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Human cathelicidin, LL‑37, inhibits 
respiratory syncytial virus infection in polarized 
airway epithelial cells
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Abstract 

Background:  Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract illness in young 
children worldwide. Treatment options for severe RSV disease remain limited and the development of therapeutic 
treatment strategies remains a priority. LL-37, a small cationic host defense peptide involved in anti-inflammatory and 
anti-bacterial responses, reduces replication of or infection by multiple viruses, including influenza virus, in vitro, and 
protects against lethal challenge with influenza virus in vivo. LL-37 also protects against RSV infection of HEp-2 cells 
in vitro; however, HEp-2 are not reflective of polarized airway epithelial cells and respond differently to RSV infection. 
An air–liquid interface (ALI) Calu-3 model that more closely mimics the human airway epithelium was established. 
Using this in vitro model, the effectiveness of LL-37 in preventing RSV infection and replication was examined.

Results:  LL-37, when pre-incubated with virus prior to RSV infection (prophylactic), significantly reduced the level of 
viral genome detected in infected Calu-3 cells, and decreased chemokine expression associated with RSV infection 
in vitro. In contrast, therapeutic treatment of RSV-infected ALI Calu-3 at 24 h and 3 days post-infection had minimal 
impact on RSV infection.

Conclusions:  Differences in the efficacy of LL-37 at reducing RSV infection under prophylactic and therapeutic con-
ditions may in part be ascribed to differences in the method of peptide exposure. However, the efficacy of LL-37 at 
reducing RSV infection under prophylactic conditions indicates that further studies examining the efficacy of LL-37 as 
a small peptide inhibitor of RSV are warranted.

Keywords:  LL-37, Cathelicidin, Respiratory syncytial virus, Air–liquid interface, Calu-3

© 2016 Harcourt et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Findings
Respiratory syncytial virus (RSV) is a major cause of 
lower respiratory tract illness in infants and children and 
of serious disease in elderly and immune compromised 
patients [1–3]. RSV infection results in substantial mor-
bidity and hospitalizations each year [4, 5], and treatment 
for RSV associated illness is limited. There is currently 
no safe and effective licensed vaccine against RSV, and 
immunoprophylaxis with palivizumab is indicated to 

reduce the incidence of RSV-associated disease in high-
risk infants [6]. Treatment of acute RSV disease remains 
primarily supportive in nature [7]. Aerosolized ribiva-
rin, a synthetic nucleotide analog, may be considered 
for use in severe RSV disease in hospitalized patients or 
in those who are at risk for severe disease; however, due 
to its expense, delivery method, and toxicity, its use is 
limited [8]. Several small molecule inhibitors have been 
evaluated for treatment of RSV [9–11], but none have 
yet been reported to be effective in humans. Thus, the 
development of alternative therapeutic strategies remains 
important.

The cationic peptide cathelicidin, LL-37, is an impor-
tant part of the early innate immune response to bacte-
rial infection. LL-37 is the predominant active cleavage 
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product of the cationic host defense peptide hCAP18, 
and its expression, upregulated in response to inflam-
mation and bacterial and viral infection, is detectable in 
multiple cell types, including neutrophils, epithelial cells, 
and macrophages [12]. Initially characterized as an anti-
microbial peptide, LL-37 also demonstrates anti-viral 
activity. In vitro, LL-37 inhibits replication of human 
immunodeficiency virus -1 (HIV-1) in peripheral blood 
mononuclear cells [13], reduces vaccinia virus plaque 
formation and mRNA expression [14], and reduces infec-
tious virus following herpes simplex virus -1 (HSV-1) 
and adenovirus-19 infection in A549 cells [15]. LL-37 
has potent in vitro and in vivo anti-viral activity against 
influenza virus. LL-37 therapeutic treatment reduced 
mortality, virus titers, and the levels of cytokine expres-
sion in the lungs of mice challenged with a lethal strain 
of influenza virus [16]. LL-37 is also effective at reducing 
the number of RSV-infected HEp-2 cells, and at reducing 
the spread of RSV infection in HEp-2 in vitro [17].

HEp-2 cells, derived from a human laryngeal carci-
noma, are often used to propagate RSV, and to study 
human epithelial cellular responses to RSV infection. 
However, HEp-2 cells do not polarize or differentiate, 
and in contrast to a polarized, differentiated model of 
normal human bronchial epithelial cells [18, 19], HEp-2 
form large cytopathic effect (CPE) following RSV infec-
tion, indicating that the HEp-2 cell line is not an ideal 
model system for characterizing in  vivo human cellular 
response to RSV infection. Previous studies have demon-
strated that liquid covered cultures of polarized Calu-3 
cells (LCC Calu-3) are susceptible to RSV infection [20, 
21]. However, these cells are cultured with medium at 
both the apical and basolateral surfaces. To more closely 
mimic the physiology of the human airway epithelium, 
air–liquid interface cultures of Calu-3 (ALI Calu-3), 
shown to exhibit morphological characteristics similar to 
differentiated, polarized normal human bronchial epithe-
lial cells (NHBE) [18], were derived from liquid-covered 
Calu-3 (LCC Calu-3) cultures. Before examining the abil-
ity of LL-37 to inhibit RSV infection of Calu-3 cells, the 
susceptibility of ALI Calu-3 to RSV strain A2 (RSV-A2) 
infection was compared to that of LCC Calu-3, examin-
ing relative viral genome levels by qRT-PCR, reported 
as genome equivalents/ml, and the production of infec-
tious virus by plaque assay, reported as PFU/ml. Similar 
to LCC Calu-3, ALI Calu-3 were susceptible to RSV-A2 
infection at the apical surface, with viral genome or infec-
tious virus detected as early as 3 days post-infection (pi), 
and little infectious virus detected in the basolateral 
compartment of cultures following infection (data not 
shown). Identical relative levels of viral genome in RSV-
A2 infected ALI Calu-3 and LCC Calu-3 were observed 
at 3  days (6.2  ×  104 genome equivalents/ml RSV-A2 

infected ALI-Calu-3 and 8.6 × 104 genome equivalents/
ml RSV-A2 infected LCC Calu-3; p = 0.073) and 1 week 
pi (1.0  ×  105 genome equivalents/ml RSV-A2 infected 
ALI-Calu-3 and 1.7 ×  105 genome equivalents/ml RSV-
A2 infected LCC Calu-3; p = 0.20) indicating that there 
are no differences in susceptibility to infection between 
ALI and LCC Calu-3 models. Though viral genome was 
detectable as early as 3 days pi, the production of infec-
tious virus by RSV-A2 infected ALI Calu-3 was not con-
sistently detectable from all replicates until 7 days pi, and 
the level of viral genome production reached a plateau at 
day 7 pi. Thus, studies were performed at 7 days pi. Taken 
together, ALI Calu-3 maintained a stable ALI and can 
be used as an in vitro model for RSV infection of human 
airway epithelium. Thus, the effectiveness of LL-37 as a 
potential prophylactic and therapeutic treatment against 
RSV infection were examined in ALI Calu-3.

Peptides LL-37 (LLGDFFRKSKEKIGKEGKRIVQRIKD 
FLRNLVPRTES) and an LL-37 analog having a “scram-
bled” sequence (RSLEGTDRFPFVRLKNSRKLEFKDIKG 
IKREQFVKIL; sLL37 control peptide) were synthesized 
as previously described [16]. To assess in  vitro antiviral 
effects of these peptides, RSV-A2 was exposed to 50 μg/
ml peptides for 1 h at 37  °C in serum-free Eagle’s mini-
mum essential medium (EMEM) prior to apical infec-
tion of ALI Calu-3, (prophylactic treatment, performed 
using undiluted peptide-RSV A2 incubated reaction), or 
ALI Calu-3 were infected at the apical surface with RSV-
A2, and peptides were added to the basolateral medium 
of ALI Calu-3 24 h after infection and replenished 3 days 
pi (therapeutic treatment). Dose response studies per-
formed in monolayer cultured, non-polarized Calu-3 
demonstrated that prophylactic administration of 50 μg/
ml of LL-37 effectively inhibited the release of infec-
tious virus from cells, whereas tenfold lower doses of 
LL-37 did not inhibit the release of infectious virus from 
infected cells (data not shown). In ALI Calu-3, pre-incu-
bation of RSV-A2 with 50 μg/ml LL-37 under prophylac-
tic conditions resulted in a range of 60–92  % reduction 
in the amount of viral genome detected in infected cells 
at 7  days pi (Fig.  1) as compared to untreated, infected 
cells (p  =  0.00043) or sLL-37 treated, infected cells 
(p  =  0.00022). Therapeutic treatment of RSV-A2—
infected ALI Calu-3, in which 50 μg/ml LL-37 was added 
to the basolateral compartment of infected cells 24 h pi 
and replenished at 3 days pi, was associated with a 39 % 
reduction in the amount of viral genome detected at 
7 days pi (p = 0.054). In contrast, prophylactic or thera-
peutic treatment with the control scrambled LL-37, was 
not associated with a change in the level of viral genome 
detected in infected ALI Calu-3, demonstrating the spec-
ificity of the LL-37 peptide sequence at inhibiting RSV 
replication. Consistent with previous studies, RSV-A2 



Page 3 of 6Harcourt et al. BMC Res Notes  (2016) 9:11 

infection of polarized Calu-3 did not impact the trans-
epithelial electrical resistance (TEER) of infected Calu-3 
cells at 7 days pi (Table 1, [21]). At the time point exam-
ined, treatment with LL-37 and sLL-37 did not impact 
the TEER of infected ALI Calu-3, indicating that the con-
centration of peptides used in this study was not detri-
mental to the polarized nature of the cultures (Table 1). 
Though the TEER at day 7 pi was below 1000 Ω × cm2, 
the ALI cultures retained their ALI.

RSV infection of airway epithelium is associated with 
induction of multiple cytokines and chemokines. To 
evaluate the impact of LL-37 treatment on cytokine and 
chemokine expression induced in response to RSV-A2 
infection of ALI Calu-3, a 30 min wash of the apical sur-
face of infected cells with EMEM + 10 % heat-inactivated 
fetal bovine serum was obtained 7 days pi, and cytokine 
and chemokine expression levels were determined using 
a Bioplex Cytokine Assay (BioRad) according to the man-
ufacturer’s directions. RSV-A2 infection of ALI Calu-3 
was consistently associated with a statistically signifi-
cant (p ≤ 0.05) increase in the apical release of IP-10 and 
RANTES (Fig.  2, p ≤  0.05 compared to mock-infected 
ALI Calu-3). The levels of IL-1ra, IL-4, IL-10, IL-13, 
IFNγ, MCP-1, PDGF-BB, bFGF and VEGF released 
from the apical surface of ALI Calu-3 did not differ fol-
lowing mock—or RSV-A2 infection at 7  days pi (data 

not shown). Finally, the levels of IL-1β, IL-2, IL-5, IL-7, 
IL-8, IL-9, IL-12p70, IL-15, IL-17, G-CSF, MIP-1α and 
-1β, TNFα, eotaxin, and GM-CSF released from the api-
cal surface of ALI-Calu-3 did not demonstrate consistent 
changes between experiments following RSV-A2 infec-
tion (data not shown). In 2 of 3 replicate experiments, 
RSV-A2 infection was also associated with significant 
increase in the apical release of IL-6 (p =  0.0003) and 
G-CSF (p = 0.006)). LL-37 and sLL-37, used either under 
prophylactic or therapeutic conditions, reduced RSV-
A2—induced expression of both of these cytokines. How-
ever, LL-37 reduced RSV-A2—induced IL-6 expression 
by 34–40  % (p =  0.035), whereas sLL37 reduced RSV-
A2—induced IL-6 expression by 16–18 % (p = 0.029).

The induction of RANTES and IP-10 by RSV infection 
is consistent with previous studies in other cell lines [22, 
23], and in plasma following RSV infection in children 
[24], however their function in modulating the immune 
response to RSV infection is unclear. The expression of 
RANTES and IP-10, the only chemokines whose expres-
sion was consistently increased at 7  days post infection 
with RSV-A2, were specifically reduced by prophylactic 
treatment of RSV-A2 with LL-37 (p =  0.005 and 0.001, 
respectively), and not by sLL37 (Fig. 2). In contrast, ther-
apeutic treatment of RSV-A2—infected ALI Calu-3 with 
either LL-37 or sLL-37 was associated with a reduction 
in the levels of RSV-A2 associated levels of expression 
of IP-10 (p = 0.035 and 0.038, respectively), but neither 
peptide significantly impacted the induction of RANTES 
expression in response to RSV-A2 infection.
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Fig. 1  LL-37 reduces RSV-A2 infection of and replication in ALI Calu-3. 
ALI—cultured Calu-3 cells were infected at the apical surface with 
RSV-A2 at MOI = 1, or treated prophylactically or therapeutically with 
50 μg/ml LL-37 or sLL-37. Prophylactic treatment was defined as a 1 h 
co-incubation of virus with peptide immediately prior to infection. 
Therapeutic treatment was defined as inclusion of peptide in the 
basolateral medium, beginning 24 h pi, with replacement of medium 
and peptide at 3 days pi. Total cellular RNA was isolated from five 
replicates per infection condition at 7 days pi, and the relative level 
of RSV-M gene was determined by qRT-PCR. Data is presented as the 
mean relative level of RSV-M gene, in genome equivalents/ml, of five 
replicates ± SD. Asterisk indicates p ≤ 0.05 as determined by unpaired 
two-tailed analysis. The data presented in this figure is representative 
of three independent experiments

Table 1  Trans-epithelial electrical resistance of  ALI Calu-3 
at 7 days post-infection

The trans-epithelial electrical resistance (TEER) of five wells per treatment 
condition was evaluated at day 7 post-infection, and is presented as median 
Ω × cm2   ± SEM of five individual wells per treatment condition, with the range 
of TEER measurements indicated in parentheses. No significant differences 
between prophylactic and therapeutic treatments or between mock-infected 
and infected treatment conditions were found using unpaired two-tailed 
statistical analysis. The data presented in this table is representative of three 
independent experiments
a   All experimental conditions were performed as one experiment; mock 
infected and RSV-A2 infected controls in the absence of peptide were performed 
simultaneously alongside prophylactic and therapeutic peptide treatments of 
infected ALI Calu-3

Treatment Untreateda Prophylactic Therapeutic

Mock-infected 392 ± 16  
(range 376–451)

– ‒

RSV-A2 445 ± 152  
(range 421–1098)

‒ ‒

RSV-A2 + LL-37 ‒ 520 ± 105  
(range 315–886)

313 ± 84 (range 
184–594)

RSV-A2 + sLL-37 ‒ 560 ± 126  
(range 289–936)

316 ± 114 
(range 
221–864)
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In our study, pre-incubation of RSV with LL-37 was 
more efficient than therapeutic treatment at reducing 
viral load and chemokine expression in RSV infected 
cells. These observations are consistent with previ-
ous studies, in which LL-37 reduced RSV-A2 infection 
of HEp-2 cells, when LL-37 was incubated with either 
cells or virus prior to infection, and also when admin-
istered simultaneously with RSV infection [17]. These 
observations suggest that LL-37 may be effective in part 
through direct interaction with RSV, and in part through 
interaction with and uptake by HEp-2 cells [17]. Similar 
to the results of our study, delayed treatment of HEp-2 
cells ablated the ability of LL-37 to reduce RSV infec-
tion or spread in vitro [17]. Additionally, pre-incubation 
of influenza virus with LL-37 was more successful at 
neutralizing infection of MDCK and primary human 
tracheobronchial epithelial cells (HTBE) compared to 
treatment of infected cells with LL-37 after infection [25], 
in part due to direct interaction of LL-37 with influenza 
virus. Together, these studies suggest that LL-37 may 

have been more effective at reducing the amount of viral 
genome following RSV infection when used as a prophy-
lactic agent instead of a therapeutic agent because pre-
incubation of virus with LL-37 reduced the amount of 
infectious RSV available to infect ALI Calu-3. Differences 
in peptide uptake at the apical and basolateral surfaces 
may also be partly responsible for the observed differ-
ences in the ability of LL-37 to reduce viral replication 
when used under therapeutic treatment conditions. Cur-
rently, there is no evidence that endogenous hCAP-18/
LL-37 is activated upon RSV infection, and endogenous 
expression of LL-37 by Calu-3 cells has not been dem-
onstrated. Additional studies are required to determine 
whether treatment of Calu-3 with peptide, as opposed to 
pre-incubation with RSV-A2, inhibits RSV infection of 
ALI Calu-3, and whether the apical and basolateral sur-
faces of ALI Calu-3 differ in their ability to uptake LL-37 
peptide.

Human cathelicidin LL-37 enhances TLR3—medi-
ated signaling and IL-6, IL-10, and MCP-1 expression 
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Fig. 2  Prophylactic treatment with LL-37 reduces chemokine expression associated with RSV-A2 infection. ALI—cultured Calu-3 cells were infected 
at the apical surface with RSV-A2 at MOI = 1, or treated prophylactically or therapeutically with 50 μg/ml LL-37 or sLL-37. Prophylactic treatment 
was defined as a 1 h co-incubation of virus with peptide immediately prior to infection. Therapeutic treatment was defined as inclusion of peptide 
in the basolateral medium, beginning 24 h pi, with replacement of medium and peptide at 3 days pi. At 7 days pi, an apical wash was performed of 
all samples, and cytokine and chemokine expression was determined by 27-plex Bioplex assay of three samples per infection condition. Data is pre-
sented as mean pg/ml of each cytokine ± SD. Asterisk, p ≤ 0.05 compared to levels of expression from mock-infected ALI-Calu-3; Dagger, p ≤ 0.05 
compared to levels of expression from RSV-A2—infected ALI-Calu-3; Double dagger, p ≤ 0.05 between LL-37 and sLL-37—treated, RSV-A2 infected 
ALI-Calu-3, as determined by unpaired two-tailed analysis. The data presented in this figure is representative of three independent experiments
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in the airway epithelial cell line BEAS-2B in response to 
rhinovirus infection [26]. The ability of TLR3 to mediate 
double-stranded RNA responses in BEAS-2B is due to 
endosomal co-localization of LL-37 and TLR3, and the 
presence of LL-37 in TLR3—containing endosomes is 
increased in the presence of dsRNA [27], an intermedi-
ate in the replication cycle of RSV. RSV infection of A549 
and of human tracheal bronchial epithelial cells (hTBE) 
induces expression of TLR3 and upregulates NF-κB acti-
vation and cytokine expression in response to dsRNA in 
a PKR-dependent manner [28]. These observations con-
trast with our study, in which LL-37 was associated with 
reduced levels of cytokine and chemokine expression in 
response to infection. Previous studies have demonstrated 
that the amount of RSV strain A used to infect human 
epithelial kidney cells directly correlated with the level of 
CXCL8/IL-8 and RANTES produced in response to infec-
tion, and chemokine production in response to infection 
was dependent on TLR3 expression [29]. Thus, although 
TLR3 has been associated with increased cytokine and 
chemokine production in response to dsRNA and to 
RSV infection, the lower amount of viral RNA present in 
LL-37—treated ALI Calu-3 may at least in part be respon-
sible for the lower levels of cytokine and chemokine pro-
duction following RSV infection. However, the differences 
observed in cytokine and chemokine expression may also 
in part be due to the greater fusion activity and patho-
genicity of RSV A compared to RSV-A2 [30–33].

The mechanism by which both LL-37 and sLL-37 
reduce RANTES and IP-10 expression when used to 
therapeutically treat RSV—infected ALI Calu-3 in our 
studies is unclear. Recent studies have demonstrated api-
cal, cytoplasmic, and basolateral expression of TLR3 in 
human airway epithelium, primary human airway epithe-
lial cell cultures, and polarized BEAS-2B cells [34], sug-
gesting that the ability of LL-37 to interact with TLR3 is 
not impacted by basolateral delivery of LL-37 as used in 
our studies. Cationic peptides, including poly-arginine, 
are able to activate TLR3 signaling in BEAS-2B cells [26], 
suggesting that at least some of the non-specific ability 
of sLL-37 to inhibit cytokine and chemokine expression 
in RSV-infected ALI Calu-3 may be due to the cationic 
nature of the peptide.

Our results show a reduction in intracellular viral 
genome and in the production of cytokines and 
chemokines associated with RSV strain A2 when LL-37 
is used in a prophylactic regimen. These studies support 
further evaluation of LL-37 effectiveness against more 
pathogenic RSV strains and recent clinical isolates.

Availability of supporting data
The data sets supporting the results of this article are 
included within this article.

Abbreviations
RSV: respiratory syncytial virus; Pi: post-infection; LCC: liquid covered culture; 
ALI: air–liquid interface; TEER: trans-epithelial electrical resistance; MOI: multi-
plicity of infection; EMEM: Eagle’s modified essential medium.

Authors’ contributions
JLH participated in experimental design, performed all experiments, per-
formed statistical analyses and drafted the manuscript. MM and PS both pre-
pared and provided peptides used in these studies. KT participated in drafting 
the manuscript. JP and LMH participated in design of the study and draft of 
the manuscript. All authors have read and approved the final manuscript.

Author details
1 National Center for Immunization and Respiratory Diseases, Division of Viral 
Diseases, Gastroenteritis and Respiratory Viruses Laboratory Branch, Centers 
for Disease Control and Prevention (CDC), 1600 Clifton Road NE, Mailstop A‑34, 
Atlanta, GA 30333, USA. 2 Biotechnology Core Facility Branch, Division of Scien-
tific Resources, Centers for Disease Control and Prevention, Atlanta, GA, USA. 

Acknowledgements
These studies were conducted at a US government—funded laboratory at 
the Centers for Disease Control and Prevention, and no outside funding was 
obtained to complete these studies. All persons who contributed to this study 
are contributing authors.

Competing interests
The authors declare that they have no competing interests.

Received: 13 February 2015   Accepted: 22 December 2015

References
	1.	 Hall CB, Walsh EE, Long CE, Schnabel KC. Immunity to and frequency of 

reinfection with respiratory syncytial virus. J Infect Dis. 1991;163(4):693–8.
	2.	 Panitch HB. Bronchiolitis in infants. Curr Opin Pediatr. 2001;13(3):256–60.
	3.	 Shay DK, Holman RC, Newman RD, Liu LL, Stout JW, Anderson LJ. 

Bronchiolitis-associated hospitalizations among US children, 1980–1996. 
JAMA J Am Med Assoc. 1999;282(15):1440–6.

	4.	 Stockman LJ, Curns AT, Anderson LJ, Fischer-Langley G. Respiratory syncy-
tial virus-associated hospitalizations among infants and young children 
in the United States, 1997–2006. Pediatr Infect Dis J. 2012;31(1):5–9. 
doi:10.1097/INF.0b013e31822e68e6.

	5.	 Zhou H, Thompson WW, Viboud CG, Ringholz CM, Cheng PY, Steiner C, 
et al. Hospitalizations associated with influenza and respiratory syncytial 
virus in the United States, 1993–2008. Clin Infect Dis. 2012;54(10):1427–
36. doi:10.1093/cid/cis211.

	6.	 Tablan OC, Anderson LJ, Besser R, Bridges C, Hajjeh R, Cdc et al. Guidelines 
for preventing health-care–associated pneumonia, 2003: recommenda-
tions of CDC and the Healthcare Infection Control Practices Advisory 
Committee. MMWR Recommendations and reports: Morbidity and mor-
tality weekly report recommendations and reports/Centers for Disease 
Control. 2004;53(RR-3):1–36.

	7.	 Verger JT, Verger EE. Respiratory syncytial virus bronchiolitis in chil-
dren. Crit Care Nurs Clin North Am. 2012;24(4):555–72. doi:10.1016/j.
ccell.2012.07.008.

	8.	 Policy Update: change in AAP guidance for use of synagis prophylaxis. 
In: Larry KP, editor. Red Book. American Academy of Pediatrics; 2012. p. 
609–18.

	9.	 Cianci C, Meanwell N, Krystal M. Antiviral activity and molecular mecha-
nism of an orally active respiratory syncytial virus fusion inhibitor. J 
Antimicrob Chemother. 2005;55(3):289–92. doi:10.1093/jac/dkh558.

	10.	 Moore BP, Chung DH, Matharu DS, Golden JE, Maddox C, Rasmussen L, 
et al. (S)-N-(2,5-dimethylphenyl)-1-(quinoline-8-ylsulfonyl)pyrrolidine-
2-carboxamide as a small molecule inhibitor probe for the study of 
respiratory syncytial virus infection. J Med Chem. 2012;55(20):8582–7. 
doi:10.1021/jm300612z.

	11.	 Olszewska W, Ispas G, Schnoeller C, Sawant D, Van de Casteele T, 
Nauwelaers D, et al. Antiviral and lung protective activity of a novel 

http://dx.doi.org/10.1097/INF.0b013e31822e68e6
http://dx.doi.org/10.1093/cid/cis211
http://dx.doi.org/10.1016/j.ccell.2012.07.008
http://dx.doi.org/10.1016/j.ccell.2012.07.008
http://dx.doi.org/10.1093/jac/dkh558
http://dx.doi.org/10.1021/jm300612z


Page 6 of 6Harcourt et al. BMC Res Notes  (2016) 9:11 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

respiratory syncytial virus fusion inhibitor in a mouse model. Eur Respir J. 
2011;38(2):401–8. doi:10.1183/09031936.00005610.

	12.	 Durr UH, Sudheendra US, Ramamoorthy A. LL-37, the only human mem-
ber of the cathelicidin family of antimicrobial peptides. Biochim Biophys 
Acta. 2006;1758(9):1408–25. doi:10.1016/j.bbamem.2006.03.030.

	13.	 Bergman P, Walter-Jallow L, Broliden K, Agerberth B, Soderlund J. The 
antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr HIV Res. 
2007;5(4):410–5.

	14.	 Howell MD, Jones JF, Kisich KO, Streib JE, Gallo RL, Leung DY. Selective 
killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J 
Immunol. 2004;172(3):1763–7.

	15.	 Gordon YJ, Huang LC, Romanowski EG, Yates KA, Proske RJ, McDer-
mott AM. Human cathelicidin (LL-37), a multifunctional peptide, 
is expressed by ocular surface epithelia and has potent anti-
bacterial and antiviral activity. Curr Eye Res. 2005;30(5):385–94. 
doi:10.1080/02713680590934111.

	16.	 Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA, Pohl J, et al. Antiviral 
activity and increased host defense against influenza infection elicited by 
the human cathelicidin LL-37. PLoS One. 2011;6(10):e25333. doi:10.1371/
journal.pone.0025333.

	17.	 Currie SM, Findlay EG, McHugh BJ, Mackellar A, Man T, Macmillan D, 
et al. The human cathelicidin LL-37 has antiviral activity against respira-
tory syncytial virus. PLoS One. 2013;8(8):e73659. doi:10.1371/journal.
pone.0073659.

	18.	 Grainger CI, Greenwell LL, Lockley DJ, Martin GP, Forbes B. Culture of 
Calu-3 cells at the air interface provides a representative model of the 
airway epithelial barrier. Pharm Res. 2006;23(7):1482–90. doi:10.1007/
s11095-006-0255-0.

	19.	 Zhang L, Peeples ME, Boucher RC, Collins PL, Pickles RJ. Respiratory 
syncytial virus infection of human airway epithelial cells is polarized, 
specific to ciliated cells, and without obvious cytopathology. J Virol. 
2002;76(11):5654–66.

	20.	 Harcourt J, Haynes LM. Establishing a liquid-covered culture of polarized 
human airway epithelial Calu-3 cells to study host cell response to res-
piratory pathogens in vitro. J Vis Exp. 2013;71:e50157. doi:10.3791/50157.

	21.	 Harcourt JL, Caidi H, Anderson LJ, Haynes LM. Evaluation of the Calu-3 
cell line as a model of in vitro respiratory syncytial virus infection. J Virol 
Methods. 2011;174(1–2):144–9. doi:10.1016/j.jviromet.2011.03.027.

	22.	 Oshansky CM, Barber JP, Crabtree J, Tripp RA. Respiratory syncytial virus 
F and G proteins induce interleukin 1alpha, CC, and CXC chemokine 
responses by normal human bronchoepithelial cells. J Infect Dis. 
2010;201(8):1201–7. doi:10.1086/651431.

	23.	 Santini F. Human respiratory syncytial virus and Th1 chemokines. La 
Clinica Terapeutica. 2015;166(3):e203–8. doi:10.7417/T.2015.1855.

	24.	 Roe MF, Bloxham DM, Cowburn AS, O’Donnell DR. Changes in helper 
lymphocyte chemokine receptor expression and elevation of IP-10 dur-
ing acute respiratory syncytial virus infection in infants. Pediatr Allergy 
Immunol. 2011;22(2):229–34. doi:10.1111/j.1399-3038.2010.01032.x.

	25.	 Tripathi S, Tecle T, Verma A, Crouch E, White M, Hartshorn KL. The human 
cathelicidin LL-37 inhibits influenza A viruses through a mechanism dis-
tinct from that of surfactant protein D or defensins. J Gen Virol. 2013;94(Pt 
1):40–9. doi:10.1099/vir.0.045013-0.

	26.	 Lai Y, Adhikarakunnathu S, Bhardwaj K, Ranjith-Kumar CT, Wen Y, Jordan 
JL, et al. LL37 and cationic peptides enhance TLR3 signaling by viral 
double-stranded RNAs. PLoS One. 2011;6(10):e26632. doi:10.1371/journal.
pone.0026632.

	27.	 Singh D, Qi R, Jordan JL, San Mateo L, Kao CC. The human antimicrobial 
peptide LL-37, but not the mouse ortholog, mCRAMP, can stimulate 
signaling by poly(I:C) through a FPRL1-dependent pathway. J Biol Chem. 
2013;. doi:10.1074/jbc.M112.440883.

	28.	 Groskreutz DJ, Monick MM, Powers LS, Yarovinsky TO, Look DC, Hunning-
hake GW. Respiratory syncytial virus induces TLR3 protein and protein 
kinase R, leading to increased double-stranded RNA responsiveness in 
airway epithelial cells. J Immunol. 2006;176(3):1733–40.

	29.	 Rudd BD, Burstein E, Duckett CS, Li X, Lukacs NW. Differential role for 
TLR3 in respiratory syncytial virus-induced chemokine expression. J Virol. 
2005;79(6):3350–7. doi:10.1128/JVI.79.6.3350-3357.2005.

	30.	 Hotard AL, Lee S, Currier MG, Crowe JE Jr, Sakamoto K, Newcomb DC, 
et al. Identification of residues in the human respiratory syncytial virus 
fusion protein that modulate fusion activity and pathogenesis. J Virol. 
2015;89(1):512–22. doi:10.1128/JVI.02472-14.

	31.	 Johnson PR, Spriggs MK, Olmsted RA, Collins PL. The G glycoprotein of 
human respiratory syncytial viruses of subgroups A and B: extensive 
sequence divergence between antigenically related proteins. Proc Natl 
Acad Sci USA. 1987;84(16):5625–9.

	32.	 Stokes KL, Chi MH, Sakamoto K, Newcomb DC, Currier MG, Huckabee 
MM, et al. Differential pathogenesis of respiratory syncytial virus clini-
cal isolates in BALB/c mice. J Virol. 2011;85(12):5782–93. doi:10.1128/
JVI.01693-10.

	33.	 Tebbey PW, Hagen M, Hancock GE. Atypical pulmonary eosinophilia 
is mediated by a specific amino acid sequence of the attachment (G) 
protein of respiratory syncytial virus. J Exp Med. 1998;188(10):1967–72.

	34.	 Ioannidis I, Ye F, McNally B, Willette M, Flano E. TLR expression and induc-
tion of type I and type III interferons in primary airway epithelial cells. J 
Virol. 2013;. doi:10.1128/JVI.01956-12.

http://dx.doi.org/10.1183/09031936.00005610
http://dx.doi.org/10.1016/j.bbamem.2006.03.030
http://dx.doi.org/10.1080/02713680590934111
http://dx.doi.org/10.1371/journal.pone.0025333
http://dx.doi.org/10.1371/journal.pone.0025333
http://dx.doi.org/10.1371/journal.pone.0073659
http://dx.doi.org/10.1371/journal.pone.0073659
http://dx.doi.org/10.1007/s11095-006-0255-0
http://dx.doi.org/10.1007/s11095-006-0255-0
http://dx.doi.org/10.3791/50157
http://dx.doi.org/10.1016/j.jviromet.2011.03.027
http://dx.doi.org/10.1086/651431
http://dx.doi.org/10.7417/T.2015.1855
http://dx.doi.org/10.1111/j.1399-3038.2010.01032.x
http://dx.doi.org/10.1099/vir.0.045013-0
http://dx.doi.org/10.1371/journal.pone.0026632
http://dx.doi.org/10.1371/journal.pone.0026632
http://dx.doi.org/10.1074/jbc.M112.440883
http://dx.doi.org/10.1128/JVI.79.6.3350-3357.2005
http://dx.doi.org/10.1128/JVI.02472-14
http://dx.doi.org/10.1128/JVI.01693-10
http://dx.doi.org/10.1128/JVI.01693-10
http://dx.doi.org/10.1128/JVI.01956-12

	Human cathelicidin, LL-37, inhibits respiratory syncytial virus infection in polarized airway epithelial cells
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Findings
	Availability of supporting data
	Authors’ contributions
	References




