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SHORT REPORT

Accuracy when inferential statistics  
are used as measurement tools
Michael T. Bradley1*† and Andrew Brand2†

Abstract 

Background:  Inferential statistical tests that approximate measurement are called acceptance procedures. The 
procedure includes type 1 error, falsely rejecting the null hypothesis, and type 2 error, failing to reject the null hypoth-
esis when the alternative should be supported. This approach involves repeated sampling from a distribution with 
established parameters such that the probabilities of these errors can be ascertained. With low error probabilities the 
procedure has the potential to approximate measurement. How close this procedure approximates measurement 
was examined.

Findings:  A Monte Carlo procedure set the type 1 error at p = 0.05 and the type 2 error at either p = 0.20 or p = 0.10 
for effect size values of d = 0.2, 0.5, and 0.8. The resultant values are approximately 15 and 6.25 % larger than the 
effect sizes entered into the analysis depending on a type 2 error rate of p < 0.20, or p < 0.10 respectively.

Conclusions:  Acceptance procedures approximate values wherein a decision could be made. In a health district a 
deviation at a particular level could signal a change in health. The approximations could be reasonable in some cir-
cumstances, but if more accurate measures are desired a deviation could be reduced by the percentage appropriate 
for the power. The tradeoff for such a procedure is an increase in type 1 error rate and a decrease in type 2 errors.
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Findings
Background
A hallmark of science is measurement, and Neyman and 
Pearson [1] contributed a way of approximating measure-
ment with a probability model derived from inferential 
statistical situations. They described type 1 error rates 
with the known parameters of a distribution such that a 
value that deviated from the mean by a specific amount 
or more could be considered a true deviation with only a 
5 % chance of being wrong. With a type 2 error rate they 
could specify the chance of failing to find this value as 
only 10 to 20 % of the time. In doing this they developed 
a paradigm such that it might be reasonable to calculate 
a measurement value following the Neyman and Pearson 
[1] method under the proper conditions. In fact, Wald [2] 

used inferential tests to make decisions in manufacturing 
processes.

To ascertain the value of using inferential statistics to 
make decisions a variety of effect size values (d = 0.2, 0.5, 
0.8) under the sample size conditions appropriate to a 
type 1 error of p < 0.05 and a type 2 error rates of 0.2 or 
0.1 were tested in a Monte Carlo deign to see how close 
the resulting effect sizes are to the initial value. In effect 
this is a test of the accuracy of Neyman and Pearson’s [1] 
approach.

Methods
A control distribution with a normal distribution of 
1,000,000 values and a mean of 10 and a standard devia-
tion of 2 was generated. Three experimental distribu-
tions were created so that the difference between the 
control distribution and an experimental distribution 
corresponded to one of Cohen’s [3] definitions of small 
(d = 0.20), medium (d = 0.50) and large (d = 0.80) effect 
sizes. The means for the experimental distributions for 
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the small, medium and large effect sizes were 10.40, 
11.00, and 11.60, respectively and the standard deviations 
of the experimental distributions were the same as the 
control distribution (i.e., 2). To determine the sample size 
per group required to achieve 80 % statistical power for 
each of the three effect sizes, three separate power analy-
ses was conducted. The results from these power analyses 
showed that sample size per group required to achieve 
80  % statistical power to detect the small, medium and 
large effect size was 393, 64 and 26 respectively. Then 
for each of the three effect sizes, 100,000 experiments 
were simulated using the sample size obtained from the 
power analysis and a two-tailed between-subjects t test 
was conducted for each simulated experiments. The 
effect size estimates with error rates of 0.05 were derived 
by calculating and collating the effect size estimates for 
only the simulated experiments where the p value from 
the between-subjects t test was statistically significant 
(i.e., p  <  0.05). This procedure was then repeated using 
a sample size per group of 527, 86, 34 that achieved 90 % 
statistical power to detect the small, medium and large 
effect respectively.

Results
With error rates of 0.05 for type 1 and type 2 of 0.20 
and 0.01, (80 and 90 % power) the Monte Carlo analysis 
showed effect sizes estimates as follows:

80 % Power:

True effect = 0.2, estimate = 0.23, 15 % larger
True effect = 0.5, estimate = 0.56, 12 % larger
True effect = 0.8, estimate = 0.91, 13.75 larger

90 % Power:

True effect = 0.2, estimate = 0.21, 5 % larger
True effect = 0.5, estimate = 0.53, 6 % larger
True effect = 0.8, estimate = 0.85, 6.25 larger

Figure 1 illustrates the results.

Discussion
The implications of this demonstration are important. 
An analyst focused on the p < 0.05 level for both of these 
power levels would find the estimated effect size is larger 
than the actual effect size in all cases. The maximum 
exaggeration is 15  % with a type 2 error rate of 0.20. A 
decrease in the type 2 error rate or its reciprocal an 
increase in power to 90 % brings the maximum measure-
ment error down to 6.25 %. Thus making decisions based 
on this model could be quite reasonable if statisticians 
are dealing with a well described population.

It must be remembered, however, that the conditions of 
repeated sampling from a distribution so well described 
as to yield specified type 1 and type 2 errors is specific 
to situations involving, for example, a highly developed 
technology. When the distribution changes and error 
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Fig. 1  Effect size estimates when Statistical Power is a 80 % and type 1 error rate = 0.05 b 90 % and type 1 error rate = 0.05
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rates vary such that sample size and therefore power 
varies this model would not pertain. Fisher [4, p 80] was 
conscious of what he called “acceptance procedures”, and 
stated correctly they were not appropriate for exploratory 
scientific research. On the other hand, a medical moni-
toring system within a known population for a district 
could use this Neyman and Pearson approach for assess-
ing changes in health. Measurement accuracy could be 
increased by reducing the effect size that could be a “sig-
nal deviation” by 5 or 6 % with 90 % power or 12 to 15 % 
with 80  % power. Of course, there is a value judgement 
since such a procedure increases the type 1 error rate and 
decreases the type 2 error rate.

Conclusions
If an analyst follows the recommendations of Neyman 
and Pearson [1] they will approximate measurement but 
only with a known distribution and accepting that any 
effect size calculated from the approximation is inher-
ently somewhat exaggerated.
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