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Choice of reference‑guided sequence 
assembler and SNP caller for analysis of Listeria 
monocytogenes short‑read sequence data 
greatly influences rates of error
Arthur W. Pightling1*, Nicholas Petronella2 and Franco Pagotto3

Abstract 

Background:  The influences that different programs and conditions have on error rates of single-nucleotide poly-
morphism (SNP) analyses are poorly understood. Using Illumina short-read sequence data generated from Listeria 
monocytogenes strain HPB5622, we assessed the performance of four SNP callers (BCFtools, FreeBayes, UnifiedGeno-
typer, VarScan) under a variety of conditions, including: (1) a range of sequencing coverages; (2) use of four popular 
reference-guided assemblers (Burrows-Wheeler Aligner, Novoalign, MOSAIK, SMALT); (3) with and without read quality 
trimming and filtering; and (4) use of different reference sequences.

Results:  At 8-fold coverage the proportions of true positive calls ranged from 0.22 to 25.00 % when reads were 
aligned to a nearly identical reference (0.000096 % distant). Calls made when reads were aligned to a non-identical 
reference (0.85 % distant) were from 92.54 to 98.88 % accurate. At 79-fold coverage accuracies ranged from 3.95 to 
20.00 % with the nearly identical reference and 93.80–98.75 % with the non-identical reference. Read preprocessing 
significantly changed the numbers of false positive calls made, from a 65.24 % decrease to a 54.55 % increase.

Conclusions:  The combinations of reference-guided sequence assemblers and SNP callers greatly influenced not 
only the numbers of true and false positive sites but also the proportions of true positive calls relative to the total 
numbers of calls made. Furthermore, the efficacy of different assembler and caller combinations changed dramati-
cally with the different conditions tested. Researchers should consider whether identifying the greatest numbers of 
true positive sites, reducing the numbers of false positive calls, or achieving the highest accuracies are desired.
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Background
Next-generation sequencing of bacterial genomes is an 
increasingly valuable tool in a number of fields, includ-
ing epidemiology [1–3], population genetics [4, 5], and 
experimental evolution [6]. Reduced sequencing costs 
[7] and a wide availability of open-source software have 
made assembling and analyzing whole-genome sequence 

data more accessible than ever [8]. Comparative analy-
ses in which nucleotide differences (single nucleotide 
polymorphisms or, simply, SNPs) between a subject and 
reference are identified can be particularly useful for 
distinguishing bacterial lineages [9] and may provide 
markers for phenotypes such as antibiotic resistance 
[10]. SNPs are usually identified by first using reference-
guided sequence assembly software to align large num-
bers of short sequence reads to a fully sequenced (closed) 
reference chromosome or plasmid sequence [11]. Then, 
additional programs (SNP callers) are used to analyze 
assemblies and identify differences between the reference 
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and draft genome sequences by using a combination of 
sequence coverage and read quality information [12, 
13]. Importantly, different SNP callers use different algo-
rithms and assumptions that are likely to influence the 
accurate identification of SNPs.

Inaccuracies in sequence assemblies can arise due to 
a combination of the short length of sequence reads (for 
example, ~200–250  bp for Illumina sequencing) and 
inherent errors associated with sequencing technologies 
[14] (possibly influenced by the quality of DNA extrac-
tions and library preparations [15]). In addition, low 
sequencing coverage [16] and the use of genetically dis-
tant reference sequences [17] provide additional compu-
tational challenges for both reference-guided sequence 
assemblers and SNP callers [18], especially around 
regions of repeated DNA sequence [19]. These issues may 
result in diminished detection of true SNP differences 
(true positive calls) and increased numbers of misidenti-
fied SNPs (false positive calls). In order to mitigate errors, 
read quality trimming and filtering prior to assembly 
may be performed [20]. However, while some research-
ers have reported benefits from such preprocessing [18], 
others have demonstrated that trimming and filtering did 
not improve the accuracy of SNP calls [21]. Thus, several 
factors may influence the accurate identification of true 
nucleotide differences: (1) sequencing coverage, (2) read 
preprocessing, (3) availability of an appropriate reference 
sequence, (4) selection of short-read sequence assembler, 
and (5) one’s choice of SNP calling software.

We assessed the efficacy of SNP calling programs by 
generating next-generation sequence datasets of vary-
ing quality, assembling and analyzing the resulting reads 
under a variety of conditions, and by counting the num-
bers of true and false positive calls that were made under 
different conditions. We isolated genomic DNA from 
the Listeriosis Reference Service for Canada’s (LRS) Lis-
teria monocytogenes strain HPB5622 isolate and gener-
ated eight sets of Illumina short-read sequence data with 
a MiSeq benchtop sequencer (Illumina, San Diego). L. 
monocytogenes is a Gram-positive pathogenic bacterium 
[22] that experiences few chromosomal rearrangements 
[23, 24]. We then assembled and analyzed the result-
ing reads under a variety of conditions: (1) a range of 
sequencing coverages; (2) the use of four popular refer-
ence-guided assemblers (Burrows-Wheeler Aligner [25], 
Novoalign, MOSAIK, and SMALT) that use different 
algorithms for assembly (Burrows-Wheeler transform 
[26], global Needleman-Wunsch [27], banded Smith-
Waterman, and a combination of short-word hashing 
and Smith-Waterman [28, 29], respectively); (3) with 
and without read quality trimming and filtering prior to 
assembly; (4) the use of reference sequences of differ-
ent genetic distances; and (5) the use of different SNP 

callers (BCFtools [30], FreeBayes [31], UnifiedGeno-
typer (https://www.broadinstitute.org/gatk/gatkdocs/
org_broadinstitute_gatk_tools_walkers_genotyper_Uni-
fiedGenotyper.php), and VarScan [32, 33]). We assembled 
each dataset using both L. monocytogenes strain 08-5578 
[2, 3] and EGD-e [34] chromosome sequences obtained 
from the National Center for Biotechnology archive as 
references. Strains 08-5578 and EGD-e are approximately 
0.000096 and 0.82 % distant from the HPB5622 chromo-
some sequence at the nucleotide level, respectively.

Results and discussion
We assessed the ability of four commonly used single-
nucleotide polymorphism (SNP) callers (BCFtools, 
FreeBayes, UnifiedGenotyper, and VarScan) to identify 
SNPs from alignments of eight sets of Listeria monocy-
togenes strain HPB5622 genomic DNA sequence data of 
varying quality generated on an Illumina MiSeq bench-
top sequencer. All sequencing runs were performed on 
genomic DNA obtained from a single extraction. Per-
formance was measured by counting the numbers of 
known nucleotide differences between the subjects and 
references (true positive sites) correctly identified and 
the numbers of incorrect calls made (false positive sites) 
with each SNP caller under a variety of conditions. We 
assembled each of the short-read sequence datasets with 
the Burrows-Wheeler Aligner (BWA) using reference 
chromosome sequences (08-5578 and EGD-e) obtained 
from the National Center for Biotechnology Informa-
tion (NCBI) sequence database (NC_013766.1 [2] and 
NC_003210.1 [34], respectively). The Listeriosis Refer-
ence Service for Canada’s (LRS) strain HPB5622 isolate 
differs from the strain 08-5578 sequence at three nucle-
otide positions (1,3629,720; 2,870,261; and 2,870,308). 
In addition, the HPB5622 chromosome sequence differs 
from the strain EGD-e sequence at 24,890 nucleotide 
positions. Thus, we were able to measure the numbers 
of true and false positive sites identified by SNP call-
ers when a nearly identical (~0.000096  % distant at the 
nucleotide level) and a non-identical (~0.85  % distant) 
chromosome sequence was used for short-read sequence 
assembly.

We began by counting the numbers of true and false 
positive SNP calls made by SNP callers when the Bur-
rows-Wheeler Aligner was used to assemble sequence 
data from all eight sets of reads. When sequence data was 
aligned to the strain 08-5578 chromosome sequence we 
observed that BCFtools, UnifiedGenotyper, and VarScan 
detected between 1 and 3 true positive sites in 8 assem-
blies and averaging between 1.88 and 2.38 sites, generally 
correlating with sequence coverage (Fig.  1, Additional 
file 1). FreeBayes performed best under these conditions 
with between 2 and 3 sites correctly identified with an 

https://www.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_gatk_tools_walkers_genotyper_UnifiedGenotyper.php
https://www.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_gatk_tools_walkers_genotyper_UnifiedGenotyper.php
https://www.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_gatk_tools_walkers_genotyper_UnifiedGenotyper.php


Page 3 of 9Pightling et al. BMC Res Notes  (2015) 8:748 

average of 2.63 sites (Fig.  1a). When sequence assem-
blies of at least 50-fold coverage are considered each SNP 
caller identified all 3 true positive SNPs. We observed 
also that between 5 and 818 false positive sites were 
reported, averaging between 21.75 (VarScan) and 225.25 
(FreeBayes; Fig. 1b). When runs of at least 50-fold cover-
age are considered the average numbers of false positive 

sites range from 13.50 (BCFtools) to 77.50 (UnifiedGeno-
typer; Fig. 1c). When we considered the accuracy of the 
SNP callers by calculating the proportions of true positive 
sites called to the total numbers of sites called, we calcu-
lated that SNP callers were between 2.42 (UnifiedGeno-
typer) and 9.73 % (VarScan) accurate, with runs of at least 
50-fold coverage yielding 3.74 (UnifiedGenotyper) and 

Fig. 1  Comparison of SNP calls calculated from alignments of Illumina reads to a nearly identical reference. Genomic DNA from the Listeriosis Refer-
ence Service for Canada’s (LRS) Listeria monocytogenes strain HPB5622 culture was indexed and sequenced eight times. The resulting reads were 
aligned with the Burrows-Wheeler Aligner using an L. monocytogenes strain 08-5578 chromosome sequence obtained from the National Center 
for Biotechnology Information (NCBI) archive as a reference. The 08-5578 chromosome sequence differs from the HPB5622 chromosome at three 
nucleotide positions. Four SNP-callers (BCFtools [BCF], FreeBayes, UnifiedGenotyper [UGT], and VarScan) were used to identify nucleotide differ-
ences. The numbers of true positive (a), false positive (b), and the proportions of calls made that correctly identified true positive sites (c) relative to 
the calculated coverages of assemblies are shown
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18.20  % (BCFtools) correct calls (Fig.  1c). Interestingly, 
we observed an inverse relationship between identifica-
tion of false positive sites and sequence coverage when 
VarScan was used. At approximately eightfold coverage 
we observed 5 such sites and at approximately 79-fold 
coverage we observed 31 sites. Thus, we observed that 
although VarScan is the most accurate SNP caller when 
coverage is low, due to reductions in false positive calls, 
BCFtools is the most accurate SNP caller when coverage 
is high.

When a strain EGD-e chromosome sequence was used 
to align the short-read sequence data, we observed true 
positive averages ranging from 12,960.38 to 20,692.13 for 
all datasets and from 13,509.00 to 22,124.00 for runs of at 
least 50-fold coverage (FreeBayes and UnifiedGenotyper, 
respectively, in each case; Fig. 2a, Additional file 2). The 
average numbers of false positive sites observed ranged 
from 278.50 (VarScan) to 751.13 (UnifiedGenotyper) 
and 209.50 (FreeBayes) to 1006.50 (UnifiedGenotyper) 
for alignments of 50-fold coverage greater (Fig. 2b). The 
accuracies of SNP callers was measured between 96.54 
(UnifiedGenotyper) and 98.22  % (VarScan). For runs of 
at least 50-fold coverage between 95.65 (UnifiedGeno-
typer) and 98.47 % (FreeBayes) accuracies were observed 
(Fig. 2c). While both the UnifiedGenotyper and VarScan 
demonstrated an inverse correlation between sequence 
coverage and false positive sites, VarScan, once again, 
had the greatest accuracy among low coverage sequenc-
ing runs.

We counted the numbers of true and false positive sites 
observed using 16 different combinations of reference-
guided sequence assemblers and SNP callers (BCFtools, 
FreeBayes, UnifiedGenotyper, and VarScan with BWA, 
MOSAIK, Novoalign, and SMALT) with both strain 
08-5578 and EGD-e chromosomes as references and 
with high and low levels of sequence coverage (Fig.  3, 
Additional file  3). When reads from the high sequence 
coverage dataset were aligned to the strain 08-5578 chro-
mosome (Fig. 3a) we observed that all the three true posi-
tive SNPs were correctly identified by each SNP caller 
when either BWA, MOSAIK, or SMALT were used, 
while assemblies generated by Novoalign resulted in only 
1 (VarScan) or 2 (BCFtools, FreeBayes, and UnifiedGeno-
typer) correct calls. In addition, we observed between 11 
(BCFtools-Novoalign) and 73 (UnifiedGenotyper-BWA) 
false positive calls. The percentages of the total num-
bers of calls made that were correct (i.e., true positive) 
ranged from 3.95 (UnifiedGenotyper-BWA) to 20.00  % 
(BCFtools-MOSAIK). More generally, use of BCFtools 
resulted in substantially fewer false positive calls (average 
13.00) regardless of which sequence assembler was used.

When reads from the high coverage dataset were 
aligned to the strain EGD-e chromosome (Fig.  3a) we 

observed that between 13,304 and 24,164 true positive 
sites were identified and from 168 to 2032 incorrect calls 
were made (FreeBayes-Novoalign and UnifiedGenotyper-
SMALT, respectively, in both cases). We also observed 
accuracies ranging from 92.24 (UnifiedGenotyper-
SMALT) to 98.75  % (FreeBayes-Novoalign). Thus, we 
observed a correlation, albeit a non-linear one, between 
the numbers of true and false positive calls made, with 
FreeBayes-Novoalign resulting in both the fewest true 
and false positive calls and UnifiedGenotyper-SMALT 
resulting in both the greatest numbers of true and false 
positive calls. We also observed that although the Uni-
fiedGenotyper-SMALT combination resulted in the 
identification of nearly all true positive sites, the greater 
number of false positive calls resulted in low accuracy, 
while the FreeBayes-Novoalign combination has the 
highest accuracy, despite the fact that only about half 
of the total numbers of true nucleotide differences were 
correctly identified.

We assembled reads from a low coverage dataset 
by aligning them to the strain 08-5578 chromosome 
sequence (Fig.  3b, Additional file  3). Only two combi-
nations of reference-guided sequence assemblers and 
SNP callers (FreeBayes-BWA and FreeBayes-MOSAIK) 
resulted in the correct identification of all three nucleo-
tide differences. The numbers of false positive sites 
ranged from 3 (VarScan-Novoalign) to 900 (FreeBayes-
SMALT). Indeed, VarScan consistently called the fewest 
numbers of false positive sites and FreeBayes consistently 
called the greatest numbers of false positive sites, no mat-
ter which assembler was used. The frequencies of true 
positive calls ranged from 0.31 (FreeBayes-Novoalign) 
to 25.00  % (VarScan-Novoalign). Again, we observed 
a pattern in which VarScan-Novoalign only correctly 
identified one true positive SNP but, due to a paucity of 
false positive calls, demonstrated the highest degree of 
accuracy.

We reassembled the low coverage dataset by align-
ing reads to the strain EGD-e chromosome sequence 
(Fig.  3b, Additional file  3). Between 4,340 (VarScan-
BWA) and 23,504 (UnifiedGenotyper-SMALT) true 
positive sites were properly identified, while between 53 
(VarScan-BWA and VarScan-Novoalign) false positive 
sites were called. In addition, we observed accuracies 
from 92.54 (BCFtools-SMALT) to 98.88  % (VarScan-
Novoalign). Interestingly, the UnifiedGenotyper-SMALT 
combination resulted in the greatest numbers of true 
positive calls when either the high or low coverage data-
sets were aligned to the strain EGD-e chromosome. Fur-
thermore, the VarScan-Novoalign combination resulted 
in the highest accuracy when the low coverage data-
set was aligned to either the strain 08-5578 or EGD-e 
chromosomes.
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We further analyzed the high coverage data by align-
ing the reads to both strain 08-5578 and EGD-e chromo-
some sequences before and after read quality filtering 
and trimming (Additional files 4, 5). When reads were 
aligned using the strain 08-5578 chromosome sequence, 
we observed no differences in the ability of SNP callers 
to identify nucleotide differences with and without trim-
ming (Additional file 4A). We did observe substantial 

differences in the numbers of false positive calls before 
and after trimming. We witnessed between 11 and 210 
false positive calls before trimming and from 11 to 73 such 
calls after read quality trimming and filtering (BCFtools-
Novoalign and UnifiedGenotyper-BWA, respectively, in 
both cases; Additional file  4B). However, whether trim-
ming resulted in a decrease or increase in the numbers 
of false positive sites called depended heavily upon the 

Fig. 2  Comparison of SNP calls calculated from alignments of Illumina reads to a non-identical reference. Genomic DNA from the Listeriosis Refer-
ence Service for Canada’s (LRS) Listeria monocytogenes strain HPB5622 culture was indexed and sequenced eight times. The resulting reads were 
aligned with the Burrows-Wheeler Aligner using an L. monocytogenes strain EGD-e chromosome sequence obtained from the National Center for 
Biotechnology Information (NCBI) archive as a reference. The EGD-e chromosome sequence differs from the HPB5622 sequence at 24,890 nucleo-
tide positions. Four SNP-callers (BCFtools [BCF], FreeBayes, UnifiedGenotyper [UGT], and VarScan) were used to identify nucleotide differences. 
The numbers of true positive (a), false positive (b), and the proportions of calls made that correctly identified true positive sites (c) relative to the 
calculated coverages of assemblies are shown
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combinations of assembler and SNP caller. Using the Uni-
fiedGenotyper-BWA combination to assemble and ana-
lyze reads after trimming resulted in a 65.24 % reduction 
in false positive calls, while using FreeBayes-MOSAIK to 
assemble reads after trimming caused a 54.55 % increase 
in the number of false positive calls (Additional file 6A). 
The highest accuracy (25.00 %) was achieved when using 
the BCFtools-MOSAIK combination without read quality 
trimming or filtering (Additional file 4C).

When the strain EGD-e chromosome sequence was 
used to align reads from the high coverage dataset we 
observed between 13,338 and 24,159 true positive sites 
identified prior to read quality filtering and trimming and 
from 13,304 and 24,164 after (FreeBayes-Novoalign and 
UnifiedGenotyper-SMALT, respectively, in each case; 
Additional file 5A). In addition, the numbers of false pos-
itive sites identified ranged from 167 and 2054 prior to 
trimming and from 168 to 2032 after (Additional file 5B). 
We also observed that the proportion of true positive 
calls to total calls ranged from 92.24 to 98.75  % (Addi-
tional file 5C). Again, whether read quality trimming and 
filtering provided any benefit depended heavily upon the 
assembler and SNP caller combinations. We noticed that 
read trimming had very little influence on the detection 
of true positives, no matter which combination of was 
used. However, when preprocessed reads were assembled 

and analyzed with FreeBayes-SMALT we observed a drop 
in false positive sites of approximately 20.68 % and when 
FreeBayes-MOSAIK was used we calculated an 11.25  % 
increase in the numbers of false positive calls (Additional 
file 6B).

In order to determine processing times for all combi-
nations of reference-guided sequence assemblers and 
SNP callers assessed during this study, we assembled 
and reads obtained from a single run with an estimated 
40-fold coverage using the strain EGD-e chromosome 
sequence as a reference (Additional file 7). We observed a 
wide range of processing times from approximately 152 s 
(BCF-SMALT) to 1440  s (VarScan-Novoalign) and an 
average processing time of 834 s for all combinations.

Conclusions
Despite the fact that next-generation sequencing (NGS) 
technologies and open-source software have made com-
prehensive sequencing and single-nucleotide polymor-
phism (SNP) analysis of bacterial genomes accessible to 
individual laboratories, it is often unclear which refer-
ence-guided sequence assemblers and SNP callers should 
be used and what conditions will yield the most reli-
able results. NGS platforms typically generate millions of 
short sequence reads (for example, Illumina yields reads 
from 200 to 225 bp in length) that may contain inherent 

Fig. 3  Comparison of 16 combinations of reference-guided sequence assemblers and SNP callers. Genomic DNA from the Listeriosis Reference 
Service for Canada’s (LRS) Listeria monocytogenes strain HPB5622 culture was indexed and sequenced, yielding a high (~79-fold) and a low (~eight-
fold) coverage datasets. The resulting reads were aligned with the Burrows-Wheeler Aligner (BWA), MOSAIK, Novoalign, and SMALT using both L. 
monocytogenes strain 08-5578 (a) and EGD-e (b) chromosome sequences obtained from the National Center for Biotechnology Information (NCBI) 
archive as references. The NCBI strain 08-5578 chromosome sequence differs from HPB5622 at three nucleotide positions, while the EGD-e chromo-
some sequence differs at 24,890 nucleotide positions. Four SNP-callers (BCFtools [BCF], FreeBayes, UnifiedGenotyper [UGT], and VarScan) were used 
to identify nucleotide differences
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sequencing errors associated with specific sequenc-
ing technologies or the quality of DNA extractions and 
library preparations. The placement of these reads must 
then be accurately determined by assemblers that calcu-
late the probability of its match with reference sequences 
that are usually megabases in length. Thus, genome 
sequence assembly is a formidable computational chal-
lenge that can be influenced by several factors, including: 
(1) the amount sequence coverage, (2) the algorithm used 
by the reference-guided sequence assemblers to place 
each read, (3) the distance of the reference sequence from 
the subject, and (4) whether read quality trimming and 
filtering has been performed. We have shown that each 
of the conditions listed here profoundly affected the per-
formance of SNP callers, illustrating the complex rela-
tionship between genome sequence assembly and the 
accurate identification of nucleotide differences.

We found that, although true positive calls tend to 
increase with more sequencing coverage as one would 
expect, under some conditions false positive calls actually 
increased with higher coverage (Figs. 1, 2 and Additional 
files 1, 2: Tables S1, S2). Importantly, this phenomenon 
was observed when either the strain 08-5578 or the more 
distant EGD-e chromosome sequences were used as 
references. For example, assemblies generated with the 
Burrows-Wheeler aligner (BWA) and the strain 08-5578 
reference sequence that were analyzed with VarScan gen-
erated such a trend, as did the use of BWA with the strain 
EGD-e reference when either the UnifiedGenotyper or 
VarScan were used. Interestingly, when we estimated 
the accuracy of SNP callers by calculating the propor-
tions of calls made that correctly identified true positive 
sites, VarScan consistently outperformed other SNP call-
ers when the low coverage dataset was analyzed (Figs. 1, 
2, 3, Additional files 1, 2, 3: Tables S1, S2, S3). However, 
this was despite the fact that VarScan often reported the 
fewest numbers of true positive calls at low coverage and 
was due to reduced numbers of false positive calls. We 
observed also that assembling either low or high cover-
age data with SMALT using the strain EGD-e chromo-
some sequence as a reference and making SNP calls with 
the UnifiedGenotyper resulted in the greatest numbers 
of true positive calls (Fig. 3, Additional file 3). However, 
these conditions also resulted in the lowest (in the case 
of the high coverage dataset) or nearly the lowest (with 
the low coverage dataset) accuracy measurements, due 
to the high numbers of false positive calls. Finally, we 
have shown that whether read quality trimming and fil-
tering provides benefit depends upon the combinations 
of assemblers and SNP callers used, in addition to one’s 
selection of reference sequence (Additional file 6).

In summary, we have revealed here an extraordinar-
ily complex relationship between short read sequence 

assembly and SNP calling. The combinations of soft-
ware tested here under a variety of conditions resulted 
in different numbers of true and false positive calls and 
different levels of accuracy (Additional files 4, 5: Figures 
S1, S2). This insight into the behaviors of SNP callers is 
useful for making informed decisions when designing 
experiments. It is important to note that we were unable 
to eliminate these tendencies by using either internal or 
external SNP filters; we observed that when false positive 
SNPs were filtered there was also a reduction (albeit non-
linear) in the numbers of true positive calls as well. There-
fore, researchers may need to consider whether detecting 
the greatest numbers of true positive sites, reducing the 
numbers of false positive calls, or achieving the highest 
levels of accuracy are in their best interest. And, it may be 
important to assess the abilities of different combinations 
of assemblers and SNP callers under various conditions 
in order to attain the most relevant results.

Methods
DNA extraction, library construction, and DNA sequencing
A Listeria monocytogenes strain HPB5622 isolate frozen 
in glycerol was streaked on pre-warmed Tryptose Agar 
plates and incubated at 37 °C over-night. A single colony 
was picked and used to inoculate 5 ml pre-warmed Brain 
Heart Infusion (BHI) broth and incubated over-night at 
37 °C with shaking (200 rpm). Then, 200 µl of the culture 
was transferred to 50 ml pre-warmed BHI and incubated 
at 37  °C with shaking for 6  h to achieve the mid-loga-
rithmic growth phase [35, 36]. Approximately 25  ml of 
culture was decanted into a 50 ml falcon tube and centri-
fuged at 3800 RCF for 5 min. The pellet was completely 
dissolved in 500  µl Tris-ethylenediaminetetraacetic acid 
by vortexing. We added 500 µl phenol–chloroform (1:1), 
30  µl sodium acetate (3  M, pH 5.2), and 30  µl sodium 
dodecyl sulfate and mixed vigorously by shaking. The 
entire mixture was then pipetted into a 2  ml screw-
cap tube filled with approximately 0.5  ml glass beads 
(0.1  mm). The tube was shaken in a Mini-Beadbeater 
machine (BioSpec products, Bartlesville, Oklahoma) for 
45 s using the “Homogenizer” setting and placed on ice 
for 45 s. Shaking was repeated an additional four times. 
Approximately 300 µl of the mixture was then added to 
a Maxwell 16 Cell DNA Purification Kit cartridge and 
the sample was run using the standard DNA Blood/Cells 
protocol on a Maxwell 16 machine (Promega, Madison, 
Wisconsin) with elution in 300  µl nuclease-free water. 
RNA contamination was removed by adding 2 µl RNase 
A (Qiagen Sciences, Maryland) and incubating the sam-
ple for 10  min at 37  °C. A single phenol–chloroform-
isoamyl alcohol (25:24:1) extraction followed by two 
ethanol precipitations was done. The sample was split 
into four subsamples. Subsamples were sequenced as 
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previously described [37–39]. Briefly, each subsample 
was indexed with Nextera XT DNA Sample Preparation 
Kits (Illumina, San Diego, CA, USA) according to the 
standard protocol and sequenced (2 × 250 bp reads) on 
a MiSeq benchtop sequencer (Illumina) three separate 
times for a total of twelve sets of short-read sequences. 
These data have been deposited to the National Center 
for Biotechnology Information (NCBI) Sequence Read 
Archive (SRA) under accession numbers SRR1342176, 
SRR1342220, SRR1373524, SRR1373525, SRR1373534, 
SRR1373535, SRR1507228, and SRR1508282.

Assembly of short‑read sequence data
In order to ensure that only the highest quality data 
was used for assembly, reads were trimmed and filtered 
with PoPoolation set to a minimum length of 50 bp and 
a quality score threshold of 20. Global mapping of reads 
was then performed with each of four reference-guided 
short-read sequence assemblers: Burrows-Wheeler 
aligner v0.6.1-r104, MOSAIK v2.1 (code.google.com/p/
mosaik-aligner/), Novoalign v3.00.03 (novocraft.com/
main/index.php), and SMALT v0.7.4 (sanger.ac.uk/
resources/software/smalt/). We used the Genome 
Analysis Toolkit [33] to perform local realignments 
around indels according to GATK best practices [40]. 
Single nucleotide polymorphisms were then identified 
with BCFtools (BCF) [30], FreeBayes [31], the Uni-
fiedGenotyper (UGT; https://www.broadinstitute.org/
gatk/gatkdocs/org_broadinstitute_gatk_tools_walk-
ers_genotyper_UnifiedGenotyper.php), and VarScan 
[32, 33].
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