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TECHNICAL NOTE

HiView: an integrative genome browser 
to leverage Hi‑C results for the interpretation 
of GWAS variants
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Abstract 

Background:  Genome-wide association studies (GWAS) have identified thousands of genetic variants associated 
with complex traits and diseases. However, most of them are located in the non-protein coding regions, and therefore 
it is challenging to hypothesize the functions of these non-coding GWAS variants. Recent large efforts such as the 
ENCODE and Roadmap Epigenomics projects have predicted a large number of regulatory elements. However, the 
target genes of these regulatory elements remain largely unknown. Chromatin conformation capture based technolo-
gies such as Hi-C can directly measure the chromatin interactions and have generated an increasingly comprehensive 
catalog of the interactome between the distal regulatory elements and their potential target genes. Leveraging such 
information revealed by Hi-C holds the promise of elucidating the functions of genetic variants in human diseases.

Results:  In this work, we present HiView, the first integrative genome browser to leverage Hi-C results for the inter-
pretation of GWAS variants. HiView is able to display Hi-C data and statistical evidence for chromatin interactions in 
genomic regions surrounding any given GWAS variant, enabling straightforward visualization and interpretation.

Conclusions:  We believe that as the first GWAS variants-centered Hi-C genome browser, HiView is a useful tool guid-
ing post-GWAS functional genomics studies. HiView is freely accessible at: http://www.unc.edu/~yunmli/HiView.
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Findings
The eukaryotic genome is organized at multiple levels 
ranging from chromosomal territories to topologically 
associated domains. Such hierarchical three-dimensional 
organization is closely related to genome function [1]. 
Historically, the study of genome organization has relied 
on microscopy-based techniques, which suffers from 
low resolution and low throughput. Recently, a series of 
technologies based on chromatin conformation capture 
(3C) [2], such as Hi-C [3] and in situ Hi-C [4], have been 

developed, enabling a high resolution genome-wide view 
of chromosomal architecture.

Data from 3C-based technologies can shed light on the 
structural and functional mechanisms, including non-
coding variants identified for complex trait associations 
in genome-wide association studies (GWAS). GWAS 
has been resoundingly successful, identifying thousands 
of variants associated with complex traits. However, 
only a small proportion (7–12  %) of these variants fall 
into protein coding regions [5], making the interpreta-
tion of non-coding variants imperative. With the help of 
3C-based technologies, a recent study [6] identified long-
range (at megabase distances) interactions between the 
obesity-associated intronic variants in FTO gene and the 
promoter region of homeobox gene IRX3, demonstrat-
ing it is the expression of IRX3 rather than FTO that is 
directly linked to body mass and composition. This study 
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showcased the power of 3C-based technologies for elu-
cidating the functional mechanisms of genetic variants 
implicated by GWAS.

As 3C-derived technologies have been increasingly 
widely used, multiple visualization tools have been 
devised recently, such as Hi-C data browser [3] and 3D 
genome browser [7]. In addition, WashU EpiGenome 
browser is widely utilized for simultaneous visualization 
of Hi-C and other epigenetic data from the Roadmap Epi-
genomics project [8]. Most recently, Juicebox has been 
developed for visualizing the in situ Hi-C data [4]. Mean-
while, HiBrowse [9] has been developed to facilitate sta-
tistical analysis of Hi-C data.

Although many useful visualization tools have been 
developed, none of them is able to display 3C-based 
data with a focus on GWAS variants interpretation, pre-
venting researchers from fully mining rich information, 
generating testable hypothesis, and visually validating 
biological findings. In addition, few of them incorpo-
rates peak calling results from 3C-based data or shows 
the magnitude of statistical evidence, making the inter-
pretation of the statistical significance of 3C-based data 
extremely challenging.

To fill in the above gaps, we present HiView, the first 
genome browser for GWAS-variant centered visualiza-
tion of Hi-C data. Additional file 1: Figure S1 shows the 
user interface of HiView. Users can select and extract 
genomic annotation of a GWAS variant by selecting the 
marker type and specifying the marker name. HiView 
displays raw and expected count data, and measures of 
statistical significance from several state-of-the-art Hi-C 
peak callers, such as AFC [10], Fit-Hi-C [11] and a hidden 
Markov random field (HMRF) based Hi-C peak caller 
[12]. By creating an ensemble of peak calling results from 
different approaches, users can have more robust data 
interpretations. For gene annotation, HiView incorpo-
rates three gene annotation tracks: (1) Ensembl genes, (2) 
UCSC genes and (3) RefSeq genes.

Users can configure HiView for customized visualiza-
tion in many ways (detailed in the online tutorial) includ-
ing but not limited to (1) selecting tracks to display, (2) 
specifying the order of displayed tracks, (3) moving the 
viewing window upstream and downstream, zooming in 
and out, and specifying the range of the viewing window, 
(4) specifying the genomic regions to highlight, (5) speci-
fying the text and color used for each track and (6) speci-
fying the picture size and width. HiView also provides a 
table of numerical values of Hi-C data and peak calling 
results that can be downloaded by users. Figures  1 and 
Additional file 1: Figure S2 show an example of HiView 
figure and HiView table, respectively. A detailed tutorial 

to generate Fig.  1 can be found in the Additional file  1: 
Section S1.

Here is an example of using HiView to leverage Hi-C 
results for the interpretation of GWAS variants. Multiple 
studies [13, 14] have identified rs1447295 to be associ-
ated with the risk of prostate cancer. Although rs1447295 
was mapped as an intronic variant in CASC8 lncRNA, 
its functional mechanisms are still unknown. Both Rgu-
lomeDB [15] and HaploReg [16] identify this variant as 
an enhancer for multiple cell lines, indicating its potential 
regulatory role. Using the high resolution fragment level 
Hi-C data from human IMR90 lung fibroblastic cells [10], 
we observed statistically significant long-range chromatin 
interactions between rs1447295 and the transcription start 
site of the MYC gene with p value 0.0016 (Fig. 1). There-
fore, we hypothesized that MYC gene is a potential target 
of this likely regulatory GWAS variant rs1447295 [17]. In 
this work, the Hi-C data and GWAS variant were collected 
from different cell types. It would be more informative to 
integrative Hi-C data and GWAS variants from the same 
cancer cell line, to fully understand the mechanistic rela-
tionship. As Hi-C data from more tissue and cell types 
are generated, we will have a more comprehensive under-
standing of tissue or cell type specific target genes.

The HiView interface is implemented using PHP, 
HTML and cascading styling sheets (CSS) languages. 
Hi-C and GWAS data are stored in a MySQL database in 
the UNC Linux server. HiView is compatible with Inter-
net Explorer, Chrome and Firefox. HiView also allows 
users to upload their own Hi-C dataset for customized 
comparison and visualization.

In summary, we present HiView, a visualization tool 
that integrates raw Hi-C data and chromatin interactions 
identified by various peak callers for the interpretation 
of GWAS variants. HiView is the first genetic GWAS-
variant centered visualization tool for Hi-C data. The 
resulting one-dimensional view allows close examina-
tion of interactions between each GWAS variant and all 
genes in the region the variant resides. We believe that 
HiView will facilitate the interpretation of GWAS vari-
ants, particularly the identification of their potential tar-
get genes.

Availability and requirements
Project name: HiView.

Project home page: http://www.unc.edu/~yunmli/HiView.
Operating system(s): Platform independent.
Programming language: PHP, HTML and cascading 

styling sheets (CSS) languages.
Other requirements: browser such as Internet Explorer, 

Chrome and Firefox.

http://www.unc.edu/%7eyunmli/HiView
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License: GNU GPL (version 3, 06/29/2007).
Any restriction to use by non-academics: none.

Availability of supporting data
Original raw data used in Fig. 1, Additional file 1: Figures 
S1 and S2 were retrieved from the NCBI Gene Expres-
sion Omnibus repository (GSE43070: http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE43070).

Additional file

Additional file 1: Figure S1. HiView graphic user interface. Users can 
input the genomic location of a GWAS variant by (1) select the marker 
type, (2) type the marker name and then (3) click the Run button 
(red-colored). Users can configure HiView in many ways (refer to online 
tutorial) to obtain customized figures. HiView is freely accessible at http://
www.unc.edu/~yunmli/HiView. Figure S2. HiView Table for GWAS variant 
rs1600249.

Fig. 1  HiView snapshot of GWAS variant rs1447295. The left and right light blue bars highlight the location of GWAS variant rs1447295 and gene 
MYC, respectively. Using Hi-C data from human IMR90 cells, we observe five paired-end reads spanning between rs1447295 and the transcription 
start site of gene MYC, while the expected contact frequency is 0.8281. Such long-range chromatin interaction is statistically significant, with p-value 
0.0016. Therefore, we hypothesize that gene MYC is a potential target of this likely regulatory GWAS variant rs1447295

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43070
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43070
http://dx.doi.org/10.1186/s13104-016-1947-0
http://www.unc.edu/%7eyunmli/HiView
http://www.unc.edu/%7eyunmli/HiView
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