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Abstract 

Background:  Phosphoglucose isomerase (PGI) genes are important multifunctional proteins whose evolution has, 
until now, not been well elucidated because of the limited number of completely sequenced genomes. Although 
the multifunctionality of this gene family has been considered as an original and innate characteristic, PGI genes may 
have acquired novel functions through changes in coding sequences and exon/intron structure, which are known to 
lead to functional divergence after gene duplication. A whole-genome comparative approach was used to estimate 
the rates of molecular evolution of this protein family.

Results:  The results confirm the presence of two isoforms in teleost fishes and only one variant in all other verte-
brates. Phylogenetic reconstructions grouped the PGI genes into five main groups: lungfishes/coelacanth/cartilagi-
nous fishes, teleost fishes, amphibians, reptiles/birds and mammals, with the teleost group being subdivided into two 
subclades comprising PGI1 and PGI2. This PGI partitioning into groups is consistent with the synteny and molecular 
evolution results based on the estimation of the ratios of nonsynonymous to synonymous changes (Ka/Ks) and diver-
gence rates between both PGI paralogs and orthologs. Teleost PGI2 shares more similarity with the variant found in all 
other vertebrates, suggesting that it has less evolved than PGI1 relative to the PGI of common vertebrate ancestor.

Conclusions:  The diversification of PGI genes into PGI1 and PGI2 is consistent with a teleost-specific duplication 
before the radiation of this lineage, and after its split from the other infraclasses of ray-finned fishes. The low average 
Ka/Ks ratios within teleost and mammalian lineages suggest that both PGI1 and PGI2 are functionally constrained 
by purifying selection and may, therefore, have the same functions. By contrast, the high average Ka/Ks ratios and 
divergence rates within reptiles and birds indicate that PGI may be involved in different functions. The synteny analy-
ses show that the genomic region harbouring PGI genes has independently undergone genomic rearrangements in 
mammals versus the reptile/bird lineage in particular, which may have contributed to the actual functional diversifica-
tion of this gene family.
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Background
The early vertebrate evolution has been characterised by 
a number of whole genome duplications (WGD) [1–4]. 
Two rounds of WGD namely 1R and 2R have occurred 
in vertebrate common ancestor [5–8]. An additional 
WGD, relatively more recent, has specifically occurred 

in teleost fish common ancestor [9, 10]. Whole genome, 
fragment or single gene duplication is amongst the cen-
tral evolutionary mechanisms that create genomic inno-
vation through the generation of new genetic variants 
that confer to organisms a better adaptive capacity to 
their environment [11–14]. Gene duplication produces 
two paralogues, one of which is free of selective con-
straints and may accumulate deleterious mutations and 
eventually becomes a pseudogene [15, 16]. Such non-
functional duplicates can be retained in the genome but 
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remain unexpressed and dysfunctional, although more 
recent studies on gene duplication suggest that pseudo-
genes might serve some functions [17–19]. The pseu-
dogenes are deleted from the genome or become very 
divergent from the parental gene so that they are no 
longer recognisable as such [16, 20]. In rare cases, both 
paralogues are maintained active because they differ 
in their functional aspects [16, 21, 22]. The evolution-
ary scenario under which the duplicate adopts a part of 
the function of the parental gene is known as subfunc-
tionalisation [15, 16, 23], while neofunctionalisation is 
applied where one duplicate evolves a different and novel 
function [23–25]. The neofunctionalisation requires 
important genetic changes in the key amino acid posi-
tions that are central determinants of the function of the 
protein [23, 26]. Changes in nucleotides and/or amino 
acid composition are not the only genetic changes that 
can lead to functional divergence after gene duplication 
[27, 28]. Genomic rearrangements including spontane-
ous genomic deletions may occur and cause a complete 
loss of some introns, which may lead to changes in exon 
length and nucleotide compositions [29, 30]. The fusion 
of remaining adjacent exons following intron loss may 
create new variants that conserve a part of the parental 
function or involve a completely different novel function 
[31, 32].

The observations of differential conservation or loss of 
duplicates has led to the question of why some variants 
are conserved in some species and lost in closely related 
species [33, 34]. This has also raised the question whether 
the absence of certain duplicates in genomes implies the 
loss of specific functions or whether the function that 
they were fulfilling is accomplished by other members of 
the same gene network or physiological pathways [24]. 
The relative frequency of duplicate loss or conservation 
varies considerably among organisms, even between 
species within the same lineage [35, 36]. An exhaustive 
analyses of aquaporin and claudin genes in teleost fishes 
revealed significant differences in the number of paralogs 
of these gene families between species [37–39]. Other 
examples of differential duplicate conservation or loss 
have been reported for many gene families in euteleosts 
[40, 41]. It cannot be ruled out that the failure to identify 
duplicates in teleost genomes was an artefact of sequence 
incompleteness due to low sequencing coverage for these 
genomes [42, 43]. The availability of many genomes dis-
tributed over different kingdoms now allows to address 
such questions (at a large scale).

The phosphoglucose isomerage (PGI) is amongst 
the genes that have retained both paralogs after tele-
ost-specific WGD [44–47]. The PGI protein gene has 
been identified as a key enzyme of the glycolysis path-
way, where it insures the inter conversion between 

d-glucose-phosphate and d-fructose-6-phosphate [44, 
48]. PGI is also involved in other functions, including 
thermal adaptation, differentiation and mediation of 
maturation inducer activity, which might result from sec-
ondary effects of the basic function [44, 48, 49]. The pro-
tein structure of PGI genes in relation to their genomic 
evolution has been investigated by a few studies using 
a limited number of taxa [45–47] that did not cover 
the whole vertebrates. It has been thus demonstrated 
that the electric charges of teleost PGI1 and PGI2 have 
significantly diverged, which was interpreted as a sub-
functionalisation indicating that the two PGI paralogs 
have evolved to have different functions after duplication 
[47]. The same authors tried to infer the origin of this 
sub-functionalisation by applying an evolutionary model 
to identity sign of positive selection after PGI duplica-
tion. However, the results were not clear, indicating that 
the evolutionary processes that has led to the functional 
divergence of PGI1 and PGI2 are still not completely 
understood and need further evaluation. Although large 
divergence rate between duplicates could be the result of 
positive selection on novel function, relaxation of selec-
tive constraints, and even loss of function, the levels of 
sequence divergence can provide information on the pro-
cess of neofunctionalisation among duplicates [50, 51]. 
The divergence rates of protein sequences are expected to 
be higher in duplicates that have evolved novel functions 
compared to those that did not undergone neofunction-
alisation. Therefore, an estimation of the ratios of non-
synonymous to synonymous changes and divergence 
rates between PGI1 and PGI2 paralogs and orthologs 
among and within lineages may help to infer the evolu-
tionary origin and support previous findings on the func-
tional divergence of teleost PGI1 and PGI2.

The objective of the present study was to infer and 
retrace the evolutionary history of the PGI genes in ver-
tebrates by combining similarity, phylogenetic and con-
served synteny analyses. Another objective of this study 
was to estimate the divergence times between PGI pair-
wise paralogs and orthologs among and within lineages 
in order to infer the origin and confirm the functional 
diversification of this gene family that has been previously 
reported [46, 47]. The results show that, in addition to the 
functional divergence resulting from amino acid changes, 
complex genomic rearrangements including inversion, 
intron gain and intron deletion have also affected the 
region harbouring PGI genes after duplication, which has 
probably led to their actual functional diversification.

Results
Synteny analyses
The genomic location of PGI genes identified in all ana-
lysed species as well as their flanking genes is shown in 
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Table 1. Two PGI genes were found in all teleost fishes. 
The similarity and synteny analyses resealed that these 
two isoforms correspond to two variants that have been 
previously characterised in Danio rerio. These two iso-
forms are referred as PGI1 and PGI2 in this study. Only 
one PGI isoform was found the in the holostei, the spot-
ted gar Lepisosteus oculatus (Table  1). The first and/
or second flanking gene(s) was lost in some of the spe-
cies. Therefore, the two first adjacent upstream flanking 
genes: MPHOSPH6: (UFG1) and HSD17B2 (UFG2) of 
PGI1 isoform were presented. Likewise, the three first 
adjacent downstream flanking genes: LSM14A (DFG1), 
SI:DKEY (DFG2) and, THAP9 (DFG3) are also shown in 
Table 1. Similarly, the two first upstream flanking genes 
(KIAA0355 and LSM14A) and downstream adjacent 
flanking genes (WTIP and HSD17B2) of PGI2 are also 
indicated in Table  1. PGI1 was located on correspond-
ing chromosomes 25 and 6 in D. rerio and Oryzias latipes 
genomes [52], respectively, while PGI2 was located on 
corresponding Dicentrarchus labrax (LG5) and Gas-
terosteus aculeatus (GroupII) chromosomes [53]. More 
importantly, O. latipes PGI1 and PGI2 are located on two 
distinct chromosomes (6 and 3) that share a high degree 
of synteny [54], suggesting that they may have resulted 
from a duplication of the same genomic region. Also, only 
one PGI gene was identified in amphibians, reptiles, birds 
and mammals. The two PGI isoforms identified in fishes 
are located on different chromosomes. The order of PGIs 
and their flanking genes is shown in Fig. 1 and Table 1. 
This order varied between PGI isoforms, between line-
ages and even within lineages. The PGI1 gene in most tel-
eost species (including the Atlantic cod, Gadus morhua, 
the zebrafish, D. rerio, Astyanax mexicanus, the two 
pufferfish Tetraodon nigorviridis and Takifugu rubripes) 
is flanked upstream and downstream by the hydroxyster-
oid (17-beta) dehydrogenase 2 (HSD17B2) and LSM14A 
mRNA processing body assembly factor a (LSM14AA) 
genes, respectively (Fig.  2a). By contrast, in some spe-
cies including the stickleback, G. aculeatus, medaka, O. 
latipes, the tilapia, Oreochromis niloticus, Amazon molly, 
Poecilia Formosa and the platyfish, Xiphophorus macula-
tus, the PGI1 gene is flanked upstream by the M-phase 
phosphoprotein 6 (MPHOSPH6) gene (Fig. 2a), which is 
the upstream gene of HSD17B2 gene. The second teleost 
isoform, PGI2 is flanked upstream by the KIAA0355 gene 
whereas its downstream flanking gene is Wilms tumor 1 
interacting protein (WTIP) (Fig. 2a). Only in O. latipes is 
PGI2 flanked downstream by a different gene, HSD17B2 
(Fig. 2a) i.e. the upstream flanking gene of PGI1.

The PGI gene identified in amphibians (Duttaphrynus 
melanostictus and Xenopus tropicalis), reptiles (Pelo-
discus sinensis, Anolis carolinensis) and birds (Ficedula 
albicollis, Anas platyrhynchos and Meleagris gallopavo) 

is flanked upstream by KIAA0355 whereas the down-
stream flanking gene is WTIP (Fig. 2b), which is also the 
downstream flanking gene of teleost PGI2 genes. The 
mammalian PGI gene has the same upstream flanking 
gene (KIAA0355) as amphibians, reptiles and birds but 
their downstream flanking gene is the programmed cell 
death 2-like gene (PDCD2L) in Mus musculus, Rattus 
norvegicus, Pongo abelii, Macaca mulatta, Homo sapi-
ens (Fig. 2b) and ENSECAT00000021114 in Equus cabal-
lus, uncharacterized protein ECO:0000313 in Sus scrofa, 
ENSOCUT00000001459 in Oryctolagus cuniculus and 
uncharacterized protein, ECO:0000313, in Felis catus. 
The similarity search in Ensembl using BLAT showed 
very high similarity in these uncharacterised proteins to 
PDCD2L, suggesting that all mammals analysed in this 
study have the same downstream gene, PDCD2L, a locus 
located just before the ubiquitin-like modifier activating 
enzyme 2 (UBA2), which flanks the WTIP at its upstream 
part. In other words, there are two genes between mam-
malian PGI gene and the WTIP gene, which flanks the 
PGI of vertebrates including teleost PGI2. Based on these 
syntenic analyses, the PGI gene in amphibians, reptiles, 
birds and mammals present more similarities with the 
PGI2 of fishes, and can therefore be qualified as PGI2, 
as annotated in the GenBank and Ensembl database for 
most of the species.

In the lamprey, Petromyzon marinus, only one PGI 
gene was found and its upstream and downstream flank-
ing genes were not identified (Fig. 2b). This PGI gene was 
the only gene found on the scaffold where it is located. 
Similarity search using fishes flanking genes did not allow 
identifying the bordering genes in other scaffolds of the 
genome. The failure to identify the lamprey PGI flanking 
genes could be due to the quality of the assembly, which 
is problematic in this species. In the coelacanth, Latim-
eria chalumnae, only one PGI gene was identified, which 
is located on the same scaffold as its downstream flanking 
gene, WTIP. Its upstream flanking gene was found at the 
extremity of a different scaffold (Scaffold JH127461.1). 
The similarity and syntenic analyses indicated that this 
PGI is more similar to the PGI2 of the other species 
than to the PGI1 gene. The BLAST search using teleost 
fish PGI1 gene and its upstream and downstream genes 
did not reveal the presence of another PGI gene in coe-
lacanth and lamprey, suggesting that these two species 
have only one PGI isoform. The similarity search iden-
tified only one PGI isoform in the elephant shark, Cal-
lorhinchus milii, and the lancelet Branchiostoma floridae, 
and their flanking genes were not successfully identified.

To better understand the origin of PGI gene, I searched 
for its presence in invertebrate genomes. Similarity 
search identified only one gene in the Fruitfly, Drosoph-
ila melanogaster, flanked upstream and downstream by 
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FBtr0088650 and FBgn0002552, respectively (Fig.  2b). 
The similarity search indicates that these two genes are 
different from the upstream and downstream flank-
ing genes of PGI genes found in the other species. The 
D. melanogaster (DM) PGI gene has a smaller number 
of exons (5 exons only) compared to the PGI genes of all 
vertebrate species (Additional file1: Table S1).

Structure of PGI genes
Most of the PGI genes identified in this study comprise 
18 exons interrupted by 17 introns. The PGI1 gene of L. 
oculatus (LO) and S. scrofa (SS) has an additional exon 
(Additional file 1: Table S1). In T. nigroviridis (TN), both 
PGI isoforms have 17 exons. In A. mexicanus (AM), PGI1 
has 17 exons and PGI2 18 exons whereas in G. morhua 
(GM), PGI1 consists of 18 exons and PGI2 17 exons. P. 
sinensis (PS) also have 17 exons and 16 introns (Addi-
tional file  1: Table  S1). The smaller number of exon in 
vertebrates was found in P. marinus (MP) and M. gal-
lopavo (MG), 11 and 15 exons, respectively (Additional 
file 1: Table S1). The multiple alignment of DM PGI with 
other vertebrate PGI did not show differences in protein 
sequence lengths. By contrast, the multiple alignment of 
nucleotide sequences of PM PGI with D. rerio PGI1 and 
PGI2 shows that the upstream and downstream exons 
were lost in this species. Similar results were observed for 
MG whose the amino acid sequence alignment with GG 
shows that the first part the sequence is missing, suggest-
ing a deletion the first exons.

In fishes, the largest exon for both PGI isoforms is exon 
18 with a maximum length of 2227 bp for P. formosa (PF) 
PGI1 (Additional file  1: Table  S1). In the pufferfish, T. 
rubripes (TR) and T. nigroviridis, the largest exons were 

respectively exons 12 and 11 with 153  bp each. in G. 
morhua (GM), the largest exon for both PGI isoforms was 
exon 12 with a total length of 153  bp (Additional file  1: 
Table S1). In all fish species, the smallest exon was exon 
11 with 44 bp except for T. nigroviridis where the small-
est exon was exon 13 with a total length of 22 bp. In M. 
gallopavo, the smallest exon is comprised of 44  bp but 
it was exon 8 instead of exon 11 like in the other species 
(Additional file  1: Table  S1). Likewise, the shortest exon 
for the other eukaryote PGI genes was exon 11 with 44 bp 
except in L. oculatus PGI, whose exon 11 was of 22 bp in 
length. In P. sinensis, the shortest exon was exon 1, which 
count 21 bp. In D. melanogaster the largest exon was exon 
1 whereas the shortest was exon 3. The exon 11 was the 
most conserved between PGI isoforms and between spe-
cies in term of length. Other exons such as 5, 6, 7, 8, 9 and 
11 were also very conserved in term of length between 
PGI isoforms but also between species. (Additional 
file  1: Table  S1) The upstream and downstream exons 
seemed to be more variable in term of size for all PGI 
genes and in all species. The largest and smallest intron 
was not the same for PGI paralogs and were also variable 
between PGI orthologs, i.e. between species (Additional 
file 1: Table S2). For example in G. aculeatus, the largest 
introns were introns 3–4 (1857  bp) for PGI1 and intron 
9–10 (525 bp) for PGI2 whereas the smallest introns were 
respectively intron 5–6 (75  bp) and 4–5 (84  bp) (Addi-
tional file 1: Table S2). In the pufferfish, the largest PGI-
1intron was intron 1–2 (1079 bp) in T. rubripes and 14–15 
(2101 bp) for T. nigroviridis (Additional file 1: Table S2). 
The smallest intron for PGI1 in both species was the same, 
intron 12–13 but the length was very different, 76 bp for 
T. rubripes versus 4 bp for T. nigroviridis.

Mammal

Reptile
Bird

Amphibian

Fishes PGI2

Fishes PGI1

= PDCD2L

= UBA2 = WTIP  = PGI1

= PGI2  
= KIAA0355

= LSM14A 

= MPHOSPH6

= HSD17B2

= SI:DKEY

= THAP9

Fig. 1  The general organisation of genes surrounding PGI genes
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Principal component analysis
The principal component analysis (PCA) allowed to dif-
ferentiate the PGI genes into different groups based on the 
number of exons as well as their length (Fig. 3). All verte-
brate PGI genes were clustered in a same group, except L. 
oculatus (LO), M. gallopavo (MG), P. marinus (PM) and 
P. sinensis (PS) PGI gene, and T. nigroviridis PGI1(TN1) 
which are completely distinct on the PCA plot. The PGI 
of these species are also not grouped together on the PCA 
plot (Fig. 3). The position of LO on the PCA plot is deter-
mined by the exon E16 whereas that of DM is due to the 
exons E2, E4 and E5 (Fig. 3). The position of PM and TN1 
on the PCA map is essentially determined by E3 while 
that of PS is explained by E17 (Fig. 3).

The repartition of PGI on the PCA plot based on the 
intron information allowed differentiating vertebrate 
PGI in three different groups; teleost, reptile/bird and 
mammal. D. rerio PGI1 (DR1) and PGI2 (DR2), and A. 
mexicanus PGI2 (AM2) are the only PGI genes that are 
isolated from other teleost PGI genes. The coelacanth 
L. chalumnae PGI (LC) and lizard A. carolinensis (AC) 
are very isolated from other PGI genes, but also isolated 
among themselves (Fig. 4). While the position of LC on 
the PCA plot is essentially explained by introns I6 and 
I7, that of AC seems to be determined by more number 
of introns including I6, I7, I10, I11, I13 and I17 (Fig. 4). 
Within the mammal lineage only M. musculus (MM) 
and P. abelii (PA) PGI genes are isolated in a different 

Fig. 2  Conserved synteny of PGI and their upstream and downstream flanking genes: teleost fishes (a), Amphibians, reptiles, birds, mammals, 
hagfishes, lamprey and the coelacanth (b). The different colors surrounding PGI isoforms indicate the different flanking upstream and downstream 
flanking genes. The names of different flanking genes are indicated in Table 1
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sub-group. The mammal group is essentially defined by 
introns I4, I8, I12, I14 and I19 whereas bird/reptile group 
is explained by I10, I11, I13 and I17. The position of the 
teleost group (formed by PGI1 and PGI2 paralogs) on 
the PCA map is not related to intron length except for 
DR1, DR2 and AM2, whose the position on the PCA 
map seems to be related to the intron size (Fig.  4). The 
lamprey, P. marinus (PM) and the spotted gar, L. ocula-
tus (LO) PGI genes are isolated but closely related on the 
PCA map and their repartition their position is essen-
tially explained by I2, I16 and I18 (Fig. 4).

Phylogenetic analyses
The phylogenetic analysis recovered five main PGI lin-
eage-dependent groups: lungfishes/coelacanth/carti-
laginous fishes, teleost fishes, amphibians, reptiles/bird 
and mammals (Fig.  5). The teleost group is subdivided 
into two different clades comprising the PGI1 and PGI2 
genes, respectively (Fig.  5). All teleost PGI1 genes are 
grouped in the same clade whereas the PGI2 genes are 
grouped in a different clade. According to the phyloge-
netic tree, teleost PGI1 and PGI2 are each other sister 
group and shows a common origin. The phylogenetic tree 
do not clearly show which of these two teleost PGI iso-
forms is more related to the PGI gene of reptiles, birds 
and mammals which all belong to the same clade, a result 
expected for WGD that produces two sister groups. The 
phylogenetic tree including the lamprey PGI sequence 
is not presented here because it was not well resolved, 
which may be due to the wrong frameshift found in the 
annotation of the PGI gene in this species. The within-
species phylogenetic results of PGIs in the teleost line-
age are not congruent with the taxonomic relationships 
between species. For example G. aculeatus PGI1 is 
closely related to G. morhua PGI1 whereas its PGI2 is 
more related to PGI2 of other species such as O. latipes, 
T. nigroviridis or T. rubripes. Likewise, M. cephalus PGI1 
is closely related to that of P. formosa and X. maculatus 
while its PGI2 showed more similarity with D. labrax 
PGI2. Possible reasons for this discrepancy are different 
evolutionary constraints that may have been impacted on 
PGI isoforms in these species after duplication.

Natural selection
The average Ka/Ks ratio (Table  2) measured between 
teleost PGI1 and PGI2 paralogs is 0.64. The Ka/Ks 
ratio measured was higher than 1 in P. formosa (1.50), 
G. morhua (2.07) and D. labrax (1.74) and below the 
average in all other teleost species (Table  2). This 
average is higher than that measured between teleost 
PGI1 and PGI2 orthologs, which were 0.07 and 0.06, 
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protein sequences
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respectively. The Ka/Ks ratio measured between tele-
ost PGI1 and mammal PGI was 1.96 whereas the aver-
age between teleost PGI2 and mammal PGI was 1.30 
(Table  2). The average Ka/Ks ratio measured within 
mammal, reptile and bird lineages was 0.13, 1.38 and 
1.43, respectively.

The average divergence rate between teleost PGI1 and 
PGI2 paralogs was 1.27, which was higher than the rate 
between teleost PGI1 orthologs (0.38) and teleost PGI1 
orthologs (0.31) (Table  2). The average divergence rate 
of teleost PGI1/mammal PGI and teleost PGI1/mam-
mal PGI2 were 2.68, and 2.49, respectively. The average 
divergence rates within reptile (2.88) and bird (3.31) line-
ages were significantly higher than that within mammal 
lineage (0.13) (Table 2). The average GC content between 
teleost PGI1/PGI2 paralogs was 53 % whereas it was 54 % 
for teleost PGI1 orthologs and 50 % for PGI2 orthologs 
(Table 2). The comparison between teleost and mammal 
showed similar values 56  % for teleost PGI1/mammal 
PGI and 54 % for teleost PGI2/mammal PGI. The average 
GC content within lineages was 47  % for bird, 53  % for 
reptile and 56 % for mammal (Table 2). For all pairwise 
comparisons, no codon bias was found. The substitution-
rate-ratio (SRR) was 1:1:1:1 for all pairwise PGI orthologs 
and paralogs.

Secondary structure
The comparison of the secondary structure between 
species revealed a number of changes (including differ-
ences in the number of helices, strands and coils) that 
were observed between PGI1 and PGI2 after duplication 
(Additional file 2: Figure S1A). The number of α helices of 
PGI1 and PGI2 was respectively, 22 and 24, the number 
of β-strands 12 and 11 and the number of coils 36 and 

35. The TMD has the same length and is comprised of 22 
amino acid residues. A number of substitutions have also 
occurred in the TMD, including those at positions 1: T-S, 
4: M-T, 7:A-V, 9:V-I and 18:V-I. Any of these substitu-
tions were associated with changes in the electric charge 
of the corresponding amino acid. Thirteen substitutions 
resulted in electric charge changes in PGI1 and 7 amino 
acid replacements associated with changes of electric 
charges in PGI2 (Additional file 2: Figure S1B). Four resi-
dues were with an RSA value, 3 of which were common, 
and only one different and located at the position 18 of 
the TMD. There were more amino acid residues with 
RSA value coil and structure compared to helices (Addi-
tional file 2: Figure S1C).

Discussion
The current study aimed at inferring the evolutionary 
history and functional divergence of PGI genes in verte-
brates. Two paralogues were identified in teleost fishes 
and only one isoform in all other lineages. The phylo-
genetic reconstructions, which incorporated protein 
sequences from completely sequenced genome with 
sequences from individual genomic characterisation 
recovered five main lineage-specific groups supported by 
high bootstrap values. This phylogenetic topology is not 
only supported by the conserved synteny results, but also 
by the molecular evolution analyses based on the estima-
tion of the average ratio of nonsynonymous to synony-
mous changes and the divergence rates. The combined 
phylogenetic reconstructions and synteny-based analyses 
revealed, as expected, that vertebrate PGI genes origi-
nated from two rounds of genome duplications and their 
functional diversification derived from both amino acid 
changes and post-duplication rearrangements including 

Table 2  Natural selection and functional divergence parameters

Sequence Method Ka Ks Ka/Ks Length S-sites N-sites Substitutions S-substitutions N-Substitu-
tions

Divergence 
rate

GC 
 content (%)

Teleost PGI1/
PGI2

NG 1.12 1.79 0.64 1624 370 1254 682 241 441 1.27 53

Teleost PGI1/
PGI1

NG 0.10 1.37 0.07 1659 377 1282 354 236 118 0.39 54

Teleost PGI2/
PGI2

NG 0.07 1.15 0.06 1659 375 1284 292 210 82 0.31 50

Teleost PGI1/
Mammal PGI

NG 3.02 1.59 1.96 1682 392 1290 1202 256 945 2.68 56

Teleost PGI2/
Mammal PGI

NG 2.60 2.11 1.30 1670 388 1282 1200 271 929 2.49 54

Reptile/Reptile 
PGI

NG 3.08 2.22 1.38 1851 432 1419 1354 307 1047 2.88 53

Mammal/
MammaL PGI

NG 0.05 0.40 0.13 1674 391 1283 182 115 67 0.13 56

Bird/Bird PGI NG 3.50 2.66 1.43 1569 360 1209 1155 258 897 3.31 47
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inversion, intron gain (e.g. insertion of a genomic frag-
ment) or loss (e.g. by fusion of exons) followed by the 
fusion of adjacent exons.

Origin and diversification of vertebrate PGI genes
The phylogenetic reconstructions, similarity and con-
served synteny analyses allowed the identification of two 
PGI isoforms (PGI1 and PGI2) in teleost fishes, in agree-
ment with previous findings [46, 47], and only one PGI 
gene in the other vertebrates including ray-finned fishes, 
amphibians, birds and mammals. The diversification of 
PGI gene into PGI1 and PGI2 has likely resulted from 
the additional WGD that has specifically occurred within 
the teleost lineage [52]. The phylogenetic tree partitioned 
vertebrate PGI genes into five main groups (lungfishes/
coelacanth/cartilaginous fishes, teleosts, amphibians, 
reptiles/birds and mammals), which are also supported 
by the molecular evolution results (Ka/Ks ratios and 
divergence rates), and synteny-based analyses. Over-
all, groups identified with the phylogenetic reconstruc-
tions are also supported by the repartition of PGI genes 
on the PCA plot according to their intron length. These 
results are consistent with previous findings indicat-
ing that reptiles and birds together have similar intron 
length, which are different from intron size of mammal 
and teleost genes [53, 54]. The positioning of D. rerio 
(DR) and P. marinus (PM) PGI on the PCA plot out of the 
teleost group is also consistent with findings from previ-
ous studies that have demonstrated that the intron size 
has expanded in these species compared to other teleosts 
[55]. The introns are less constrained by natural selection 
than protein coding fragments of the genome and there-
fore evolve faster. This may explain why they allowed to 
differentiate PGI genes into lineage-specific groups. This 
is in agreement with the absence of well differentiated 
groups on the PCA map showing the distribution of PGI 
genes according to exon length.

Although this cannot be inferred from the phylogenetic 
results, the synteny analyses support that teleost PGI2 is 
common to the other vertebrates including lungfishes, 
lamprey and the coelacanth. This suggests that this gene 
might existed in the genome of common vertebrate ances-
tor. This contradicts previous findings that the first dupli-
cation that gave rise to the vertebrate common PGI gene 
has occurred at the origin of hagfishes (agnatha) [56]. The 
presence of a PGI gene similar to the vertebrate isoform in 
hagfishes (E. yangi) and cartilaginous fishes, the elephant 
shark (C. milii), which is closely related to the invertebrates 
PGI (D. melanogaster) strongly supports for the existence 
of a PGI locus in the common ancestor of all vertebrates.

The teleost PGI1 and PGI2 are not adjacent in the 
genome, and then did not result from tandem dupli-
cations. Instead, they may have resulted from the 

duplication of large genomic fragments. Although it 
was not possible to determine whether all teleost PGI 
paralogs are located on corresponding chromosomes 
because most of them are located on unordered scaf-
folds or unknown random chromosomes, medaka PGI1 
and PGI2 were identified on two distinct chromosomes 
(6 and 3) with a high degree of synteny [57]. These two 
chromosomes are probably corresponding chromosomes 
that resulted from WGD [57]. These results suggest that 
the two teleost PGI paralogs may have resulted from tel-
eost-specific WGD that took place after the divergence 
of teleosts and lungfishes from their common ancestor 
[3, 52, 58, 59]. This interpretation is in agreement with 
previous findings based on the observation that the phy-
logenic position of PGI duplication coincides with the 
estimated teleost-specific WGD [46, 47].

Natural selection and functional divergence
The significantly higher average pairwise Ka/Ks ratio 
(0.64) between teleost PGI1 and PGI2 paralogs compared 
to teleost PGI1 (0.07) or PGI2 (0.06) orthologs implies 
that each of these isoforms is highly constrained by the 
function(s)that it plays within this lineage through an 
intense purifying selection. Purifying selection is sup-
ported by the average divergence rate between PGI1 and 
PGI2 paralogs, which was significantly higher than the 
average rate recorded for PGI1 or PGI2 orthologs (1.27 
versus 0.38 and 0.31, respectively). By contrast, for each 
species within the teleost lineage, PGI1 and PGI2 paral-
ogs seems subject to high synonymous substitution rates 
resulting from directional selection, in accordance with 
the high divergence rates of the PGI1 and PGI2 paral-
ogs. The average pairwise ratio Ka/Ks measured in cer-
tain teleost species such as P. formosa, G. morhua and 
D. labrax were exceptionally high (1.50, 2.07 and 1.74, 
respectively). This strongly supports the hypothesis of 
positive selection due to higher synonymous changes 
that may have resulted from changes in amino acid com-
position, codon bias or increased mutation rate. The 
substitution rate ratios measured in this study indicated 
that there was no codon bias, and the percentage of GC 
content for all pairwise comparisons was around 54  %, 
suggesting that the higher Ka/Ks ratios recorded for 
these three species resulted from an increased mutation 
rate compared to the remaining species. Given the het-
erogeneity of environments inhabited by teleost fishes it 
can be expected that positive selection acts differently 
on duplicates between species [60]. Certain species colo-
nise environments where others cannot inhabit because 
of environmental constraints. Therefore, genes essential 
to adaptation and survival to these environments might 
be differently constrained, which may explain the differ-
ences in Ka/Ks ratios amongst teleosts.
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The low average Ka/Ks ratio (0.13) and divergence rate 
(0.13) within mammals could be indicative of a more 
recent divergence of PGI orthologs compared to the 
avian and reptilian lineages. They may also indicate that 
mammalian PGI orthologs have the same functions in 
this lineage, i.e. they are being constrained by their differ-
ent functions. By contrast, the higher Ka/Ks ratios (1.38 
and 1.43, respectively) in the reptile and bird lineages 
may indicate that PGI genes have evolved different or 
novel functions. This interpretation is strongly supported 
by the average divergence rate, which was respectively 
22 and 25 times the divergence rate measured within 
the mammal lineage. It has been suggested that the 
multi-functionality of PGI genes in mammals resulted 
from gradual changes in amino acid sequences [47]. The 
conservation of amino acid structure and the electric 
charge of PGI proteins measured in this study revealed 
amino acid substitutions between PGI1 and PGI2, some 
of which were associated with changes in the electric 
charges of the corresponding residues. There was diver-
gence in the electric charge of PGI amino acid residues 
after duplication, which occurred more frequently in 
PGI2 compared to PGI1. Such changes in protein struc-
ture can be interpreted as a neo- and/or subfunction-
alization, driven by functional constraints differentially 
exerted on PGI1 and PGI2 isoforms. These new results 
on the secondary structure and amino acid properties 
of PGI1 and PGI2 corroborate previous findings [47]. 
Indeed, the divergent evolution of the electric charges of 
PGI duplicates have been shown to reflect the specialisa-
tion of PGI isoforms [46, 47].

Genomic rearrangements after PGI duplication
The combined length of the five D. melanogaster PGI 
exons was equivalent to the total length of the 18 exons 
of fishes and other vertebrate PGI genes, suggesting that 
the lower number of PGI exons in this species may have 
resulted from intron deletion and the fusion of adjacent 
exons following introns loss. This interpretation is sup-
ported by the alignment of amino acid sequences of 
genes (Additional file 3: Figure S2), which showed that D. 
melanogaster PGI has a length similar to that of its ana-
logue in the other lineages. The sequence similarity of D. 
melanogaster PGI with that of mammals, birds, reptiles 
and amphibians is also equivalent to similarities found 
between these lineages. These results strongly support 
that the lower number of introns in D. melanogaster PGI 
compared to other species resulted from intron loss fol-
lowed by fusions of adjacent exons. On the other hand, 
as demonstrated by the alignment of gene sequences 
(Additional file 3: Figure S2), the lower number of exons 
(15 exons) of the GM PGI compared to the number 
found in GG, implies that some exons at the upstream 

part of the gene have been lost in this species. The lower 
number of exons (11 exons) of PM PGI may be seen as 
a result of sequence incompleteness materialised by a 
sequencing gap in the PGI nucleotide sequence of GG 
(Additional file  3: Figure  S2). However, sequence align-
ments provide strong evidence that the lower number of 
exons of the PGI of this species results from the deletion 
of some exons at both upstream and downstream parts 
of the sequence. Interestingly, the E13 has a total length 
of 130 bp in all mammal species in except in SS (44 bp), 
which also has a E14 different exon length compared to 
other mammals (84 versus 77 bp). More importantly, the 
exons E15, E16, E17 and E18 of the SS PGI have respec-
tively the same length as mammal E14, E15, E16 and E17. 
This provides strong evidence that the additional exon of 
this species resulted from an insertion of a genomic DNA 
fragment within E13, which has led to two different and 
shorter exons (E13 and E14). By contrast, the additional 
exon of L. oculatus seems to have resulted from a re-
organisation of the whole gene after duplication. Indeed, 
the PGI exons in this species have a different length 
compared to other vertebrates. This is supported by 
the contradictory phylogenetic and synteny results that 
respectively identified the PGI of L. oculatus as PGI1 and 
PGI2. Such post duplication genomic rearrangements 
may also explain why the PGI of L. oculatus which a hol-
ostean is grouped together with teleost PGI1 and closely 
related to D. labrax in the phylogenetic tree.

The order of genes surrounding PGIs support the idea 
that complex genomic rearrangements have occurred 
after duplication of the genomic fragments harbouring 
the PGI genes. The micro-synteny around PGI is pre-
served in most of the species, but in some cases, the 
first or first two flanking genes were lost. The succession 
of the three first adjacent downstream flanking genes 
of the PGI gene in birds/reptiles/amphibians is WTIP-
UBA2-PDCD2L, whereas in the mammals analysed, 
WTIP was not found, and the order of the two flanking 
genes was inverted (PDCD2L-UBA2). The most parsi-
monious explanation to this finding is that the genomic 
fragment harbouring PDCD2L and UBA2 was inverted 
after duplication, probably after the split of mammals 
from other tetrapods. The PDCD2L gene was then lost 
in amphibians while both the UBA2 and PDCD2L genes 
were lost in the teleost fishes. The re-annotation of the 
region surrounding PGI did not allow identifying any 
of these genes, indicating that their misidentification 
is not due to incomplete sequencing. These genes have 
been truly lost after duplication, as was the HSD17B2 
gene, which was lost in certain fish species after PGI1/
PGI2 duplication, but was conserved in the other spe-
cies. The downstream flanking gene of O. latipes PGI2 is 
the same as the upstream flanking gene of PGI1 of other 
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teleosts such as T. nigroviridis, G. morhua, D. rerio and 
A. mexicanus, while its upstream flanking gene is the 
same as that PGI2 of the other species. The upstream 
flanking gene of O. latipes PGI1 is the same as that of 
the remaining teleost species, but its downstream flank-
ing gene is SI:DKEY, which corresponds to the second 
downstream flanking gene of PGI1 in the other species. 
The first downstream gene was probably lost in this 
species, probably through post-duplication rearrange-
ments. These are examples of micro-synteny conserva-
tion between paralogs while the sequence homology 
signals were lost in many cases.

Conclusion
The combined similarity search, conserved synteny and 
phylogenetic reconstruction analyses conducted in this 
study allowed an exhaustive clarification of the evolu-
tionary history of PGI genes in vertebrates. The phylo-
genetic reconstructions differentiated vertebrate PGI 
genes into different groups, which were also supported 
by the synteny-based results and the selective and diver-
gence tests. The results further showed that one PGI 
isoform, teleost PGI2 is shared by all vertebrate species 
analysed. PGI2 might be involved in the same biochemi-
cal pathways or physiological networks in vertebrates. 
The conservation of amino acid structure and the elec-
tric charge of PGI proteins, together with the evolu-
tionary analyses based on Ka/Ks ratios and divergence 
rates, supports a functional diversification of teleost 
PGI as previously suggested [47]. Glycolysis, which is 
the main pathway in which the PGI genes are involved, 
is an energy metabolic production resource common 
to all eukaryotic organisms. This may explain why one 
of the PGI duplicates, PGI2, is shared by all vertebrate 
species. The PGI isoform specific to teleost fishes may 
play specific functions within this lineage as evidenced 
by different selective pressures and divergence rates. 
These probable novel functions have to be identified 
and investigated.

Methods
Identification of PGI orthologs and their flanking genes
The protein and nucleotide sequences of PGI1 and PGI2 
of Mugil cephalus published by Grauvogel et  al. [45] 
were extracted from the GenBank database using the 
accession number provided by the authors. These well-
characterised PGI sequences were blasted against the 
sea bass, Dicentrarchus labrax genome (http://seabass.
mpipz.mpg.de/cgi-bin/hgGateway), which allowed the 
identification of two PGI isoforms in this species. Two 
PGI loci were considered as paralogs or orthologs when 
the two corresponding nucleotide or protein sequences 
match on aligned blocks with an average length of at 

least 80  % with ≥70  % identify. I thus performed syn-
teny-based analyses which consisted of identifying the 
putative PGI exon–intron structure and the comparison 
of exon/intron length within and between the main ver-
tebrate lineages from hagfishes to mammals. They also 
consisted on performing a comprehensive comparative 
analysis of the genomic region harbouring PGI genes. I 
also performed a re-annotation of the region potentially 
harbouring PGI genes when a PGI gene was not previ-
ously identified in a given species. Thus the genomic 
location on chromosomes or scaffolds, as well as their 
exact position in their genomic entities were deter-
mined. Their upstream and downstream flanking genes 
were then determined and when they were not previ-
ously identified, the genomic region potentially har-
bouring them was re-annotated. To identify the PGI 
orthologs in the other teleosts, the two isoforms iden-
tified in the sea bass genome were blasted against the 
genome of teleosts available in the Ensembl Genome 
Browser. The same criteria mentioned above (aligned 
blocks of protein sequences that match with an average 
length of at least 80 % with ≥70 % identity) were applied 
to identify real orthologs. The upstream and down-
stream genes of each PGI were identified in the other 
teleost species by similarity search using the nucleotide 
and protein sequences of genes that flank the PGIs in 
sea bass. The PGI orthologs of the other vertebrates 
were obtained from Ensembl by means of blast search 
using the teleost PGI sequences. When a PGI gene 
could not be identified in a given species and its the 
upstream and downstream flanking genes found, their 
sequences were used for PGI gene identification. Like-
wise, in cases where a PGI gene and none of its flank-
ing genes were found in a species, the genomic DNA 
fragment harbouring PGI and the flanking genes was 
extracted and re-annotated using de novo and/or simi-
larity-based annotation approaches. For the similarity-
based annotations, a gene was considered as a PGI or 
flanking locus when it matched the well-characterised 
PGI sequences on aligned blocks with an average length 
of at least 80  % with ≥70  % identify. The protein and 
nucleotide sequences of predicted genes from the de 
novo annotation were confirmed as PGI or flanking loci 
by blast against the well characterised PGI genes using 
the above criteria. For the species whose genome has 
not been completely sequenced, the accession num-
bers of the PGI genes were obtained from the literature 
and then used to identify the corresponding sequence 
in GenBank. The information on exon–intron structure 
of each PGI locus whose genome is not available in the 
Ensembl Genome Browser was extracted from the tran-
script-summary table that can be downloaded from the 
Blast/Blat research output results.

http://seabass.mpipz.mpg.de/cgi-bin/hgGateway
http://seabass.mpipz.mpg.de/cgi-bin/hgGateway
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Sequence alignment, phylogenetic and principal 
component analyses
A phylogenetic tree was reconstructed using protein 
sequences of PGI genes of species belonging to the main 
vertebrate lineages. The protein sequences of all PGI 
isoforms identified in vertebrate species were aligned 
using MAFFT version 7 (http://mafft.cbrc.jp/alignment/
server). The Gblocks Server (http://molevol.cmima.csic.
es/castresana/Gblocks_server.html) was used to improve 
the alignment. The well-aligned blocks were then used 
to reconstruct a phylogenetic tree using MEGA software 
version 6. The maximum likelihood method with the 
Jones–Taylor–Thornton (JTT) substitution model was 
used to constructed the phylogenetic tree, which was 
rooted with the PGI protein sequences of the lancelet, 
Branchiostoma floridae and the hagfish, Eptatretus yangi. 
Principal component analysis (PCA) was performed on 
both PGI exon and intron length separately using the ade4 
packages of the R software version v.64 3.1.1. Principal 
component analysis (PCA) was performed within a phy-
logenetic context on both PGI exon and intron lengths. 
Although not commonly used in the comparative genom-
ics, it was considered particularly useful to illustrate the 
relationship between PGI genes based on their exon and 
intron lengths. Functional divergence between duplicates 
could be the results of changes in amino acid residues 
of the coding sequences, but it could also be related to 
changes in non-coding regions (including introns) which 
can lead to functional divergences between duplicates. It 
has been demonstrated that functional divergence can be 
caused by amino acid substitutions in coding sequences 
or alterations of exon/intron structure [61].

Tests for selection
The nonsynonymous (dN) and synonymous (dS) ratio 
(dN/dS), also known as Ka/Ks ratio or ω was used to 
measure the evolutionary selective pressure exerted on 
genes. Pairwise comparisons of Ka/Ks ratios were thus 
conducted between teleost PGI1 and PGI2 paralogs and, 
between reptile/bird and mammal PGI. Pairwise com-
parisons were also conducted between PGI of the lat-
ter two groups and teleost PGI2. The intra-specific Ka/
Ks ratios between PGI1-PGI2 paralog pairs was calcu-
lated in each teleost fish using Nei and Gojobori method 
implemented in Ka/Ks_Calculator software [62]. There 
are several methods incorporated in Ka/Ks software cal-
culator for the estimation of Ka/Ks ratios, which include 
NG [63], LPB [64, 65], MLPB [66] MLWL [66] and YN 
[67]. All the above listed methods were tested and the 
results were not significantly different between them. 
Finally, the NG method was applied and a Fisher’s exact 
test was used to access the significance of Ka/Ks >1 and 
Ka/Ks < 1 as implemented in Ka/Ks_Calculator software. 

Multiple comparison Turkey test was used to evaluate 
the significance of differences in Ka/Ks ratios between 
PGI orthologs and paralogs. The same approach was also 
used to calculate the inter-specific Ka/Ks ratios for each 
pairwise of PGI2 orthologs from all vertebrate groups 
that are analysed including teleost fishes. The divergence 
times were calculated between all PGI paralogs and 
orthologs using nucleotide sequences.

Secondary structure
The SABLE server (http://sable.cchmc.org/) was used for 
the functional annotation, which included finding the 
number of transmembrane domains, predicting the sec-
ondary structure, quantifying the relative solvent acces-
sibility (RSA) of amino acid residues along the protein 
sequences, and identifying physico-chemical property 
profiles. The RSA represents the solvent-accessible sur-
face areas normalised by the surface area of the residue 
in the unfolded state, and is used to measure the solvent 
surface accessible of amino acid residues in a protein. An 
RSA value of 0 means that the surface area is completely 
buried whereas an RSA value of 9 is indicative of a fully 
exposed surface area. The predicted structure were visu-
alised using the POLYVIEW-2D viewer (http://polyview.
cchmc.org).

Availability of supporting data
All datasets supporting the results of this article are 
included in the article and its additional files.
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myzon marinus; PF: P. formosa; TR: Takifugu rubripes; TN: Tetraodon nigorviridis; 
LO: Lepisosteus oculatus; MG: Meleagris gallopavo; PS: Pelodiscus sinensis; LC: 
Latimeria chalumnae; AC: Anolis carolinensis; MM: Mus musculus; PA: Pongo 
abelii; PM: Petromyzon marinus.
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