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Social networks help to infer causality 
in the tumor microenvironment
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Abstract 

Background:  Networks have become a popular way to conceptualize a system of interacting elements, such as elec‑
tronic circuits, social communication, metabolism or gene regulation. Network inference, analysis, and modeling tech‑
niques have been developed in different areas of science and technology, such as computer science, mathematics, 
physics, and biology, with an active interdisciplinary exchange of concepts and approaches. However, some concepts 
seem to belong to a specific field without a clear transferability to other domains. At the same time, it is increasingly 
recognized that within some biological systems—such as the tumor microenvironment—where different types of 
resident and infiltrating cells interact to carry out their functions, the complexity of the system demands a theoretical 
framework, such as statistical inference, graph analysis and dynamical models, in order to asses and study the informa‑
tion derived from high-throughput experimental technologies.

Results:  In this article we propose to adopt and adapt the concepts of influence and investment from the world of 
social network analysis to biological problems, and in particular to apply this approach to infer causality in the tumor 
microenvironment. We showed that constructing a bidirectional network of influence between cell and cell commu‑
nication molecules allowed us to determine the direction of inferred regulations at the expression level and correctly 
recapitulate cause-effect relationships described in literature.

Conclusions:  This work constitutes an example of a transfer of knowledge and concepts from the world of social 
network analysis to biomedical research, in particular to infer network causality in biological networks. This causality 
elucidation is essential to model the homeostatic response of biological systems to internal and external factors, such 
as environmental conditions, pathogens or treatments.

Keywords:  Causality, Network inference, Social networks, Tumor microenvironment

© 2016 Crespo et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Despite their differences in nature, social and biological 
networks are self-organising, emergent, and complex, 
and their respective analyses have common features: 
both focus on local and global patterns of connectivity, 
search for influential entities, and aim to model the net-
work dynamics. Some concepts resulting from the study 
of social networks such as ‘popularity’, which refers to 
node centrality, can be directly transferred to the study 
of biological networks, where popular nodes are referred 
to as ‘hubs’, which tend to be essential [1]. However, 

there exist other concepts that seem to be more specific 
to social studies. Social network analysis has invested 
some efforts in describing network interactions at the 
so-called dyadic and triadic levels or the relationships 
between two (or, respectively, three) individuals, with 
the development of concepts such as social equality, bal-
ance, transitivity, and mutuality [2], which seem to be 
more specific to the realm of social studies. In particu-
lar, at the dyadic level, mutuality refers to the reciproc-
ity between two individuals implicit in some types of 
social interactions, as for example the influence between 
individuals. Hangal et  al. [3] proposed to model the 
influence of individual A over B in a given social graph 
as the fraction of B’s actions due to A, and the opposite 
for the influence of B over A. This influence is based on 
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social interactions that imply a cost or investment for 
the people involved, and it is frequently asymmetric. For 
instance, keeping B posted by A requires time and effort 
that is considered an investment of A in B, and it reflects 
the fact that B has a certain influence on A, which can be 
very different than the influence of A on B.

In some social graphs, the link between two individuals 
does not have directionality, as for example in an author-
ship graph, where authors are connected by shared pub-
lications (see Fig.  1). Hangal et  al. [3] showed that this 
kind of graph can be derived in a bidirectional network 
of influence by assuming asymmetric mutuality pairwise, 
and demonstrated that such a derived network was more 
convenient for global social searches than methods based 
on the shortest path.

The construction of a directed network of influence 
based on an initially undirected graph is very attractive for 
biologists because in biomedical research there is an abun-
dance of high-throughput experimental data that allows 
the construction of undirected correlation networks con-
necting different types of biological entities, such as genes 

or proteins, but the predictive power of these networks 
is limited due to their lack of causality or directionality. 
Based on the definition of influence proposed by Hangal 
et al. [3], Penrod et al. [4] developed a method for drug tar-
get discovery in the context of cancer therapy and showed 
that influential genes tend to be essential for the prolif-
eration and survival of breast cancer cells, and that gene 
influence differs between untreated tumors and residual 
tumors that have adapted to a drug treatment. In order 
to calculate the investments between two genes, Penrod 
et al. [4] took the values of their partial correlation derived 
from expression data. It is worth noting here that despite 
Penrod et  al. [4] having shown the utility of deriving the 
influence network from the co-expression information to 
identify genes essential for proliferation and survival of 
breast cancer cells, the underlying regulatory mechanisms 
involving these essential genes were not elucidated.

Using the concepts of investments and influencing 
mutuality from the social network analysis world, here we 
propose an approach to infer causality in co-expression 
networks derived from solid tumor expression data. In 
particular, we construct co-expression networks and infer 
cause-effect relationships between genes encoding cell–
cell communication molecules as a model of the tumor 
microenvironment (TME) in breast, ovarian, and lung 
cancers. We show that constructing a bidirectional net-
work of influence between cell–cell communication mol-
ecules allows us to determine the direction of cause-effect 
relationships underlying the correlation between genes 
(undirected in nature) and described in the literature.

Some methods have been proposed in the past to elu-
cidate causality in biological networks inferred from 
experimental data, either from protein–protein inter-
action (PPI) information [5–7] or a combination of 
PPI and protein–DNA interactions [8] or perturbation 
experiments [9]. Specifically in the context of cancer, 
the partial least squares method was used to link the 
level of 19 proteins involved in apoptotic signaling in 
human colon adenocarcinoma cells to four quantitative 
measures of apoptosis [10]. The resulting directed net-
work led to the prediction of cell death under specific 
perturbations.

In a previous study, we investigated the causality infer-
ence in the TME in breast cancer by constructing a 
dynamical model based on perturbation experiments 
[11]. The model was used to determine how to effectively 
revert the angiogenic activity of Tie-2 expressing mono-
cytes. In general, strategies based on perturbation to 
infer causality are limited to small systems with a limited 
set of genes or proteins due to the combinatorial nature 
of the problem and its cost.

In the attempt to infer causality from correlation data, 
which is much more abundant than perturbation data, 

Fig. 1  Modeling human interactions as an influence network. a 
Undirected and weighted social network where nodes represent 
three students and their advisor and edges represent shared publica‑
tions. Edge weights represent the number of shared publications. 
b Derived bidirectional influence network. Weights represent the 
influence of the source on the target. The influence is calculated by 
dividing shared publication between source and target by other 
shared publications of the target with third parties
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Gupta et al. [12] proposed a method that integrates net-
work inference and network analysis approaches to con-
struct co-expression networks and assign directionality 
to edges. The method was applied to time-series data to 
infer the topology of the gene regulatory network (GRN) 
of B. subtilis.

Instead of using the criterion proposed by Gupta et al. 
[12] to assign directionality to co-expression edges, in 
this work we adopted a similar criterion to assign direc-
tionality to the investments; the final directionality 
assignment for the co-expression edges, which repre-
sent the major regulatory effect, is based on the ratio of 
investments between two given nodes and investments 
that the investor has on other genes, as proposed by 
Hangal et al. [3] for social graphs. In doing so, and given 
that the ratio of investments is a topological property that 
does not rest on the dynamics of the system, costly time-
series or perturbation experiments are not needed to elu-
cidate the directionality of the interaction between two 
given genes. Consequently, our approach can take advan-
tage of a wealth of expression data of comparative studies 
accumulated over decades of cancer research.

Methods
Principles of the approach
In biological systems, the circuitry of the underlying net-
work can cause certain direct or indirect reciprocity on 
the regulatory effects performed by direct interactions; 
there exist regulatory feedback loops contributing to 
determine the dynamical behavior of living systems and 
maintaining their general homeostasis. In other words, in 
order to guarantee a certain level of homeostasis, the con-
stitutive elements of biological networks should be capa-
ble of mutually affecting each other directly or indirectly.

The approach presented here for causality inference 
is based on the following assumption: given two genes 
A and B in a regulatory network, if there exists a direct 
effect from A to B, most of the indirect effects between 
these two nodes will have the opposite direction (from 
B to A). In this context, indirect/direct effect refers to an 
effect with/without intermediates belonging to the con-
sidered network. The rationale behind this assumption 
is the idea that homeostatic control requires reciprocity 
and given that the direct interaction covers one direc-
tion, the indirect interactions should have the opposite 
direction. Of course, such an assumption neglects feed-
forward loops, which are well-known regulatory mecha-
nisms [13–15].

In order to infer network causality, the above-mentioned 
assumption was combined with network inference based 
in partial correlation [16] and the adopted concepts of 
influence and investments proposed by Hangal et al. [3].

Algorithm description for directionality assignment
The algorithm can be described in three steps (see Fig. 2):

Construct a co‑expression network
To this end, we used the software package Ometer 
(http://www.comp-sys-bio.org/Ometer.html). Between 
any two given genes we calculated the partial correlation 
based on the Pearson coefficient. The partial correlation 
has been previously proposed to discover associations in 
genomic data [16]. It quantifies the correlation between 
two variables (in our case, gene expression) when condi-
tioning on one or several other variables. The order of the 
partial correlation is determined by the number of vari-
ables it is conditioned on; within this work we used up to 
second-order partial correlation. Equations  (1–3) allow 
the calculation of partial correlations of orders 0–2.

The algorithm further considered only interac-
tions with a p value below 0.05. Results using different 
thresholds (p values of 0.1 and 0.01) are included in the 
“Results” section.

At this point, the algorithm will make an assumption: 
given two genes A and B, if there exists a direct effect 
from A to B, most of the indirect effects between these 
two nodes will have the opposite direction (from B to A). 
The rationale behind this assumption is described above 
in principles of the approach. Following this assumption, 
the algorithm establishes that partial correlation gives us 
the strength of the effect in one direction and the differ-
ence between correlation and partial correlation (cor-
relation–partial correlation) gives us the strength of the 
effect in the opposite direction.

From now on, we will refer to the partial correlation as 
direct correlation and to the difference between correla-
tion and partial correlation as indirect correlation, which 
has opposite direction than direct correlation. There are 
two possible directionality assignments for direct and 
indirect correlation between two given nodes A and B 
(see Fig.  3) and both will be further evaluated for each 
couple of nodes with statistically significant correlation.
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Construct a network of influence
We adopted the concepts of investments and influence 
proposed by Hangal et al. [3] to construct a weighted bidi-
rectional network of influence. Investments will be the 
numerical value of the direct and indirect correlation, and 
the influence will be calculated dividing the investments 
between A and B by the total investments of the investors, 
i.e., B for forward influence (A →  B) and A for reverse 
influence (A  ←  B). Given that we do not know if the 
direct (conversely, indirect) correlation is associated with 

either forward (A → B) or reverse (A ← B) influence, we 
also do not know whether we should divide the direct and 
indirect correlation by the investments of A or B. Moreo-
ver, in order to calculate the investments of the investor 
on other genes we also need to assign either values of 
direct or indirect correlation to the outgoing interactions 
of the investor. At this point, the algorithm will assign the 
value of direct and indirect correlations based on the so-
called slope ratio metric (SR) following the strategy pro-
posed by Gupta et al. [12]. The SR is defined as

Fig. 2  Algorithm description in three steps. In the first step, a co-expression network is constructed based on the calculation of direct and indirect 
correlation. Direct correlation refers to the second-order partial correlation, whereas indirect correlation is calculated as the difference between 
zeroth-order partial correlation and the direct correlation. In the second step, a bidirectional network of influence is constructed. Forward and 
reverse influences are derived from the calculation of the investments for each couple of genes. The directionality assignment of the investments is 
based on the slope ratio (SR) criterion. In the third step, causality is inferred by evaluating every couple of forward and reverse influences. The direc‑
tionality of the predictions is the opposite of the highest influence value and can be interpreted as the directionality of the main flux of regulatory 
effects
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bYX and bXY represent the regression slopes of a pair of 
variables (gene expression values).

Gupta et  al. proposed the following rules in order to 
assign directionality to correlation edges only for those 
edges that have SR → 0
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Our algorithm uses the same set of rules to assign the 
values of direct and indirect correlation to incoming and 
outgoing edges

The intuitive idea behind the decision of the algorithm at 
this point is that the direct correlation (partial correla-
tion) is always assigned to the link from the gene with a 
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Fig. 3  Influence calculation. Forward and reverse influence calculation between two genes A and B. Links in grey represent investments of A and B 
on other genes. The assignment of directionality to direct and indirect correlation is based on the slope ratio (SR) criterion
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smaller variance to the gene with a bigger variance, given 
that

It is worth noting here that this assignment is not 
related to the weight of the link; sometimes the direct 
correlation is stronger than the indirect correlation and 
sometimes it is the opposite.

Once the algorithm has calculated the outgoing invest-
ments for every gene in the network, the influence bidi-
rectional network is easily derived applying the following 
formula for each couple of genes A and B

X refers to all the genes targeted by the investor. It is 
worth noting here that when calculating the influence, 
positive and negative investments (consequence of posi-
tive and negative correlations) are divided correspond-
ingly by positive and negative investments of the investor.

Predict causality
Once the forward and reverse influence between any 
couple of nodes in the influence network has been calcu-
lated, the algorithm compares both values and selects the 
biggest one as the main flux of influence. The directional-
ity predictions for the original co-expression network will 
have the opposite direction than the main flux of influ-
ence. These predictions can be interpreted, according to 
the adopted definitions, as the direction of the main flux 
of regulatory effects (dedicated investments). Empirically, 
we noticed that percentages of correct directionality 
assignments were improved when discarding the low-
est influence values. Accordingly, we systematically dis-
carded the lowest 25 % of values for the three examples 
presented in this work.

Example datasets
In order to construct the correlation networks we use 
microarray expression data from public repositories. 
Datasets for breast and ovarian cancer (1809 and 1394 
patients respectively) were downloaded from the KM 
plotter website (www.kmplot.com), whereas the data-
set for lung cancer (688 patients) was constructed using 
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)2

Influence(A,B) =
Invests(B,A)

∑

XInvests(B,X)

Influence(B,A) =
Invests(A,B)

∑

XInvests(A,X)

the following references from GEO database: GSE14814, 
GSE19188, GSE31210 and GSE 37745. The raw CEL files 
were MAS5 normalized in the R statistical environment 
(www.r-project.org) using the Affy Bioconductor Library 
[17]. The three datasets also have a second scaling nor-
malization to set the average expression on each chip 
to 1000 to avoid batch effects [18]. The datasets were 
obtained using either HG-U133A (GPL96) or HG-U133 
Plus 2.0 (GPL570). These platforms include 283 probes 
corresponding to 192 genes annotated as cytokines, 
cell–cell communication molecules or growth factors 
according to GO database (http://geneontology.org). 
Consequently, the expression values of these 283 probes 
were summarized into 192 numerical values by calculat-
ing the mean of probes referring to the same gene.

Evaluation of predictions
Predictions were evaluated using directed cause-effect 
relationships contained in the ResNet database from 
Ariadne Genomics (http://www.ariadnegenomics.
com/). We selected only the interactions included in the 
ResNet mammalian database in the category of ‘Expres-
sion’. Interactions in the ‘Expression’ category indicate 
that the expression of regulatory gene/protein affects 
their targets, by (both directly and indirectly) regulating 
its gene expression or protein stability. The ResNet data-
base includes biological relationships and associations 
which have been extracted from the biomedical literature 
using Ariadne’s MedScan technology [19, 20]. MedScan 
processes sentences from PubMed abstracts and pro-
duces a set of regularized logical structures represent-
ing the meaning of each sentence. ResNet was queried 
looking for interactions between 192 genes annotated as 
cell–cell communication molecules or growth factors. It 
is worth noting here that no filter was applied based on 
the biological context. That means that the interactions 
included have been described in a variety of cell types, 
tissues and other experimental conditions, and thus are 
not restricted to observations in a tumor context. We 
obtained 1774 interactions directed and signed (either 
activation or inhibition). The complete list of interac-
tions with their respective references is included in the 
Additional files 1, 2. For the evaluation of directionality 
assignment, we only considered predictions involving 
couples of genes previously described to be interacting. 
The number of such interactions reported in literature is 
different for each example (see Table 1 in "Results" sec-
tion). When the predicted directionality matched direc-
tionality reported in the literature, it counted as ‘correct’; 
if directionality did not match the interaction it counted 
as ‘incorrect’. The percentage of correct directionality 
assignment refers to the ratio between ‘correct’ and ‘total’ 
(‘correct’ plus ‘incorrect’) predictions multiplied by 100.

http://www.kmplot.com
http://www.r-project.org
http://geneontology.org
http://www.ariadnegenomics.com/
http://www.ariadnegenomics.com/
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However, there is an issue in the procedure we used 
to evaluate the directionality assignment that has to be 
taken into account. Couples of genes mutually regulated 
according to literature will be correctly predicted what-
ever directionality is assigned (both directions are cor-
rect). Due to that, the random directionality assignment 
may be right more than the expected 50 % of the time.

In order to obtain a fair comparison of our method 
against random directionality assignment (see Fig. 4), we 
generated a population of 10,000 assignments with the 
same probability of 0.5 for one direction and the oppo-
site for each couple of genes with statistically significant 
partial correlation between them and for the three case 
examples. The random directionality assignment per-
formed slightly better than 50 % for the three case exam-
ples and differently depending on the subset of gene 
couples used for the evaluation (see Fig.  4), which ulti-
mately depend on the p value of their partial correlation 
and the specific example. Consequently, the scores (% of 
correct assignments) of these populations of alternative 
random assignments can be justifiably compared against 
the ones obtained by our algorithm.

Results
We applied the proposed methodology to the TME 
because of the paramount importance of causality to 
develop novel combined cancer therapies. Breast, ovarian 
and lung cancer were selected because of the abundance 
of publicly available datasets with both expression and 
clinical data.

Some aspects of tumor biology, such as pro-angio-
genic and immune suppressive states, rely on cell–cell 

communication events; internal cellular processes are 
significantly influenced by the interplay between differ-
ent cells types carried out through cell–cell communica-
tion molecules, which become potential targets of novel 
therapies. However, the complexity of the TME demands 
theoretical frameworks, such as statistical inference, 
graph analysis and dynamical models, in order to assess 
and study the information derived from high-through-
put experimental technologies. A predictive model of 
the TME should capture interdependencies between 
tumor microenvironment components and predict their 
response to single and combined perturbations, and will 
serve to identify the most efficient treatment combina-
tions that induce desired cell properties, such as anti-
angiogenic and immune-competent states, in the TME. 
Such a model requires directionality or causality when 
describing interdependencies between TME compo-
nents. Statistical analysis of concentrations of cell–cell 
communication molecules in tumor samples allows the 
construction of a correlation network at the level of gene 
products or gene expression. Unfortunately, correlation 
networks are undirected; a statistically significant cor-
relation between genes ‘A’ and ‘B’ does not indicate if ‘A’ 
levels are causing ‘B’ levels or vice versa.

The methodology proposed in this work assigns direc-
tionality to co-expression edges based on the ratio of 

Table 1  Percentages of  correctly predicted cause-effect 
relationships in breast (BC), ovarian (OC) and  lung cancer 
(LC)

The application of the method using p values of 0.01, 0.05 and 0.1 to construct 
the co-expression network resulted in different number and percentages 
of correct predictions. The most stringent p value (0.01) obtained the best 
percentages in BC, OC and LC datasets (in italics)

Predicted 
interac-
tions

Evaluated 
predic-
tions

Correct 
predic-
tions

Correct 
predic-
tions (%)

p value

BC 0.01 1390 121 77 63.63 0.02

BC 0.05 1999 179 106 59.21 0.15

BC 0.1 2416 212 126 59.43 0.10

OC 0.01 891 106 66 62.26 0.04

OC 0.05 1223 139 81 58.27 0.21

OC 0.1 1465 160 97 60.62 0.04

LC 0.01 545 69 48 69.56 0.00

LC 0.05 909 93 60 64.51 0.05

LC 0.1 1207 115 67 58.26 0.24
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Fig. 4  Comparison between influence-based and random direction‑
ality assignment in breast, ovarian and lung cancer. The directionality 
assignment based on influence (blue dots) performed better than 
random for the three biological examples, namely breast, ovarian and 
lung cancer (green, orange and blue boxplot respectively). The best 
results in the three cases were obtained using a p value of 0.01 as the 
threshold for the co-expression network construction (labeled as BC 
0.01, OC 0.01 and LC 0.01)
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investments between two given nodes and investments 
that the investor has on other genes (see “Methods” sec-
tion). Calculating the ratio of investments of the network 
of influence does not require costly time series and per-
turbation experiments.

In summary, we have applied an analysis to infer cau-
sality in the TME at the gene expression level across three 
different cancer types. Both co-expression and influence 
networks are included in the Additional file 1: Tables S1.

Causality inference at the level of gene expression 
in breast, ovarian and lung cancer
After applying the methodology described in the “Meth-
ods” section to three different datasets derived from 
breast, ovarian and lung cancer patients, we observed 
that the directionality assignment based on influence 
performed better than a random assignment in the three 
cases (see Fig. 4). Different p values (0.01, 0.05 and 0.1) 
were used as the threshold for the inference of the initial 
co-expression network in order to evaluate the effect of 
this parameter on the directionality assignment. In the 
three cases, the best accuracy corresponded to the most 
stringent p value (0.01), resulting in correct predictions 
of 63.6, 62.2, and 69.5 % for breast, ovarian and lung can-
cer datasets respectively.

These percentages were estimated using information 
from literature about predicted interactions. Relaxing the 
stringency on the p value to construct the co-expression 
network allowed a larger amount of correctly predicted 
directionality assignment to be obtained, but with lower 
accuracy (see Table 1). Indeed, we observed that using a p 
value of 0.01 for the co-expression network as threshold 
we always obtained a statistically significant difference 
between the score of the influence-based network and 
randomly generated networks, with z-scores of 2.03, 1.77 
and 2.81 for breast, ovarian and lung cancer respectively 
and p values <0.05, whereas for less stringent p values 
the difference was not always statistically supported (see 
Table 1).

Discussion
The most prevalent use of network inference in bio-
medicine takes advantage of information such as gene 
expression or protein–protein binding data to predict 
the network topology as a set of correlations or physical 
interactions between its constitutive elements. Unfor-
tunately, the resulting networks lack directionality, 
i.e., causality, hindering the elucidation of regulatory 
mechanisms and the flow of information through sign-
aling pathways. This causality elucidation is essential to 
model the homeostatic response of the TME to internal 
and external factors and to predict the network response 
to perturbations such as targeted therapy. In order to 

elucidate this causality, one may consider dedicated 
perturbation experiments or time-series data, which 
are costly and not as abundant as comparative studies 
between a reduced set of conditions.

In this work we addressed the following question: To 
what extent can the description of a biological system 
(TME) in terms of influence and investments derived 
from social network analysis be useful to infer causality 
from comparative studies?

To answer this question, we developed a systems 
approach where network causality in the TME is inferred 
based not only on local properties of the system (such as 
the co-expression of two genes) but also on the global net-
work topology analysis. We showed that the application 
of the strategy proposed here to breast, ovarian and lung 
cancer datasets allowed the prediction of causality from 
derived co-expression networks by constructing a net-
work of influence and analyzing its topological properties. 
The resulting directionality assignments were evaluated 
using information from literature and compared across 
the three cancer types. Results showed that 63.63, 62.26 
and 69.56 % of directionality predictions for breast, ovar-
ian and lung cancer respectively were correct according 
to cause-effect relationships described in literature. These 
results indicated that costly perturbation experiments and 
time series data could be avoided while still providing a 
good approximation of the network causality.

The methodology described in this work does not 
address the other significant challenge in network infer-
ence: the appearance of false positives or correlation 
inferred due to the spurious co-occurrence of biological 
events. The transformation of the correlation network 
into an influence network will assign weights and direc-
tionality to both true and false interactions. Conversely, 
if there is no link between two given nodes in the correla-
tion network, no new interactions will be inferred; false 
negatives or real interactions not included in the corre-
lation network will not be further considered. In other 
words, the methodology presented in this work assumes 
the correlation networks are essentially correct and com-
plete. Consequently, the causality inference technique 
proposed here will benefit from the further development 
of advanced methods for correlation network inference 
with high sensitivity and specificity.

As it is mentioned in “Methods” section, the adopted 
assumption to identify the direction of the dominant 
regulation between two genes somehow neglects the 
importance of feed-forward loops, which are well-known 
regulatory mechanisms [13–15]. However, the poten-
tial overestimation of the strength of the investments 
assigned with the direct correlation does not prevent the 
correct directionality assignment for the majority of gene 
pairs.
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It is worth noting here that usually network inference 
techniques attempt to remove indirect interactions, or 
interactions through intermediaries, by using partial 
correlations [16, 21–23], conditional mutual informa-
tion [24, 25] or data processing inequality [26, 27]. In this 
work we showed that considering not only direct but also 
indirect correlations (between genes that also have direct 
correlations) helped to predict directionality in three dif-
ferent case studies.

Conclusions
This work constitutes an example of interdisciplinary 
transfer of concepts between the fields of social and bio-
logical network analysis that allows the development of a 
novel systems approach to infer network causality in the 
TME.

The main strength of this method is that it relies on 
experimental information from comparative studies, 
rather than costly dedicated perturbation experiments 
and time series data, usually required to infer cause-
effect relationships.

The application of our method can help the experi-
mental design, elucidation of regulatory mechanisms 
and identification of novel targets in cancer therapy and 
beyond.
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