/>
<section id="SectionInput" title="Hello World application"/>
<text id="name" name="Name" tip="What is you name?" info="name" optional="no" help="#name"/>

<select id="mood" name="How are you?" info="mood" optional="no" tip="C’mon, just tell me." help="#mood">
<option value="0" text="Fine, thanks."/>
<option value="1" text="Not bad."/>
<option value="2" text="Don’t even ask."/>
<option value="3" text="Go away you insensitive clod."/>

</select>
</parameters>

</application>
</bias>

Fig. 2  Sample XML definition of an application. Applications are described using XML. Such file contains generic information like application name,
author, short description, etc. The <setup> section contains a template for converting input data into a command line of a program to be called,
and custom template files. The <parameters> section contains definition of fields to be displayed in the job submission form

Page 5 of 7Daniluk et al. BMC Res Notes (2015) 8:628

Application list

Results for BIAS request 8477b3f8df6e11e49c7e00163e4ad871

Parameters used
Structure (PDB) 1cfc
Mu 0
Beta 0
Hinge threshold 0.65
Max. number of clusters 7
Max. number of images 15

1/25

Fold all Unfold all Show hinges Show interfacial

Domains: 1 min: NA Total geometrical variability: 11.966000

Domains: 2 min: 0.0000 Total geometrical variability: 3.780000

Length Geometrical
variabilities

Ranges

1 77 2.203000 A1--A77
2 71 1.577000 A78--A148

Domains: 3 min: -0.0302 Total geometrical variability: 5.176000

Domains: 4 min: -0.0266 Total geometrical variability: 5.114000

Length Geometrical
variabilities

Ranges

1 66 0.821000 A77--A129, A136--A148
2 64 1.328000 A12--A13, A15--A76
3 12 1.560000 A1--A11, A14--A14
4 6 1.405000 A130--A135

Domains: 5 min: -0.0816 Total geometrical variability: 5.583000

Domains: 6 min: -0.3929 Total geometrical variability: 6.950000

Domains: 7 min: -0.1862 Total geometrical variability: 8.775000

Length
Number of aligned residues.

min

Clustering quality indicator. A clustering into two dynamic domains has always min=0; for a higher number of clusters a min close to 0 indicates the optimal partitioning.

Geometrical variability
The maximal value of RMSD between pairs of conformations of a domain.

Total geometrical variability
sum of geometrical variabilities of the identified dynamic domains.

Administered by Pawe Daniluk

Service powered by WeBIAS. Server source code is available under AGPL.

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

-0.45

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Fig. 3  Example of a result presentation. Each application in WeBIAS may have a template for presenting results, which are stored internally in XML
format. Templates are used to convert results to HTML. They may have dynamic elements programmed in JavaScript. Here the chart is rendered by
client-side routines and is interactive, molecular renderings are dynamically downloaded, and table elements are collapsible

Page 6 of 7Daniluk et al. BMC Res Notes (2015) 8:628

responsible for downloading proper files to a temporary
directory where a job is executed and for uploading
resulting files. In order to minimize security risks of
unnecessarily exposing vulnerable files (e.g. due to cun-
ningly formed URL requests5) no data is stored in the file
system and no file system files are served.

WeBIAS has been designed in a manner allowing
deployment without compromising network security. The
web front end may and should be ran on a server placed
in a so-called perimeter network (or DMZ). Backends
responsible for job scheduling may be put on the internal
network with all privileges required for job submission.
All communication between these components is per-
formed via SQL database and comprises only contents
of submitted requests rendered in XML format. Before a
request is submitted it is validated by the front end. Each
form field is checked according to its type and allowed
values. It is also possible to include validators for specific
file formats. Such architectural solution helps to mitigate
most attack scenarios. Compromising a front end does
not give an attacker a direct method to take over com-
putational resources. At best he would be able to inject
crafted queries into the database. These would have to
defeat sanity checks imposed by a backend and cause it to
malfunction or cause an application to fail. Having to pen-
etrate these layers one by one makes an attack difficult.
Communication through a database eliminates the pos-
sibility of exploiting eventual flaws (e.g. buffer overflows)
in the implementation of a communication protocol. We
can envision only one attack vector which cannot be pre-
vented by this architecture—when validated input would
cause a fault in the application program, which would in
turn compromise the system. This, however, may be miti-
gated by running computations with a low privilege.

Discussion
Providing public access to computational methods is
instrumental to their dissemination. Although in most
cases making binaries available for download is consid-
ered sufficient, many users do not wish to expend their
effort on going through the hassle of trying out such pro-
grams. On the other hand, web interfaces are familiar to
everyone, do not require any installation and allow to try
an application out almost effortlessly. In most cases, how-
ever, authors of computational software lack initiative to
develop sophisticated web sites or to learn complex web
service frameworks. Also development costs of feature
rich in-house solutions can hardly be justified for most
research groups. Nevertheless, they usually have a usable
application, which can be easily adapted for WeBIAS.

5  A naïve attack of this type might involve requesting http://myserver.com/
site/directories/files/../../../../etc/passwd.

WeBIAS has been developed to close the gap, and
allow for a quick and smooth publication of computa-
tional services. A simple service can be made available
very rapidly using default templates. Experienced users
may use WeBIAS as a framework for the development of
advanced applications. In both cases WeBIAS provides
all routines required for query submission, job schedul-
ing and result retrieval. WeBIAS may be installed on a
single computer to achieve a self contained solution for
services requiring low computing power, or deployed in
an extensive computational environment with diverse
computing resources.

WeBIAS has been used to set up an Essentia Proteom-
ica portal [12] with services for structural alignment of
proteins [13] and detection of dynamic domains [14].
Several other services were made available with its use
[15, 16].

Availability and requirements
• • Project name: WeBIAS
• • Project home page: http://bioinfo.imdik.pan.pl/

webias
• • Operating system(s): Platform independent
• • Programming language: Python, JavaScript
• • Other requirements: MySQL server, CherryPy 3.8

or higher, SQLAlchemy 0.8 or higher, Genshi 0.6 or
higher

• • License: GNU AGPL
• • Any restrictions to use by non-academics: None
• •

Abbreviations
AGPL: Affero General Public License; CMS: Content Management System;
HPC: High Performance Computing; HTML: HyperText Markup Language;
SQL: Structured Query Language; SSL: Secure Sockets Layer; UUID: Universally
Unique IDentifier; WSDL: Web Services Description Language; XML: eXtensible
Markup Language.

Authors’ contributions
BW developed a working prototype of WeBIAS. PD refactored the code, added
customizability and advanced features. BL partook in design and testing. All
authors read and approved the final manuscript.

Author details
1 Bioinformatics Laboratory, Mossakowski Medical Research Centre,
Pawińskiego 5, 02‑106 Warsaw, Poland. 2 Department of Biophysics, Faculty
of Physics, University of Warsaw, Warsaw, Poland. 3 Institute of Informatics,
University of Warsaw, Warsaw, Poland.

Acknowledgements
This work was funded by the research grant (DEC-2011/03/D/NZ2/02004) of
the National Science Centre, and partially by BST/BF funds of the University
of Warsaw. WeBIAS demonstration site is hosted on servers financed by the
Biocentrum-Ochota Project (POIG.02.03.00-00-003/09).

Competing interests
The authors declare that they have no competing interests.

Received: 8 May 2015 Accepted: 26 October 2015

Page 7 of 7Daniluk et al. BMC Res Notes (2015) 8:628

References
	1.	 Senger M, Rice P, Bleasby A, Oinn T, Uludag M. Soaplab2: more reliable

Sesame door to bioinformatics programs. In: Bioinformatics Open Source
Conference, BOSC, vol 8. 2008.

	2.	 Ren J, Williams N, Clementi L, Krishnan S, Li WW. Opal web services for
biomedical applications. Nucleic Acids Res. 2010;38(suppl 2):724–31.

	3.	 Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y,
Blankenberg D, Albert I, Taylor J. Galaxy: a platform for interactive large-
scale genome analysis. Genome Res. 2005;15(10):1451–5.

	4.	 Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver
T, Glover K, Pocock MR, Wipat A. Taverna: a tool for the composi-
tion and enactment of bioinformatics workflows. Bioinformatics.
2004;20(17):3045–54.

	5.	 Papanicolaou A, Heckel DG. The GMOD Drupal Bioinformatic Server
Framework. Bioinformatics. 2010;26(24):3119–24.

	6.	 Néron B, Ménager H, Maufrais C, Joly N, Maupetit J, Letort S, Carrere S,
Tuffery P, Letondal C. Mobyle: a new full web bioinformatics framework.
Bioinformatics. 2009;25(22):3005–11.

	7.	 Delon R, Brewer R, Hellegouarch S, Wyglendowski C, Wecker L. CherryPy
3.6: A Minimalist Python Web Framework. 2015. http://cherrypy.org.
Accessed 2015.

	8.	 Bayer M. SQLAlchemy: The Python SQL Toolkit and Object Relational
Mapper. http://www.sqlalchemy.org. Accessed 30 Oct 2015.

	9.	 Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I,
Hamelryck T, Kauff F, Wilczynski B, de Hoon MJL. Biopython: freely avail-
able Python tools for computational molecular biology and bioinfor-
matics. Bioinformatics. 2009;25(11):1422–3. doi:10.1093/bioinformatics/
btp163.

	10.	 Mertz D, McIngvale F. Gnosis Utils 1.2.2. http://www.gnosis.cx/down-
load. Accessed 30 Oct 2015.

	11.	 Thomas A, Lenz C, Borgström J, Good M, Cross S. Genshi 0.6: Python
Toolkit for Generation of Output for the Web. http://genshi.edgewall.
org. Accessed 30 Oct 2015.

	12.	 Daniluk P. Essentia Proteomica. http://dworkowa.imdik.pan.pl/
EP. Accessed 30 Oct 2015.

	13.	 Daniluk P, Lesyng B. A novel method to compare protein structures using
local descriptors. BMC Bioinform. 2011;12(1):344.

	14.	 Dziubiński M, Daniluk P, Lesyng B. ResiCon: a method for the identifica-
tion of dynamic domains, hinges and interfacial regions in proteins. Bioin-
formatics. 2015. 10.1093/bioinformatics/btv525.

	15.	 Wilczynski B, Darzynkiewicz M, Tiuryn J. MEMOFinder: combining de
novo motif prediction methods with a database of known motifs.
Nature Precedings. 2008. Available from http://hdl.handle.net/10101/
npre.2008.2289.2.

	16.	 Wilczyński B, Dojer N. BNFinder: exact and efficient method for learning
Bayesian networks. Bioinformatics. 2009;25(2):286–7.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://cherrypy.org
http://www.sqlalchemy.org
http://dx.doi.org/10.1093/bioinformatics/btp163
http://dx.doi.org/10.1093/bioinformatics/btp163
http://www.gnosis.cx/download
http://www.gnosis.cx/download
http://genshi.edgewall.org
http://genshi.edgewall.org
http://dworkowa.imdik.pan.pl/EP
http://dworkowa.imdik.pan.pl/EP
http://dx.doi.org/10.1093/bioinformatics/btv525
http://hdl.handle.net/10101/npre.2008.2289.2
http://hdl.handle.net/10101/npre.2008.2289.2

	WeBIAS: a web server for publishing bioinformatics applications
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Architecture

	Methods
	Discussion
	Availability and requirements
	Authors’ contributions
	References

