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predictive performance in the domain 
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Abstract 

Background:  Genetic comparisons of clinical and environmental Legionella strains form an essential part of outbreak 
investigations. DNA microarrays often comprise many DNA markers (features). Feature selection and the development 
of prediction models are particularly challenging in this domain with many variables and comparatively few subjects 
or data points. We aimed to compare modeling strategies to develop prediction models for classifying infections as 
clinical or environmental.

Methods:  We applied a bootstrap strategy for preselecting important features to a database containing 222 
Legionella pneumophila strains with 448 continuous markers and a dichotomous outcome (clinical or environmental). 
Feature selection was done with 50 bootstrap samples resulting in a top 10 of most important features for each of 
four modeling techniques: classification and regression trees (CART), random forests (RF), support vector machines 
(SVM) and least absolute shrinkage and selection operator (LASSO). Validation was done in a second bootstrap re-
sampling loop (200×) for evaluation of discriminatory model performance according to the AUC.

Results:  The top 5 of selected features differed considerably between the various modeling techniques, with only 
one common feature (“LePn.007B8”). The mean validated AUC-values of the SVM model and the CART model were 
0.859 and 0.873 respectively. The LASSO and the RF model showed higher validated AUC-values (0.925 and 0.975 
respectively).

Conclusions:  In the domain of Legionella pneumophila, which comprises many potential features for classifying of 
infections as clinical or environmental, the RF and LASSO techniques provide good prediction models. The identifica-
tion of potentially biologically relevant features is highly dependent on the technique used, and should hence be 
interpreted with caution.

© 2016 van de Ploeg and Steyerberg. This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in 
any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The bacterium Legionella pneumophila, the causa-
tive agent for Legionnaires’ disease, is omnipresent in 
both natural and man-made aquatic environments. The 
major route of transmission is inhalation of the bacte-
rium, which is spread into the air as an aerosol from its 
reservoir [1]. Genetic comparisons of clinical and envi-
ronmental Legionella strains form an essential part 
of outbreak investigations [2, 3]. Such investigations 

previously showed that the distribution of genotypes 
within clinical strains significantly differed from the dis-
tribution in environmental strains [4–6].

To develop reliable statistical models for the discrimi-
nation between clinical and environmental strains, mod-
eling techniques are required which can stabilize the 
feature selection. DNA microarrays may comprise thou-
sands of DNA markers (features, p) and only a few hun-
dred or even only a few dozen subjects (n; the “p  >  n” 
problem) [7].

Common statistical approaches for selecting features 
include filter methods, wrapper methods and embed-
ded methods. Filter methods preselect features using a 
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univariate technique with respect to the outcome (T test, 
Mann–Whitney-test, Pearson correlation coefficients), 
without being tuned to a specific type of modeling tech-
nique. By contrast, wrapper methods use a specific mod-
eling technique to select features, and subsequently each 
selected feature set is used to train a model built with 
that same modeling technique; the performance of the 
model is usually tested on a hold-out set, resulting in a 
score for a specific feature set. Embedded methods are a 
catch-all group of techniques that perform feature selec-
tion as part of the model construction process [8, 9].

Popular feature selection methods nowadays are the 
least absolute shrinkage and selection operator method 
(LASSO) [10], recursive feature elimination, which is 
commonly used with support vector machines (SVM 
RFE) [11], and a backward feature selection method 
based on random forests (VARSEL RF) [12]. For stabiliz-
ing the feature selection, several authors proposed the 
use of ensemble feature selection based on bootstrap 
samples [13–15], a widely used technique in prediction 
research [16]. Several authors discussed double bootstrap 
or nested bootstrap procedures for both feature selection 
and performance estimation [17–22].

The aim of the present study was to compare statis-
tical models that can be used to discriminate between 
clinical and environmental strains using a small num-
ber of features. We compared modeling techniques for 
developing prediction models with relevant genomic 
features related to pathogenicity. We focused on four 
modeling techniques: classification and regression trees 
(CART) [23], random forests (RF) [24], support vec-
tor machines (SVM) [25] and least absolute shrinkage 
and selection operator (LASSO) [26]. We used a nested 
bootstrap procedure, one for feature selection and one 
for predictive performance validation for a fair evalu-
ation of a prediction model based on a relatively small 
data set.

Methods
Data
We analyzed the database of the Dutch National 
Legionella Outbreak Detection Programme as used 
before [27]. The database contained 222 Legionella pneu-
mophila strains with 448 continuous markers and a 
dichotomous outcome. Of these strains, 49 were patient-
derived strains from notified cases in the Netherlands 
in the period 2002–2006, and 173 were environmental 
strains that were collected during the source investiga-
tion for those patients. The 448 continuous markers were 
coded as LePn.###L## (e.g. LePn.032E12). The data were 
collected prospectively and anonymously. According to 
Dutch regulations, neither medical nor ethical approval 
was required to conduct the study, as no medical 

interventions were initiated and the study had no influ-
ence on medical care nor on decision making.

Modeling techniques
We evaluated the modeling techniques CART, RF, SVM 
and LASSO, which are described below.

Classification and regression trees (CART)
The CART model is a tree-based classification and pre-
diction model that uses recursive partitioning to split the 
training records into segments with similar output vari-
able values. The modelling starts by examining the input 
variables to find the best split, measured by the reduction 
in an impurity index that results from the split. The split 
defines two subgroups, each of which is subsequently 
split into two further subgroups and so on, until the stop-
ping criterion is met [23].

Random forest (RF)
Random forest is an ensemble classifier that consists 
of many decision trees and outputs the class that is the 
mode of the classes output by individual trees [24].

Each tree is constructed using the following algorithm:

1.	 Let the number of training cases be N, and the num-
ber of variables in the classifier be M.

2.	 We are told the number m of input variables to be 
used to determine the decision at a node of the tree; 
m should be much lower than M.

3.	 Choose a training set for this tree by choosing n 
times with replacement from all N available training 
cases (i.e. take a bootstrap sample). Use the rest of 
the cases to estimate the error of the tree, by predict-
ing their classes.

4.	 For each node of the tree, randomly choose m vari-
ables on which to base the decision at that node. Cal-
culate the best split based on these m variables in the 
training set.

5.	 Each tree is fully grown and not pruned (as may be 
done in constructing a normal tree classifier).

For prediction a new sample is pushed down the tree. It 
is assigned the label of the training sample in the termi-
nal node it ends up in. This procedure is iterated over all 
trees in the ensemble, and the mode of the votes over all 
trees is used as the random forest prediction.

Support vector machine (SVM)
A support vector machine performs classification tasks 
by constructing hyperplanes in a multidimensional space 
that separate cases from non-cases. It claims to be a 
robust technique that maximizes the predictive accuracy 
of a model without overfitting the training data. SVM 
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may particularly be suited to analyze data with large 
numbers of predictor variables. SVM has applications in 
many disciplines, including customer relationship man-
agement, image recognition, bioinformatics, text mining 
concept extraction, intrusion detection, protein structure 
prediction, and voice and speech recognition [25].

Least absolute shrinkage selection operator (LASSO)
Given a set of input measurements x1, x2, . . . , xp and an 
outcome measurement y, the LASSO fits a linear model: 
ŷ = b0 + b1 × x1 + b2 × x2 + · · · + bp × xp.

It uses the following criterion: Minimize sum((y−ŷ)2) 
subject to sum(|bj|) ≤ s.

The first sum is taken over the cases in the dataset. The 
bound “s” is a tuning parameter. If “s” is large, the con-
straint has no effect and the solution is just the usual 
maximum likelihood regression of y on Bi(B1, . . . , B50). 
For smaller values of s (s ≥ 0) the regression coefficients 
are shrunken versions of the maximum likelihood esti-
mates. Often, some of the coefficients bj are shrunk to 
zero. We used cross-validation to estimate the best value 
for “s” [26], and a logistic link function rather than linear 
regression.

Reference techniques
As reference points for this evaluation, we applied the 
commonly used techniques VARSEL RF and SVM RFE 
to our database, which are examples of embedded meth-
ods. VARSEL RF is a feature selection technique based 
on random forests with backward stepwise elimination of 
features that are not important. SVM RFE is a recursive 
feature elimination technique. It is based on support vec-
tor machines, which eliminate feature redundancy result-
ing in compact feature sets.

Model performance
We evaluated the stability of the feature selection and the 
validated performance by means of bootstrap re-sam-
pling from the original database. The performance of a 
model resulting from a modeling technique was assessed 
using the area under the Receiver Operator Curve (AUC).

Modeling strategy
For a specific modeling technique, feature selection was 
done by bootstrap re-sampling from the original database 
D. We re-sampled 50 bootstraps Bi(B1, . . . , B50) from the 
original database D. We applied the specific modeling 
technique on each Bi and determined for each Bi the top 
12 of most important features, leading to 50 × 12 = 600 
important features. From these 600 features, the top 10 of 
features with the highest frequency was extracted. With 
this feature top 10, a model was developed on the original 
database D with the specific modeling technique. For the 

resulting model the performance for the original data-
base D was calculated (“AUC apparent”, Fig. 1).

Validation of the strategy
To validate our strategy for a specific modeling tech-
nique, we performed a bootstrap procedure. We re-sam-
pled a bootstrap sample Bj from the original data base 
D and from this bootstrap sample Bj, we re-sampled 50 
independent bootstraps Bji

(

Bj1, . . . , Bj50

)

.

We applied the specific modeling technique on each 
Bji and determined for each Bji the top 12 of most impor-
tant features, leading to 50 ×  12 =  600 important fea-
tures. From these 600 features, the top 10 of features 
with the highest frequency was extracted. With this top 
10 features, a model was developed on bootstrap sample 
Bj with the specific modeling technique. For the result-
ing model, the performance for Bj and the performance 
for the original data base D were calculated (“AUC boot-
strap” and “AUC validated” respectively). The optimism 

Fig. 1  Feature selection and model development strategy
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of the resulting model was calculated as “AUC bootstrap” 
minus “AUC validated”. This process was repeated 200 
times (B1 to B200, Fig. 2).

Analysis
For the modeling and the analysis of these techniques, 
we used R 2.14, using default settings as far as possible. 
We used the libraries randomForest, caTools, rpart, caret, 
e1071, varSelRF and glmnet [28].

Results
Reference techniques
Feature selection with the reference techniques VARSEL 
RF and SVM RFE resulted in two different sets of fea-
tures, only with LePn.007B8 as the common feature in 
the top 5 (Table  1). For the full list of features for each 
technique and for each bootstrap sample, we refer to 
Additional files 1 and 2. The mean validated AUC values 
of the models generated by these two techniques were 
0.966 for VARSEL RF and 0.915 for SVM RFE (Table 2).

Other techniques
The top 5 of selected features differed among the other 
modeling techniques (CART, RF, SVM, LASSO). The 
only common feature in the top 5 of all four modeling 
techniques was feature LePn.007B8. Feature selection 
with RF resulted in four matches with feature selec-
tion based on VARSEL RF, and feature selection with 
LASSO resulted in three matches with feature selection 
with SVM RFE (Table 3). The selected features also dif-
fered within the various modeling techniques. For the 
full list of selected features for each technique and for 
each bootstrap sample, we refer to Additional files 3, 4, 
5 and 6. The RF model showed the highest mean vali-
dated AUC value (0.975) followed by the LASSO model 
(0.925). The mean validated AUC values of the CART 
and the SVM models were 0.873 and 0.859 respectively 
(Table  4). The RF model showed a relatively low statis-
tical optimism (0.005). Modeling with CART, SVM and 
LASSO resulted in prediction models with higher opti-
mism (decrease in performance 0.064, 0.066 and 0.056 
respectively, Table 4).

Discussion
Using a feature selection and validation strategy based 
on bootstrap procedures, we found that RF and LASSO 
modeling resulted in prediction models with high per-
formance. The statistical optimism of the RF model was 
relatively low (0.005). By contrast, modeling with CART, 
SVM and LASSO resulted in prediction models which 
had a good validated performance, but with higher opti-
mism in the apparent performance estimates (0.064, 
0.066 and 0.056 respectively).

We applied two commonly used techniques as ref-
erences: variable selection from random forests using 
backward variable elimination (VARSEL RF) and sup-
port vector machines using recursive feature elimination 
(SVM RFE). We applied these techniques to the same 
database and validated the resulting models by means of 
bootstrap re-sampling. These analyses showed that VAR-
SEL RF had a high validated performance (AUC 0.966), 
whereas modeling with SVM RFE resulted in a validated 
performance of 0.915 and an optimism of 0.076.Fig. 2  Evaluation of optimism for each strategy
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We used the bootstrap procedure as described by Efron 
[16]. The original data set comprised 222 Legionella 
strains. Bootstrapping from that data set leads to 222 
Legionella strains again in each bootstrap sample because 
it is based on simple re-sampling with replacement. We 
note than the 0.632+ variant of the standard bootstrap 
validation procedure uses only cases not used at model 
development. Empirical evaluations for binary prediction 
showed no advantage of this bootstrapping variant [29]. 
Hence, we did not use this approach in the estimation of 
the optimism of the models and the stability of the fea-
ture set.

Our results are in line with earlier findings, which 
showed that RF and LASSO are suitable modeling tech-
niques for feature selection and that the resulting mod-
els have a good predictive performance [10, 11]. Our 
results with SVM modeling are in line with the work of 

Guyon et al. who suggested SVM RFE for feature selec-
tion [11]. However, the features selected with SVM and 
bootstrapping differed from the features selected with 
the SVM RFE approach. The validated predictive perfor-
mance of our strategy with SVM modeling was inferior 
to the validated predictive performance with the SVM 
RFE approach (mean validated AUC 0.859 and 0.915 
respectively).

We found that feature selection by means of VARSEL 
RF resulted in models with a high validated performance. 
This is in line with the findings of earlier studies that used 
a simpler validation procedure [27]. Likewise, RF mod-
eling resulted in models with a very high performance 
(mean validated AUC 0.975). Feature selection with 
either of the two RF approaches resulted in four match-
ing features (LePn.007B8, LePn.004E8, LePn.032E12 and 
LePn.035C6).

Table 1  Top 5 features VARSEL RF and SVM RFE and frequency of selection in 200 bootstrap resamples

Technique Top 5 features and frequencies []

VARSELRF LePn.007B8 [196] LePn.032E12 [93] LePn.004E8 [71] LePn.015B2 [40] LePn.035C6 [40]

SVMRFE LePn.007B8 [88] LePn.016E4 [80] LePn.033H2 [77] LePn.005H6 [60] LePn.033D7 [54]

Table 2  Mean AUC and mean optimism VARSEL RF and SVM RFE

Technique Apparent AUC Bootstrap AUC Validated AUC Optimism

Mean 95 % CI Mean 95 % CI Mean 95 % CI

VARSELRF 0.904 0.966 [0.963; 0.969] 0.966 [0.963; 0.969] 0.000 [−0.004; 0.004]

SVMRFE 0.964 0.991 [0.990; 0.992] 0.915 [0.911; 0.919] 0.076 [0.072; 0.080]

Table 3  Top 5 features CART, RF, SVM and LASSO and frequency of selection in 200 bootstrap resamples

Technique Top 5 features and frequencies []

CART LePn.007B8 [200] LePn.026A7 [93] LePn.027A12 [76] LePn.028A11 [71] LePn.016E4 [66]

RF LePn.007B8 [200] LePn.032E12 [168] LePn.004E8 [151] LePn.035C6 [141] LePn.016E4 [100]

SVM LePn.007B8 [144] LePn.035G3 [111] LePn.009C5 [105] LePn.012C5 [97] LePn.024C3 [89]

LASSO LePn.007B8 [187] LePn.033H2 [146] LePn.016E4 [131] LePn.010B12 [83] LePn.011B3 [77]

Table 4  Mean AUC and mean optimism CART, RF, SVM and LASSO

 Technique Apparent AUC Bootstrap AUC Validated AUC Optimism

Mean 95 % CI Mean 95 % CI Mean 95 % CI

CART 0.929 0.937 [0.933; 0.942] 0.873 [0.868; 0.878] 0.064 [0.060; 0.068]

RF 0.938 0.980 [0.978; 0.981] 0.975 [0.973; 0.976] 0.005 [0.003; 0.008]

SVM 0.887 0.924 [0.918; 0.930] 0.859 [0.852; 0.866] 0.066 [0.061; 0.071]

LASSO 0.965 0.981 [0.980; 0.983] 0.925 [0.922; 0.928] 0.056 [0.053; 0.060]
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Feature selection with LASSO modeling resulted in 
a top 3 that was identical to the top 3 based on feature 
selection with SVM RFE. The relevance of this match is 
reinforced by the fact that feature selection with both 
these techniques resulted in models with a fairly high per-
formance (validated AUC 0.915 and 0.925 respectively).

One of the limitations of our study is that we used one 
single database with features of a specific bacterium to 
compare the performance of the various modeling tech-
niques. Future research should apply strong validation 
methods, such as our double bootstrap method, when 
analyzing comparable databases, such as databases com-
prising Legionella strains from other countries. An even 
stronger validation would be achieved by testing the mod-
els on new, independent data. Another limitation is that 
we restricted our research to four modeling techniques 
(CART, RF, SVM and LASSO). Various other techniques 
might also be suitable for feature selection and prediction 
in a domain with many variables and few subjects.

Conclusions
In the domain of Legionella pneumophila, which com-
prises many potential features for classifying of infections 
as clinical or environmental, the RF and LASSO tech-
niques provide good prediction models. The identifica-
tion of potentially biologically relevant features is highly 
dependent on the technique used, and should hence be 
interpreted with caution.
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