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Abstract 

Background:  Organisms are subject to various stress conditions, which affect both the organism’s gene expres-
sion and phenotype. It is critical to understand microbial responses to stress conditions and uncover the underlying 
molecular mechanisms. To this end, it is necessary to build a database that collects transcriptomics and phenotypic 
data of microbes growing under various stress factors for in-depth systems biology analysis. Despite of numerous 
databases that collect gene expression profiles, to our best knowledge, there are few, if any, databases that col-
lect both transcriptomics and phenotype data simultaneously. In light of this, we have developed an open source, 
web-based database, namely integrated transcriptomics and phenotype (iTAP) database, that records and links the 
transcriptomics and phenotype data for two model microorganisms, Escherichia coli and Saccharomyces cerevisiae in 
response to exposure of various stress conditions.

Results:  To collect the data, we chose relevant research papers from the PubMed database containing all the 
necessary information for data curation including experimental conditions, transcriptomics data, and phenotype 
data. The transcriptomics data, including the p value and fold change, were obtained through the comparison of 
test strains against control strains using Gene Expression Omnibus’s GEO2R analyzer. The phenotype data, includ-
ing the cell growth rate and the productivity, volumetric rate, and mass-based yield of byproducts, were calculated 
independently from charts or graphs within the reference papers. Since the phenotype data was never reported in a 
standardized format, the curation of correlated transcriptomics–phenotype datasets became extremely tedious and 
time-consuming. Despite the challenges, till now, we successfully correlated 57 and 143 datasets of transcriptom-
ics and phenotype for E. coli and S. cerevisiae, respectively, and applied a regression model within the iTAP database 
to accurately predict over 93 and 73 % of the growth rates of E. coli and S. cerevisiae, respectively, directly from the 
transcriptomics data.

Conclusion:  This is the first time that transcriptomics and phenotype data are categorized and correlated in an 
open-source database. This allows biologists to access the database and utilize it to predict the phenotype of micro-
organisms from their transcriptomics data. The iTAP database is freely available at https://sites.google.com/a/vt.edu/
biomolecular-engineering-lab/software.
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Background
Microorganisms face numerous stress conditions [1–3], 
such as oxidative stress [4–6], weak organic acid stress 
[7–9], nutrient limitation [10, 11], and environment fluc-
tuation [12]. These stresses, both biotic and abiotic, occur 
throughout nature and comprise the ecology of the sys-
tem [1, 13, 14]. Each stress condition elicits a microbial 
response to adapt to the unfavorable environmental con-
ditions [15–17]. The provoked responses of microorgan-
isms alter the current ecosystem in which they live and 
affect the other organisms as well [16, 18]. Such microbial 
responses could be recreated in laboratories and allow 
for a deeper understanding of the correlation between 
gene expressions and phenotypes [4, 7, 12]. Of particular 
interests to systems biologists, uncovering the correlation 
between transcriptomics and phenotype could identify 
‘genetic markers’ that are primarily responsible for the 
occurrence of a particular phenotype within a species 
[6–8]. This would help determine the genetic causations 
of certain phenotypes across strains. With the genetic 
markers identified, the phenotype of strains could pos-
sibly be predicted from its transcriptomics data directly, 
which has great potentials in biochemical, ecological, 
biomedical, and environmental applications [19].

The first step towards uncovering correlations between 
the transcriptomics and phenotype of various microor-
ganisms is to collect curated and coupled transcriptom-
ics–phenotype datasets for various microorganisms. 
Currently, there are multiple popular databases such 
as the Gene Expression Omnibus (GEO) [20–22], the 
European Bioinformatics Institute (EBI) [23], and Many 
Microbe Microarrays Database (M3D) [24] that contain 
gene expression data. Data submitted to these databases 
is mostly meta-data on transcriptomics analysis, which 
include experimental conditions and the global gene 
expressions measured by either microarray [20, 25] or 
RNAseq analysis [26]. Comprised of over a million sam-
ples, these databases allow the analysis of large quantities 
of transcriptomics data; however, these databases lack 
the phenotypic data associated with these genotypes. 
Therefore, although thousands of data series and datasets 
are enabled for users to query for gene expression analy-
sis, those datasets cannot provide the details about the 
phenotype such as cell growth rate, and hence, have lim-
ited applications in elucidating the correlations between 
transcriptomics and phenotype of microorganisms.

In this study, we developed an integrated transcrip-
tomics and phenotype (iTAP) database that contained 
the correlated transcriptomics and phenotype datasets 
by collecting research articles that reported both types 
of data during its creation and curating the phenotype 
data with a standardized format. In general, we collected 
the transcriptomics data from GEO to provide p values 

and fold changes for each of the genes in Escherichia coli 
and Saccharomyces cerevisiae by comparing the gene 
expression of various strains against a reference strain 
as indicated in the corresponding publication. In paral-
lel, we collected phenotype data associated with the tran-
scriptomics data and numerically represented them as 
growth rates, productivity, volumetric rates, and mass-
based yield of byproducts. The iTAP database also con-
tained the experimental conditions and stress factors that 
the strains were subjected to. So far, we have collected, 
respectively, 143 and 57 datasets for S. cerevisiae and 
E. coli. Additionally, we demonstrated that it was feasi-
ble to use the correlated transcriptomics–phenotype 
datasets within the iTAP database to accurately predict 
cell growth rates for both S. cerevisiae and E. coli in a 
proof-of-concept study. Collecting this data proved to be 
strenuous and time-consuming, which limited the fast 
scale-up of the iTAP database. As the first of its kind, the 
iTAP database was able to identify the genetic markers, 
and potentially, guide synthetic biologists to rationally 
modify the microbial phenotypes by suppression or over-
expression of genes of interests.

Implementation
Data collection and curation
As shown in Fig. 1, each of the dataseries in the database 
contained experimental conditions, transcriptomics data, 
and phenotype values of a microorganism, which were 
obtained from relevant research papers from the Pub-
Med database. To ensure that both transcriptomics and 
phenotypic data were available in each of the dataser-
ies, only papers that included all of the necessary details 
mentioned above were chosen to be included within the 
iTAP database.

In general, the experimental conditions were obtained 
directly from the chosen research papers, including infor-
mation regarding the strain name, carbon source, culture 
medium, stress factor, and concentration of the stress 
factor. The transcriptomics data was collected as the gene 
expression levels of a test strain subjected to a particu-
lar stress condition when compared against a reference 
strain, and was recorded with p values and fold changes. 
Such data was obtained from the GEO database. The 
GEO database software tool, GEO2R analyzer [27], was 
used to compare the gene expression levels of strains fac-
ing stress conditions to the reference strain (Fig. 2). After 
choosing the test and reference strains and running the 
software, we obtained the corresponding gene expres-
sion levels, including p value and fold change. It is worth 
noticing that GEO, EBI and M3D share a lot of transcrip-
tomics data that are exactly the same. Therefore, the same 
transcriptomics results can be generated when using EBI 
or M3D. The phenotype data was collected quantitatively 
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as growth rates, productivity, volumetric rates, and mass-
based yield of byproducts. Such data was obtained from 
different charts and graphs from the chosen research 
papers and was calculated independently. For example, 
all of the growth rates were calculated directly from the 
biomass data (e.g., dry cell weights at various time points) 
in the selected publications while the other phenotype 
data (e.g. the byproduct rates) was not used for calcu-
lating growth rates. Specifically, the phenotype data was 
calculated as:

We directly used the data when the desired phenotype 
data was reported in the selected publications. Other-
wise, we utilized Plot Digitizer software [28] for graphs 
within the publication to obtain values of specific points 
depicting the rate of consumption of glucose, rate of 
production of products, and growth curves of different 
strains. All of the data, both the raw data collected from 
the research papers and the standardized data we cal-
culated, were reported in the iTAP database. It is worth 

Fig. 1  Architecture of the iTAP database

where biomass was assumed as: 1 OD = 0.4 g/L;
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noticing that the majority of the phenotype data collected 
in the iTAP database were growth related, which is one 
aspect of the composite of observable characteristics of 
E. coli or S. cerevisiae.

Data distribution
The iTAP database is an open source, web-based data-
base that is freely available for use (https://sites.google.
com/a/vt.edu/biomolecular-engineering-lab/software). 
It was developed based on Zoho Creator, an online data-
base software that offers the data collection, cloud stor-
age, data backup, and basic data analysis to present all 
the information in an efficient, user-friendly manner, 
as shown in Fig.  3. Advanced search with various logic 
symbols was available for each dataset, allowing users to 
find their required information efficiently. In addition, 
user could sort and group one or multiple dataset(s), and 
browse and print each dataset with different kinds of 
information by using the “Print” or “View Record” option 
to output the database. Users were also able to access the 
real-time data in mobile apps and download any datasets 
within iTAP as .csv files.

Results and discussion
To explore the possibility of using iTAP to predict cell 
phenotype, we first calculated the Pearson’s correlation 
coefficient [29] of the expression levels of each gene and 

the corresponding cell growth rate in the entire iTAP 
database for S. cerevisiae and E. coli, respectively, then 
picked the top five genes whose expression levels were 
highly correlated to cell growth rate as the genetic mark-
ers for S. cerevisiae and E. coli respectively, and applied 
multi-variant linear regression model in MATLAB to 
correlate the expression levels of the genetic markers and 
the cell growth rates (Fig. 4). The genes whose expression 
levels in the test strain were not significantly different 
from those in the reference strain (i.e., p > 0.25) were set 
to have a fold change as zero. We found that the growth 
rates of both S. cerevisiae and E. coli could be accurately 
predicted, with R2 reaching 0.73 and 0.86, respectively. 
Also, the genetic markers we identified had high cov-
erage of all the case studies collected in the iTAP data-
base, reaching 72.7 and 93.0 % for S. cerevisiae and E. coli 
respectively. This indicated that in most of the transcrip-
tomics studies on stress responses of S. cerevisiae and E. 
coli, the selected genetic markers were significantly regu-
lated and could be generally used to predict cell pheno-
types such as growth rate.

We next analyzed the effect of the p value, which 
was used to judge whether or not a gene expression 
level in the test strain was significantly different from 
that in the reference strain, on prediction accuracy of 
cell growth rates and the coverage of case studies in 
the iTAP database. We found that the prediction could 

Fig. 2  Example of collecting the correlated transcriptomics–phenotype datasets
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maintain a high accuracy, with R2 ranging from 0.61 to 
0.74 for S. cerevisiae and 0.82–0.86 for E. coli. With the 
increase of the p-value, the coverage of case studies in 
the iTAP strain increased accordingly, since the expres-
sion levels of a gene in the test strain would be more 
frequently recognized as significantly different from 
that in the reference strain with a loose threshold of the 
p-value. Overall, by using iTAP database, we success-
fully proved that it was indeed possible to predict cell 
phenotypes from the characterization of global gene 
expressions.

Conclusions
In this study, the iTAP database was constructed by uti-
lizing research papers involving stress responses for two 
model organisms, E. coli and S. cerevisiae. To develop 
iTAP database, gene expression data, specifically the p 
values and fold changes, were obtained from the GEO 
database, while the phenotype data was calculated from 
numerical information provided in multiple research 
papers and standardized to a defined form of represen-
tation to ensure the uniformity of the data. Till now, we 
have successfully curated 57 and 143 datasets for E. coli 

Fig. 3  Screenshot of the iTAP database
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and S. cerevisiae, respectively. This study also proved that 
with the “big data” of coupled transcriptomics–pheno-
type datasets, we could achieve accurate predictions of 
cell phenotypes, such as growth rates, directly from tran-
scriptomic readouts and identify the genes that affect 
the occurrence of the phenotype most significantly. It is 
intended that this open-source, web-based database will 
be expanded to include not only more dataseries for the 
existing microorganisms by considering other stress con-
ditions, but also to increase the number of microorgan-
isms studied and include multi-omics data in future.
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