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Lipid levels in HIV‑positive men receiving 
anti‑retroviral therapy are not associated 
with copy number variation of reverse 
cholesterol transport pathway genes
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Abstract 

Background:  The exacerbation of HIV-1 associated dyslipidemia seen in a subset of patients receiving anti-retroviral 
therapy suggests that genetic factors put these individuals at greater risk of cardiovascular disease. Single nucleotide 
polymorphisms (SNPs) within genes of and influencing the reverse cholesterol transport (RCT) pathway are associated 
with lipid levels but little is known regarding their copy number variation (CNV). This form of quantitative genetic vari-
ation has the potential to alter the amount of gene product made, thereby also influencing lipid metabolism.

Results:  To examine if CNV in RCT pathway genes was associated with altered serum lipid profiles in HIV-positive 
individuals receiving therapy, we designed a custom multiplex ligation-dependent probe amplification assay to 
screen 16 RCT genes within a subset of individuals from the Multicenter AIDS Cohort Study who show extreme lipid 
phenotypes. Verification of CNV was performed using a custom NanoString assay, and the Illumina HT-12 mRNA 
expression microarray was used to determine the influence of copy number on gene expression. Among the RCT 
genes, CNV was observed to be extremely rare. The only CNV seen was in the CETP gene, which showed a loss of copy 
in 1 of the 320 samples (0.3 %) in our study. The genes in our study showed little variation in expression between 
individuals, and the variation seen was not related to any detected CNV.

Conclusions:  Whole gene CNV is uncommon in RCT pathway genes, and not a major factor in the development of 
highly active antiretroviral therapy (HAART) associated dyslipidemia.

Keywords:  CNV, Copy number variation, Dyslipidemia, HIV-1, Reverse cholesterol transport pathway, Anti-retroviral 
therapy
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Background
Individuals infected with HIV-1 exhibit changes in serum 
lipid levels seen as hypercholesterolemia and hyper-
triglyceridemia [1–4]. Following antiretroviral therapy 
(ART), lipid levels remain skewed for many patients, as 
LDL-cholesterol (LDL-C) and triglycerides increase while 
HDL-cholesterol (HDL-C) remains lowered [1–3, 5–7].

Previous studies have shown that this dyslipidemic 
profile is associated with greater risk for cardiovascular 
disease (CVD), myocardial infarction and atherosclerosis 
in HIV-positive individuals [3, 5, 8–11]. As some in the 
HIV-1 infected population have begun to reach the age 
where CVD risk is increased and the affect of HIV infec-
tion on this risk in unknown, there is a need to under-
stand the mechanisms behind therapy-associated lipid 
dysfunction. Many factors likely contribute towards this 
dyslipidemia, including the different drug components 
used in ART [12–14] as well as factors innate to the indi-
vidual. The prevalence of dyslipidemia is high, but not 
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all-inclusive, among the HIV-positive population sug-
gesting that genetic factors potentially have a role [15]. 
Studies have already illustrated a broad genetic impact on 
lipids, as lipid levels and CVD risk vary based on ethnic 
background in HIV uninfected populations [16–18]. We 
have recently shown that biogeographical ancestry was 
significantly associated with lipid levels in a cohort of 
men who have sex with men (MSM), and that European 
ancestry results in a more atherogenic phenotype even 
after controlling for HIV and therapy components [19].

Furthermore, several genome-wide association studies 
(GWAS) have identified single nucleotide polymorphisms 
(SNPs) associated with CVD risk [20–25], many of which 
are present in genes involved in cholesterol metabolism 
and transport. One particularly relevant set of genes is 
that of the reverse cholesterol transport (RCT) pathway, 
which directly influences lipid levels. Polymorphisms in 
genes of this pathway, and in those directly interacting 
with it, contribute to the variance of lipid levels, and also 
alter expression levels of some of the genes themselves 
[15, 26–33]. Recent studies have identified specific muta-
tions located within RCT genes that are associated with 
altered lipid levels in individuals with HIV-associated 
atherogenic dyslipidemia. The SNP rs3135506, located 
in the APOA5 gene, was associated with increased tri-
glycerides and decreased HDL-C, while a SNP in the 
LPL gene, rs328, was associated with increased levels of 
HDL-C [34]. Additionally, common SNP genotypes in 
APOE were found to be associated with lipid levels where 
the E2 allele has a protective effect against dyslipidemia 
while the E4 is indicative of more risk [35]. Furthermore, 
expression levels of LDLR can be modified by mutations 
in the proprotein-convertase subtilisin-kexin type 9 gene 
(PSCK9), ultimately resulting in altered levels of LDL-C 
[27, 36, 37]. Individuals with loss of function mutations 
in PCSK9 show decreased amounts of LDL-C while those 
with gain of function mutations have increased amounts 
[26, 33, 38].

In addition to posttranslational protein regulation 
such as that seen with PCSK9, protein levels of RCT 
gene products could also be influenced by copy number 
variation (CNV). This type of genetic variation includes 
duplications, deletions, and inversions of DNA seg-
ments greater than 50 bp in size [39–42]. Previous stud-
ies on CNV in the CCL3L1 and DEFB4 genes illustrate 
that an increase in transcriptionally available copies of a 
gene not only results in increased expression levels but 
also increases in protein levels directly proportional 
to the number of copies [43–46]. Such variation in one 
or a few RCT genes has the potential to alter the func-
tionality of this lipid metabolism pathway dramatically, 
and thereby influence serum HDL and LDL levels. Yet, 
while there have been a number of studies investigating 

the association of SNPs within these genes to lipid levels 
[28–32, 47], little has been documented related to their 
CNV, apart from reports on rare structural variation in 
the LDLR gene associated with Familial Hypercholester-
olaemia [48–51] and the occasional reported variant in 
LPL, ABCA1, and LIPC [48, 52]. Furthermore, the Data-
base of Genomic Variants, a compilation of structural 
variation in healthy control sample genomes, contains 
rare CNV encompassing the RCT genes [53].

Here, we designed a study employing custom Multi-
plex Ligation-dependent Probe Amplification (MLPA) 
and NanoString probes to screen for CNV in 16 RCT 
associated genes in participants from the Multicenter 
AIDS Cohort Study (MACS), to identify if CNV is pre-
sent, the degree to which it varies, and whether it has an 
association with the abnormal lipid metabolism observed 
in HIV-positive individuals undergoing antiretroviral 
therapy.

Results
Sample demographics
Using the 2005 clinic measurements, and the NCEP/ATP 
III report criteria [54] (HDL-C ≤40  mg/dL or ≥60  mg/
dL; LDL-C ≤100  mg/dL or ≥130  mg/dL), 366 suitable 
MACS participants were identified, of which 319 were 
successfully analyzed using MLPA (Fig.  1). The demo-
graphic data for these 319 samples are summarized in 
Table  1. We identified 23 samples with an atheropro-
tective phenotype (HDL-C ≥60  mg/dL and LDL-C 
≤100  mg/dL) and 7 samples with an atherogenic phe-
notype (HDL-C ≤40  mg/dL and LDL-C ≥160  mg/dL). 
Those with the atherogenic lipid profile had a higher 
mean body mass index (BMI), plus higher total choles-
terol and triglyceride levels when compared to those who 
had the atheroprotective phenotype. Age among all lipid 
groups was similar, with a median age of 48 (IQR: 47–49). 
BMI was higher in the uninfected individuals within each 
grouping and, with the exception of the atheroprotective 
group, the mean BMI of most groups ranged from over-
weight to borderline obese. 

Of the individuals who were HIV-positive during 
2005, over 70  % were receiving a type of antiretrovi-
ral therapy (Potent ART, combination, or monotherapy 
defined according to the DHHS/Kaiser panel criteria 
[55]). Of those who reported therapy use, around three 
quarters had over 95 % self-reported adherence. We also 
compared the distribution of Biogeographical Ancestry 
(BGA), recently determined for these samples [19], for 
the sample subset. The majority of samples in each group 
were those of European ancestry, followed by those of 
mixed African-European ancestry, and a few samples 
with Asian-European ancestry. However in the HIV-pos-
itive groups with high HDL-C (≥60  mg/dL) and in the 
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atheroprotective group, samples with African-European 
ancestry were in the majority.

Multiplex ligation dependent probe amplification
As reference samples with known copies of the RCT 
genes are not available, we identified experimental sam-
ples whose normalized peak height for each probe was 
similar to the sample set mean height. Using these sam-
ples as references, the coffalyser.net software calculated 
the probe ratios for each sample relative to the reference 
samples. Assuming that the most frequently observed 
ratio corresponded to two copies per diploid genome, 
ratios above 0.7 and below 1.3 are considered to be within 
the normal range of two copies [56]. Anything outside 
of these arbitrary MRC-Holland derived thresholds was 
identified as an outlier with potential CNV.

Of the 16 RCT pathway associated genes screened, only 
three (APOA4, CETP, and ABCA1) showed any signs of 
CNV, and in each case the CNV was extremely rare. For 
each of these genes, a few individuals showed ratios that 

crossed or were at the lower threshold (Fig. 2). None of 
the RCT genes had CNV ratios that passed the upper 
ratio bound of 1.3, suggesting that no sample showed 
gains in copy number. Table 2 lists normalized ratios of 
the three genes for samples with losses along with the 
sample’s 2005 visit HDL-C and LDL-C levels.

Two samples (123 and 367) had a loss of APOA4 copy 
number (with normalized ratios of 0.56 and 0.55, respec-
tively) while sample 157 had a loss of CETP copy number 
with a ratio of 0.65. Sample 209 had a normalized ratio 
for ABCA1 that fell on the 0.7 threshold indicating a pos-
sible loss. The standard deviations for each of these outly-
ing probes were relatively small (<±0.05) indicating that 
the decrease in ratio observed was likely genuine. When 
MLPA was performed for a second time on these 4 sam-
ples, the observations were consistent with the first run. 
No clear association between any of these losses and lipid 
levels (Table 2) was apparent, although this observation 
is not conclusive due to the small number of samples 
involved.

Fig. 1  Sample Subset Selection Methodology. Samples were initially selected on the basis of DNA quality. HDL and LDL measurements were then 
used to identify atheroprotective and atherogenic subgroups, and control samples with HDL and LDL values in the normal range were selected to 
complete the sample set
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Table 1  Demographic and descriptive characteristics of study participants

HDL ≤ 40 mg/dL HDL = 40–60 mg/dL

LDL ≤100 mg/dL 100-130 mg/
dL

130–160 mg/
dL

≥160 mg/dL LDL Not 
Measured

≤100 mg/dL 100–130 mg/
dL

130–160 mg/
dL

HIV Status HIV− HIV+ HIV− HIV+ HIV− HIV+ HIV− HIV+ HIV− HIV+ HIV− HIV+ HIV− HIV+ HIV− HIV+

n 17 46 12 27 19 7 3 4 1 7 23 15 19 11 17 12

Median

Age (years) 51 48.5 53 48 45 55 40 46.5 56 46 48 46 50 50 48 46

BMI 31.6 25.2 27.8 25.2 28 23.9 27.5 30.2 30.6 23.4 27.1 24.7 26.4 24.8 26.9 24.2

HDL (mg/dL) 34 29.1 34.5 31 36 34 37 35.9 28 28.6 50 48.2 50 48 51 46.7

LDL (mg/dL) 78 78.5 121 115 145 142 172 175 130 – 76 86 112 110 145 140

TCHOL (mg/dL) 153 143 189 188 213 214 241 253 181 182 146 151 185 187 215 225

TRIG (mg/dL) 203 197 205 225 152 156 132 148 114 434 81 102 110 108 101 178

# on therapy

No therapy – 12 – 9 – 2 – 1 – 2 – 3 – – – 2

Mono-therapy – – – – – – – – – – – – 1 – –

Combination – 5 – 1 – – – – – – – – – – –

Potent ART – 29 – 17 – 5 – 3 – 5 – 12 – 10 – 10

Therapy adherence

100 % – 10 – 7 – 3 – 2 – – – 3 – 4 – 5

95–99 % – 19 – 8 – 2 – 1 – 5 – 8 – 6 – 4

<75 % – 3 – 2 – – – – – – 1 – – – 1

NA – 14 – 10 – 2 – 1 – 2 – 3 – 1 – 2

BGA

AEA – 4 3 5 4 – – 1 – – 6 3 7 2 1 2

AsEA 1 2 – – – – – – – 1 – – – – 2 1

EA 15 39 8 22 15 7 3 3 1 6 16 12 12 9 14 9

NA 1 1 1 – – – – – – – 1 – – – – –

Group total 17 46 12 27 19 7 3 4 1 7 23 15 19 11 17 12

HDL = 40–60 mg/dL HDL ≥ 60 mg/dL

LDL ≥160 mg/dL LDL not meas-
ured

≤100 mg/dL 100–130 mg/
dL

130–160 mg/
dL

≥160 mg/dL LDL not meas-
ured

HIV Status HIV− HIV+ HIV− HIV+ HIV− HIV+ HIV− HIV+ HIV− HIV+ HIV− HIV+ HIV− HIV+

n 13 4 1 1 8 15 8 7 2 6 3 6 1 4

Median

Age (years) 50 49 22 52 45 42 46.5 52 53.5 47 59 47 31 45.5

BMI 27.8 26.2 20.7 27.4 25.7 22.9 24.8 23.9 27.3 22.6 26.6 22.5 22.7 24.7

HDL (mg/dL) 51 45 54.6 40.6 73.5 76.1 63.3 75.9 64.3 82.4 62.5 68.5 60 71.8

LDL (mg/dL) 165 175 – – 92.5 80 119 111 138 144 167 167 130 –

TCHOL (mg/dL) 245 251 163 176 181 181 203 205 223 249 247 259 224 236

TRIG (mg/dL) 134 122 – – 86 103 104 94 101 102 105 98 168 525

# on therapy

No therapy – – – – – 4 – 1 – 2 – 2 – –

Mono-therapy – – – – – – – – – – – – – –

Combination – – – – – 2 – – – – – – – –

Potent ART – 4 – 1 – 9 – 6 – 4 – 4 – 4

Therapy adherence

100 % – 2 – – – 5 – 1 – – – 3 – 2

95–99 % – 2 – – – 3 – 4 – 2 – – 2
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The interquartile ranges (IQR) for most of the RCT 
gene probes were narrow (0.04–0.09), and similar to 
those of the two-copy reference probes. This tight clus-
tering of ratios around the mean of each probe further 
suggests that CNV is not common in the RCT genes. 
The only probes with wider IQRs were ABCA1 and SRBI. 
While their IQRs were slightly broader than the other 
RCT probes, this spread of the ratio distribution was 
also seen in the properly functioning reference probes 
suggesting that this was within the normal range of our 
experiment (data not shown).

As gold standard referents containing known copy 
numbers of each RCT gene are not available, and the 
P300 reference probe set provided by MRC-Holland 
includes probes with a maximum number of two cop-
ies, we developed a quality control assay to ensure that 
our MLPA protocol was capable of picking up a range 
of CNV above 2 copies (Additional file  1: Supplemen-
tary Methods). Through use of control samples with 
known amounts of CNV, the MRC-Holland P139 Defen-
sin MLPA assay, and our P300/RCT assay extended to 
include probes for variants in the DEFB103A and CCR5 
genes, we were able to verify that our assay can identify 
a range of CNV even when the sample mean is used to 
define a referent (Additional file 2: Figure S2).

To determine whether the rare loss for the three RCT 
genes identified during MLPA reflected true CNV or 
problems with probe binding, Sanger sequencing was 
performed to examine the probe binding site for those 
individuals who showed losses, plus several control indi-
viduals who showed no changes in copy number. We 
determined that individuals who showed a loss in signal 
for APOA4 were heterozygous for a rare intronic SNP 
rs185210669, located 1 base from the internal ligation 

site for that probe. This mutant allele fails to bind the left 
MLPA probe oligo strongly, leading to impaired ligation 
to the right oligo and decreased MLPA signal. The other 
genes (ABCA1 and CETP) contained no SNPs within 
their ligation sites.

CNV confirmation by NanoString
We confirmed our findings by using a custom NanoString 
assay to measure CNV of the RCT genes for 267 of the 
samples analyzed by MLPA. The CNV ratios generated 
mirrored those seen with MLPA (data not shown). We 
replicated the loss in copy number of CETP in sample 157 
(copy number ratio of 0.58) but did not observe the losses 
for ABCA1 in sample 209 (1.06) or APOA4 for both sam-
ples 123 and 367 (1.10 and 1.04). As the MLPA-derived 
ratio for ABCA1 in sample 209 fell on the threshold value 
of 0.7, it is likely that this sample does not in fact have a 
true loss in copies. It is also possible that MLPA probe 
used for ABCA1 is picking up a rare small CNV that is 
not detected by the NanoString probe, as the probes for 
these assays bind in different regions of the gene. The loss 
observed in APOA4 only by MLPA is attributed to the 
ligation-site SNP identified in the MLPA probe.

Expression analysis
We also determined the expression levels of the RCT 
genes in our study, using data extracted from a whole-
genome transcription dataset obtained using the Illu-
mina HT-12 platform. Gene expression levels on 127 
samples were compared to both MLPA and NanoString 
CNV ratios. As expected, comparisons of MLPA- and 
NanoString-generated CNV ratios to log transformed 
mRNA expression levels yielded no significant associa-
tions (Fig. 3).

BMI, body mass index; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; TCHOL, total cholesterol; TRIG, triglycerides; 
monotherapy, single nucleoside reverse transcriptase inhibitor; Combination, two or more nucleoside reverse transcriptase inhibitors; potent ART, two or more 
nucleoside reverse transcriptase inhibitors with a protease inhibitor or a nonnucleoside reverse transcriptase inhibitor; BGA, biogeographical ancestry; AEA, African/
European ancestry; EA, European ancestry; AsEA, Asian European ancestry 

Table 1  continued

HDL = 40–60 mg/dL HDL ≥ 60 mg/dL

LDL ≥160 mg/dL LDL not meas-
ured

≤100 mg/dL 100–130 mg/
dL

130–160 mg/
dL

≥160 mg/dL LDL not meas-
ured

HIV Status HIV− HIV+ HIV− HIV+ HIV− HIV+ HIV− HIV+ HIV− HIV+ HIV− HIV+ HIV− HIV+

<75 % – – – 1 – 3 – 1 – 2 – 1 – –

NA – – – – – 4 – 1 – 2 – 2 – –

BGA

AEA 3 – 1 – 1 11 3 – – 4 – – – 1

AsEA – – – – 1 3 – – – – – – – 1

EA 10 4 – 1 6 1 5 7 2 2 3 5 1 2

NA – – – – – – – – – – – 1 – –

Group total 13 4 1 1 8 15 8 7 2 6 3 6 1 4
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Discussion
The contribution of host genetic variation to the devel-
opment of the CVD-associated side effects seen in 
response to antiretroviral therapy is still not fully under-
stood. We have previously studied the roles of Biogeo-
graphical Ancestry [19], and of individual SNPs on this, 

but no studies have been done to date on the impact of 
quantitative genetic variation such as CNV on this pro-
cess. To address this, we developed an MLPA assay, and 
used it to measure CNV in genes within the RCT path-
way [28, 29]. As extreme HDL and LDL abnormalities 
are observed in only a subset of HIV-positive patients 
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Fig. 2  Copy number variation is exceedingly rare for reverse cholesterol transport pathway genes. Copy number ratios are shown for the four 
individuals that had detectable CNV. Probes representing the RCT genes are on the left of the figure while reference probes (Ref_1–Ref_16), ligation 
controls (Ref_18), and denaturation controls (Ref_17, Ref_19) are on the right. The dots show the copy number ratios of each probe for each indi-
vidual. The box plots represent the 95 % confidence interval of each probe ratio derived from the entire sample set. Arbitrary thresholds at 1.3 and 
0.7 are represented by the dotted horizontal lines. Points that fall within these thresholds are considered to have a copy number ratio of 1.0
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receiving anti-retroviral therapy and experiencing dyslip-
idemia [15], the susceptibility to these severe lipoprotein 
changes is likely to have a genetic component.

While previous studies have already found an asso-
ciation between sequence variation in genes within, and 
influencing, the RCT pathway and lipoprotein levels, 
we theorized that CNV in the RCT pathway could play 
a role in these extreme lipoprotein phenotypes. A region 
of duplication encompassing an entire gene and its regu-
latory regions has the capability to alter expression and 
protein levels in a manner directly proportional to the 
amount of copies present. Such a relationship is observed 
for the CCL3L1 and DEFB4 genes, where increases in 
gene products correspond to copies present for each gene 
up to a plateau point [43, 46]. Even though this type of 
variation has the potential to influence lipid metabolism, 
the available information on whole gene CNV in the 
genes of the RCT pathway is limited to a few select genes 
(LDLR, LPL, ABCA1, and LIPC) [48, 52].

Data currently available within the Database of 
Genomic Variants [57] shows a limited amount of rare 
CNV present for the RCT genes. The documented CNV 
that is there consists primarily of insertions and dele-
tions within the genes, rather than whole gene variation. 
Thus, it is unlikely that CNV for these genes is common 
in the general population, but our strategy here was 
to combine a population-based screen with a focused 
investigation of individuals with extreme lipid pheno-
types (strongly atheroprotective vs. strongly athero-
genic). Our hypothesis was that CNV encompassing the 
full length of a RCT gene would result in an increased 
or decreased amount of transcribed protein product 
directly proportional to the amount of copies present, 
thus impacting serum cholesterol levels. Further, we 
wished to investigate whether individuals with CNV in 
the central range would have normal lipid levels while 
those whose CNV was in the outermost edges of the 
range would have a dysregulated lipid metabolism lead-
ing to the extreme lipid profiles.

Our results in this study identified rare loss variants 
in 3 of the RCT genes. Out of 267 individuals and 16 
genes studied with two different CNV assay procedures, 
CETP showed a loss in a single individual, and two genes 
(ABCA1 and APOA4) showed apparent copy number 
losses with MLPA. The apparent loss of copy number 
seen for APOA4 was determined to be due to a SNP in 
the ligation site of its MLPA probe while the apparent 
loss seen at ABCA1 is suspected to be not genuine. The 
small standard deviation seen, along with the reproduc-
ibility of the significant loss of signal during additional 
MLPA runs, indicates that the loss for the CETP probe 
was valid. Coupled with the tight clustering around the 
normalized ratio of 1.0 for the non-outlying points of all 
of the RCT probes, these results strongly suggest that 
whole gene CNV is not present in the RCT genes at any-
thing above very low levels, and is therefore not likely to 
be a major influence on lipid levels in either the normal 
population or those infected with HIV and receiving 
antiretroviral therapy.

These findings are consistent with previous reports 
of limited structural variation in the RCT genes, as pre-
sented in the Database of Genomic Variants [53, 57]. 
Within this database, deletions that included whole genes 
were observed for CETP. The ABCA1 gene was observed 
to have a wide variety of insertions and deletions within 
its bounds, including five losses in the region of our 
MLPA probe, although none of them encompass the 
entire gene. All of these reported variants were extremely 
rare, with only a few individuals having the variant in 
studies containing several thousand participants. For 
those with higher frequencies, the study sizes were too 
small to conclude that a common variant was observed.

We also compared the ratios obtained with both CNV 
assays to gene expression data available for a subset of 
our samples. None of the genes for which we had avail-
able CNV data showed variation in expression level. This 
further suggests that it is unlikely that significant CNV is 
present in these genes that might affect expression.

Table 2  Normalized ratios of reverse cholesterol transport pathway gene CNV probes that showed significant departure 
from unity

a  The first two columns list median serum HDL-C and LDL-C levels from a minimum of 8 visits for that individual. Within the brackets is the IQR range for those lipid 
levels
b  Probes that crossed or were on the 0.7 ratio threshold are indicated with (*)

Lipid levelsa Normalized ratiosb

Sample LDL-C, mg/dL HDL-C, mg/dL ABCA1 APOA4 CETP SRBI

123 147 (132.25–162.25) 55 (51–68.3) 1 0.56* 0.99 1.06

157 114 (103–129) 30 (24.8–38.1) 0.75 0.98 0.65* 0.98

209 136.5 (124.25–148.5) 38 (36–40.4) 0.7* 1.12 0.92 0.77

367 69 (49–76) 39.2 (35.8–54.1) 0.95 0.55* 0.93 1.0
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Limitations
Our study was designed to detect any gene-specific CNV 
in members of the RCT pathway that may impact levels 
of gene expression and subsequent enzymatic activity 
that therefore affect lipid levels and lead to dyslipidemia 
in members of our study cohort. Our study does have 
some limitations. As no prior survey of CNV in these 

genes had been attempted, the frequency of such variants 
was unknown and our study was exploratory. As such, it 
had limited statistical power to assess the impact of CNV 
between the atherogenic and atheroprotective groups. 
Also, the sizes of the atheroprotective (n  =  23) and 
atheroprotective (n = 7) groups are not evenly matched, 
which would preclude more advanced statistical analysis 
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Fig. 3  Expression levels of RCT genes. Normalized copy number ratios obtained by MLPA and NanoString are plotted on the x-axis while log trans-
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were we to have found CNV in our samples, but the over-
all sample size of 319 individuals successfully typed is 
large enough to have detected any common variants 
and we can conclude that CNV of these genes is rare or 
absent. As we only designed one CNV probe set per gene 
it is also possible that variation within a gene could have 
been missed—for example, the LPA gene contains many 
kringle repeats that were not a focus of our study.

Our study was also limited by the type of clinical data 
available. In each biannual visit, serum cholesterol and 
triglyceride measurements are obtained from our study 
participants, and were used to define our atherogenic 
and atheroprotective groups. Other measurements, such 
as lipoprotein particle size and number, and HDL efflux 
capacity, have been shown to be stronger predictors of 
cardiovascular disease risk [58, 59], and would have been 
collected on subsequent visits had our initial study shown 
a role for CNV in this pathway. Our samples were also 
collected prior to the widespread use of the 2013 ACC/
AHA guideline, and we therefore use the older NCEP 
ATP III panel, but our data are based on a sufficiently 
large sample size to overcome this issue.

Conclusions
In this study we were able to develop a MLPA assay capa-
ble of detecting CNV when it is present. Using this assay 
we have illustrated that whole gene CNV is present only 
at very low levels in the RCT genes, and is not a major 
factor in the development of HAART-associated dyslipi-
demia. Thus, other host genetic influences exist and need 
to be identified before we are able to understand fully the 
ways in which host, viral, and therapeutic environmental 
factors interact to determine the outcome of antiretrovi-
ral therapy in HIV-positive individuals.

Methods
Samples
Experimental samples were obtained from the Multi-
center AIDS Cohort Study (MACS). The MACS is a mul-
ticenter (Baltimore, MD; Chicago, IL; Pittsburgh, PA; and 
Los Angeles, CA) ongoing prospective study, founded in 
1984, of the natural and treated histories of HIV-1 infec-
tion in men who have sex with men. Participants attend 
clinics bi-annually for a physical exam and sample collec-
tion, and complete extensive questionnaires about their 
medical history, behavior changes, and overall quality 
of life. All samples were obtained from volunteer par-
ticipants who had read and agreed to the consent policy 
implemented by the MACS for the protection of human 
subjects, and approved by the Institutional Review Board 
(IRB) at each MACS site (The University of Pittsburgh 
Institutional Review Board; The Johns Hopkins Univer-
sity Institutional Review Board; Northwestern University 

Institutional Review Board; and The University of Cali-
fornia, Los Angeles Medical Institutional Review Board).

Samples (n = 366) were identified on the basis of serum 
lipid measures obtained in their 2005 visit. We used the 
Third Report of the National Cholesterol Education Pro-
gram (NCEP) Expert Panel on Detection, Evaluation, and 
Treatment of High Blood Cholesterol in Adults (Adult 
Treatment Panel III) [54] to identify lipid levels associ-
ated with higher risk of heart disease (HDL-C <40 mg/dL 
and/or LDL-C >130  mg/dL) or with lower risk (HDL-C 
>60  mg/dL and/or LDL-C <100  mg/dL) [60]. DNA was 
extracted from frozen peripheral blood mononuclear cell 
pellets using the Qiagen QIAamp DNA Blood Mini Kit, 
following the Blood and Body Fluid Spin Protocol. DNAs 
were stored at −20 °C.

We also obtained 4 DNA control samples (NA07048, 
NA10846, NA10861, and NS12911) from the Coriell 
Institute cell repository. Three of these individuals served 
as reference samples, as the CNV of their DEFB103A 
gene was already known [61–63]. We also used 5 DNA 
samples obtained from volunteer donors in our labora-
tory as additional controls.

Copy number variation detection by multiplex 
ligation‑dependent probe amplification (MLPA)
MLPA was performed using the MRC-Holland SALSA 
MLPA P300 Human DNA Reference-2 (Version: 
A1-0410) probemix kit, in conjunction with 16 cus-
tom probes for RCT pathway genes (Table  3). Custom 
probes were designed following the manufacturer’s cri-
teria (Synthetic Probe Design v10-update 04-02-2009) 
utilizing the human genome 18 reference assembly and 
the Stonybrook MLPA design browser (http://bioinform.
arcan.stonybrook.edu/mlpa2/cgi-bin/mlpa.cgi) [64, 65]. 
BLAST searches were used to verify probe specificity 
prior to synthesis (Integrated DNA Technologies, Cor-
alville, IA, USA). Additional 5′phosphorylation of the 
right-hand probe oligo was performed in our laboratory 
(Additional file 2: Table S1).

MLPA reactions were performed following the stand-
ard 1 tube protocol (MDP-v001, update 17-06-2011) with 
an 18–19 h hybridization and amplification step using the 
new universal primers (released in June 2011). Fragment 
separation was performed at the University of Pittsburgh 
Genomics and Proteomics Core Laboratories.

Analysis of MLPA data
The Coffalyser.net software (http://wiki.coffalyser.net) 
was used to perform fragment and comparative analysis. 
Initially, no reference samples were indicated, and sam-
ples with average signal across all probes were selected 
as references for each of the four 96 sample runs. Frag-
ment analysis was then performed for a second time with 

http://bioinform.arcan.stonybrook.edu/mlpa2/cgi-bin/mlpa.cgi
http://bioinform.arcan.stonybrook.edu/mlpa2/cgi-bin/mlpa.cgi
http://wiki.coffalyser.net


Page 10 of 13Marino et al. BMC Res Notes  (2015) 8:697 

default settings. Samples with poor reference probe qual-
ity and reproducibility were removed before comparative 
analysis was performed for a second time. Final ratios 
and standard deviations were analyzed with the R statis-
tical software package [66] and the following modules: 
ggplot2 [67], reshape [68], and gridExtra [69].

Copy number calling
For probes that lacked reference samples with known 
copy number levels, discrete copies were not calculated. 
Instead, the default ratio thresholds (0.7, 1.3), defined by 
MRC-Holland and based on a 2-copy reference sample 
(MLPA Results Interpretation—V02.2;11-02-2010) [70], 
were used to identify individuals who exhibited a gain 
(>1.3) or loss (<0.7) of copy number. The interquartile 
range (IQR) of each probe was also compared to that of 
the reference probes to identify experimental probes with 
potential CNV that did not cross the default threshold. If 
a reference sample with a known discrete copy number 
was available for a given probe, the discrete copy number 
of the experimental samples was determined by cluster 
analysis of raw copy number calls [71] (Additional file 1: 

Supplementary Methods; Additional file 2: Figure S1 and 
Table S2).

CNV confirmation assay
A NanoString nCounter custom CNV CodeSet was 
designed containing the 16 RCT genes analyzed in our 
MLPA assay, and used to type 267 of the experimental 
samples previously typed by MLPA. DNA was processed 
and analyzed using a NanoString Technologies nCoun-
ter system at the University of Pittsburgh Genomics and 
Proteomics Core Laboratories. The NanoString nSolver 
Analysis Software (v1.1) was used to generate normalized 
ratios from raw counts, with 34 of the original MLPA 
samples set as RCT references.

Gene expression analysis
Gene expression data were available for 127 of the samples 
studied by MLPA and NanoString. These were obtained 
from whole blood collected into PAXgene tubes, from 
which RNA was extracted using the PAXgene Blood RNA 
Kit IVD. Samples were quantified, processed, and ana-
lyzed using the Illumina Human HT-12 v.4 whole-genome 

Table 3  Reverse Cholesterol Transport (RCT) pathway genes selected for analysis

Gene name Symbol Chromo- 
some

Function References

Scavenger receptor class B,  
member 1

SRBI 12 Plasma membrane receptor for HDL that mediates transfer of 
cholesterol to and from HDL

[33]

Apolipoprotein C-III APOC3 11 Very low density lipoprotein that inhibits lipoprotein lipase and 
hepatic lipase delaying triglyceride-rich particle catabolism

[32]

Apolipoprotein A-I APOA1 11 Major protein component of HDL and a cofactor of LCAT. Defects 
in APOA1 results in HDL deficiencies

[32, 33]

Apolipoprotein E APOE 19 Main apoprotein of chylomicron and essential for catabolism of 
triglyceride-rich lipoprotein constituents

[32, 33]

Phospholipid Transfer Protein PLTP 20 Lipid transfer protein that transfers phospholipids from triglycer-
ide-rich lipoproteins to HDL

[33]

Hepatic Lipase LIPC 15 Triglyceride hydrolase and ligand/bridging factor for receptor 
mediated lipoprotein uptake

[32, 33]

Lecithin-cholesterol Acyltransferase LCAT 16 Extracellular cholesterol esterifying enzyme that esterifies choles-
terol for transport

[32, 33]

Apolipoprotein A-IV APOA4 11 Potent activator of lecithin-cholesterol acyltransferase [32]

Lipoprotein Lipase LPL 8 Triglyceride hydrolase and ligand/bridging factor for receptor 
mediated lipoprotein uptake

[32, 33]

Endothelial Lipase LIPG 18 Regulates circulating levels of HDL and acts has phospholipase 
activity

[33]

Low Density Lipoprotein Receptor LDLR 19 Cell surface protein involved in receptor-mediated endocytosis 
of LDL

[32, 33]

Cholesteryl ester transfer protein CETP 16 Transfers cholesteryl esters between lipoproteins [32, 33]

Apolipoprotein A-V APOA5 11 Component of high density lipoprotein [32]

Apolipoprotein B APOB 2 Main apolipoprotein of chylomicrons and low density lipopro-
teins

[32]

ATP-binding cassette, sub-family A, 
member 1

ABCA1 9 Membrane associated protein that functions as a cholesterol 
efflux pump in the cellular lipid removal pathway

[32, 33]

Apolipoprotein C-II APOC2 19 Plasma lipid-binding protein that activates lipoprotein lipase [32]
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expression array at the University of Pittsburgh Genom-
ics and Proteomics Core Laboratories. Raw data was 
exported from Illumina Genome Studio and further data 
analysis was performed using the Bioconductor R mod-
ules lumi [72] and ArrayQualityMetrics [73].

Availability of supporting data
Data are held by the Center for Analysis and Manage-
ment of the Multicenter AIDS Cohort Study (CAMACS). 
For access to the MACS data, please complete the collab-
oration concept sheet and identify the article for which 
the data were used. This form and instructions may be 
found at: http://statepi.jhsph.edu/macs/forms.html.
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