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Abstract 

Background:  The sheepshead (Archosargus probatocephalus) is found in nearshore waters from Nova Scotia, Canada, 
to Rio Grande do Sul, Brazil. In the southeastern United States two subspecies are recognized based on a number of 
meristic characters, primarily counts of melanistic pigment bars. The only previous study based on mtDNA control-
region sequence found limited divergence between those subspecies and isolation by distance among 15 locations 
from Florida (Atlantic Ocean) to Texas (Gulf of Mexico). In the same study, using six sparid microsatellite markers, 
Bayesian analysis showed that the Gulf and Atlantic sheepshead form a single population. To reinvestigate the fine-
scale genetic population structure and examine genetic support for the morphologically classified subspecies, a set of 
species-specific microsatellite markers was needed.

Findings:  Here we report on 24 polymorphic microsatellite markers isolated from sheepshead and screened in 
57 specimens from the Indian River, Florida. The average number of alleles per locus was 13.1; mean observed and 
expected heterozygosities were 0.68 and 0.73, respectively. Nine sparid markers screened for the same specimens 
showed an average of 8.6 alleles per locus; mean observed and expected heterozygosities were 0.46 and 0.55, 
respectively.

Conclusions:  The polymorphic markers reported here can be used to search for genetic evidence for the mor-
phologically defined subspecies, to elucidate the fine-scale genetic population structure of this broadly distributed 
coastal species, and to provide an opportunity to directly compare results of population delineation between non-
specific and species-specific markers.
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Findings
The sheepshead (Archosargus probatocephalus) is an 
economically important, estuarine–marine teleost fish 
that is widely distributed from Nova Scotia, Canada, to 
Rio Grande do Sul, Brazil [1–3]. They migrate offshore 

to spawn in late winter and return to estuaries in early 
spring [3]. Limited movement of sheepshead along the 
coast could lead to discrete populations among spawn-
ing groups, but assuming pelagic eggs disperse freely, this 
may facilitate gene flow and thwart the formation of pop-
ulation structure [4].

Geographic variation in sheepshead bar counts and 
growth rates is evident [2, 5]. Variation in melanistic bar 
patterns initially led to the designation of two subspecies 
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in North America [6], one in the western and northern 
Gulf of Mexico and another in the eastern Gulf of Mexico 
and along the Eastern Seaboard. A recent statistical re-
evaluation of morphometric data confirmed that these 
putative subspecies exhibited significantly different num-
bers not only of melanistic bars but also of several other 
meristic characters (i.e., scales, gill rakers, and fin rays 
[2, 7]). This new analyses also indicated the presence of a 
hybrid zone in the northeastern Gulf [7].

The only study of the genetic population structure of 
the sheepshead based on six microsatellite loci developed 
for other sparid showed that the Gulf and Atlantic popu-
lations belong to a single panmictic population [7]. In the 
same study based on mtDNA control region sequence, 
no specific genetic boundaries were evident that corre-
sponded with the two morphologically defined subspe-
cies mentioned above. In samples from northeast Florida 
to Texas, mtDNA and microsatellite differentiation was 
attributed to isolation by distance rather than independ-
ent genetic stocks [7]. The mtDNA, however, as a sin-
gle locus may not reflect enough genealogical histories 
among populations and because of this has a low-reso-
lution power and often fails to reveal fine-scale popula-
tion structure. Nonspecific markers may also fall in the 
category of low resolution molecular techniques, particu-
larly if few are used. Species-specific microsatellite mark-
ers, however, may represent genealogical record from 
the source organism with which to observe population 
structure in fishes that reside in open, coastal habitats. 
We postulate that in direct competition species-specific 
markers should be superior to nonspecific markers and 
can be helpful in re-examining genetic evidence for the 
validity of the subspecies and the genetic stock structure 
of the sheepshead.

Microsatellite loci were isolated following the PIMA 
(PCR-based isolation of microsatellite arrays) method 
of Lunt et al. [8], modified by Seyoum et al. [9]. Nuclear 
DNA (nDNA) was first purified from liver tissue from 
a single sheepshead via density-gradient ultracentrifu-
gation [10] to minimize competition with mitochon-
drial DNA during random amplified polymorphic DNA 
(RAPD) PCRs. RAPD PCRs were conducted in 50-µl 
reactions containing 15–25  ng of the purified DNA, 
50 μM of dNTP mix, 0.25 μl of 0.1–mg/ml BSA; two or 
three primers randomly chosen from a set of 120, 10-mer 
RAPD primers (Qiagen Operon Inc.); 5  μl of Taq poly-
merase buffer (10×), 2.5 mM MgCl2 (Promega, final con-
centration); and 1.25 units of Go Taq DNA polymerase 
(Promega Corporation). The reaction profile was 94  °C 
for 2 min, 30 × (94 °C for 40 s, 35 °C for 40 s, 72 °C for 
45 s), and final extension at 72 °C for 30 min. The purified 
PCR products (Agilent Technologies) were T-A cloned 
[11] into plasmid vectors Bluescript PBC KS-Agilent 

Technologies) that had been tailed with homemade 
dTTP [12]. About 50 recombinant colonies from each 
of the PCR products were screened by performing PCR 
(12.5 μl total reaction volume) containing T3 and T7 vec-
tor primers and four repeat-specific primers (5′-[AC]10-
3′, 5′-[AG]10-3′, 5′-[AGC]5-3′, 5′-[ACT]12-3′). Here, the 
reaction profile was 94  °C for 2  min, 35  ×  (94  °C for 
30  s, 55  °C for 30  s, 72  °C for 30  s), and final extension 
72  °C for 7  min. The PCR products of the clones were 
run through a 1.5 % low-EEO agarose gel. Colonies that 
showed two or more bands were further amplified using 
only the vector primers, the products gel-purified and 
then cycle-sequenced from both directions using BigDye 
(version 3.1; Applied Biosystems), and the sequencing 
products visualized on an Applied Biosystems Prism™ 
3130-Avant Genetic Analyzer. Primers were designed for 
candidate loci using OligoPerfect (Thermo Fisher Scien-
tific); annealing temperature was adjusted to 58–60  °C 
and fragment size to three categories, 95–115, 125–165, 
and 185–250, to facilitate multiplex PCR and minimize 
overlapping of fragment sizes during visualization. Mul-
tiplex PCR amplifications for each specimen were carried 
out in an Eppendorf thermal cycler containing 50–100 ng 
of total DNA and three optimally selected primers, each 
forward primer labeled with a unique fluorescent dye. 
The multiplex PCR reaction consisted of a step-down 
profile and was as follows: 94 °C for 2 min, 5 × (94 °C for 
45 s, 61 °C for 45 s, 72 °C for 45 s); 8 ×  (94 °C for 40 s, 
59 °C for 40 s, 72 °C for 40 s); 10 × (94 °C for 35 s, 57 °C 
for 35 s, 72 °C for 35 s) 12 × (94 °C for 30 s, 55 °C for 30 s, 
72 °C for 30 s) and a final extension at 72 °C for 15 min. 
The fragments were visualized on an ABI 3130 XL genetic 
analyzer and genotyped using GeneMapper (version 4.0, 
Applied Biosystems Inc.). For fragment assays, we used a 
Gene Scan-500 ROX-labeled size standard.

We extracted total DNA by using a PureGene DNA 
isolation kit (Gentra Systems Inc., Minneapolis, MN) 
according to the manufacturer’s instructions from 57 
specimens of sheepshead collected from the Indian River, 
Florida, and used these samples to screen the markers for 
polymorphisms (Table  1) for a final genetic population 
structure and analysis of the morphologically defined 
subspecies.

Microsatellite-marker GENEPOP data was generated 
using the Microsatellite Marker Toolkit Excel add-on. 
Genotypic disequilibrium among loci was examined using 
GENEPOP, version 3.4 [13]. Hardy–Weinberg equilibrium 
(HWE) expectation, observed and unbiased expected het-
erozygosity estimates with Bonferroni correction, number 
of alleles, and polymorphic information content, a value 
that is indicative of a measure of the informativeness of a 
genetic marker for linkage studies were estimated using 
the program CERVUS, version 3.0.7; [14].
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Table 1  Characteristics of 24 polymorphic microsatellite loci in 57 specimens of sheepshead (Archosargus probatocepha-
lus) from the Indian River, Florida

Ka number of alleles, HO observed heterozygosity, HE expected heterozygosity, PIC polymorphic information content

* Indicates significant departure from HWE

Locus Primer sequence (5′→3′) forward/
reverse

Repeat motif Allele size 
range

Ka HO HE PIC GenBank 
accession no.

Apro01 CACAATCACAAACAATACAAACACAT
ACTAATGCCTTTCTGTCTGCA

(AC)7/(AC)24 119–205 20 0.66 0.85 0.84 KU516013

Apro02 AAAGCGGTTCAGAAGGTTTATTTGT
GACAGCACAGAACAGGTTGATATAG

(GT)17 100–132 16 0.89 0.89 0.87 KU516014

Apro03 TATAACGATAACACTGCAGAAAGAGC
CCCTTTTAAATACGACTAGGACAAAC

(AC)33 168–230 24 0.82 0.90 0.88 KU516015

Apro04 GAAATTTCCTTTAACCTTTTCTCTCA
GACCAGCTGTTTATAGTTTCAACAAA

(AC)7/(AC)8 165–205 16 0.83 0.91 0.89 KU516016

Apro05 GAGATTGTTTTGTGCCATCTCTGTT
ATATTATTCAGACACACGGGTGGATT

(GT)22 149–203 21 0.91 0.90 0.88 KU516017

Apro06 CTAGTCAAAACACCTTTAACCACCTT
CCATGTTCGTCTTGAAACACTTTT

(GT)4/(GT)7 202–224 9 0.85 0.80 0.77 KU516018

Apro10 GCTGATGGTACAGATGACGATAGAG
GTAAAACCTTGGAGGTCTCACTCTC

(GT)6/(GT)5/ (GT)10 152–222 17 0.75 0.82 0.79 KU516019

Apro12 TCTACTATCAGCCAAGAGTAAAGCA
AGACGTATGTGCATATGTATGGGTA

(CA)11 146–162 5 0.70 0.61 0.53 KU516020

Apro13 CTTGACTTCACCTTCACTTCACCTT
ATGAACCGAGAAACAACATTACAGT

(AC)15/(AC)15 152–164 6 0.66 0.70 0.64 KU516021

Apro17 GTATGACTCCAAACCCTCCAGTC
CAGCCTTGTGTACTGTTGTTTGTAG

(GT)7/(TG)5 118–190 21 0.91 0.91 0.89 KU516022

Apro18 AATAAAAGGTGCTGCATGTAGTCATA
ATGATACTCCAATCAGTCCACAGTC

(CA)7(TA)4 167–171 3 0.31 0.29 0.26 KU516023

Apro19 TAACAATGGATTACATCAGTCATGC
TTATCCAGCTTAGACTCCCACATAC

(GT)27 126–180 23 0.97 0.95 0.94 KU516024

Apro21 CACAGGGATGAGAGTATACAGTACG
TTCTTCAAAAAGGCTGTTCTCTTTA

(GT)9/(TG)7 (CT)2(GT)6 139–177 10 0.64 0.80 0.76 KU516025

Apro22 AGCTTTGACAGACACTGAGTAACAAC
GGGTTCTGATGGATATAGAGTAGCAG

(AC)16 141–157 9 0.78 0.80 0.76 KU516026

Apro25 TTCTAAAAATGATGTGTGTATGTCTGT
ACCTGGGCCAGAGGATACTACTACT

(TG)3/(TG)8 122–184 10 0.76 0.81 0.78 KU516027

Apro27 AACAGATTAATGGAATCTCCTTCTGT
AAGCACAGCTATTGTTTATGTACGAG

(AC)8 163–167 3 0.14 0.14 0.13 KU516028

Apro28 TCTCATACAGTATTTGTCCCTCCTC
ATTGCTTAGCATTTAACGAGAAAGA

(TC)7TTT(TC)10 105–153 9 0.42 0.37 0.35 KU516029

Apro29 GCCTAGCATCATTCTGTCACTCAC
ATTCGATGAATTCAGTATGAGTTTGA

(CA)14 162–196 11 0.65 0.70 0.67 KU516030

Apro30 CATCCAATTGTGAGAGGTGTCAG
ACACGCTAATTGGAGTTTGATGA

(CA)9 123–161 17 0.85 0.88 0.87 KU516031

Apro32 CAGAGCTGATATTGCCAGATGAAT
TAGTTAACAGTTTGGTGGATTTTCC

(RC)17 119–129 4 0.09 0.34* 0.30 KU516032

Apro35 TAAAGAATTCATGGGATAAAGCTCA
TTTGTCAGTCTGCATCATGAAGTTA

(CA)12 173–219 17 0.86 0.89 0.87 KU516033

Apro38 CTGTGCAGGTCTGTTTGTCTCC
CATTAATTCATTGTTAACGGCAAA

(TG)3 TC(TG)5 117–119 2 0.30 0.49 0.37 KU516034

Apro39 AGTTCCTCTCGTCTCCTTTTCAAG
AGAGTGTGTCGTTTTGCATTTCTT

(AC)14 126–176 15 0.81 0.84 0.82 KU516035

Apro40 TCAAAATCAATTTAGCAAAATAGGAAA
AACGGCTGTAACATTATGTGTGTTT

(G)13(A)5 (C)14/(A)10 144–206 27 0.78 0.95* 0.94 KU516036

Mean 13.1 0.68 0.73 0.70
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There were significant departures from HWE after 
Bonferroni correction at two loci and no linkage disequi-
librium at any pair of loci. Analyses using the program 
CERVUS suggested that the observed nonconform-
ance to HWE may have resulted from the presence of 
null alleles at those loci. The average number of alleles 
per locus was 13.1 (range 2–27); the mean observed and 
expected heterozygosities were, respectively, 0.68 (range 
0.09–0.97) and 0.73 (range 0.29–0.95). The relative infor-
mativeness of each marker ranged from 0.24 to 0.93 
(mean 0.70), with 11 of the 24 loci between 0.82 and 0.94.

To build the basis for a preliminary comparative analy-
sis between nonspecific and species-specific markers, 9 
sparid markers were characterized for the 57 specimens 
(Table  2; 4 specimens had incomplete genotypes and 
were excised). The result showed that the sparid markers 
provided 8.6 alleles per locus, but much lower means of 
observed and expected heterozygosities, 0.46 and 0.55, 
respectively. Overall, the species-specific markers show 
greater variability and would be of a higher resolution 
power than the 9 sparid microsatellite DNA loci.

Costs of developing species-specific markers remain 
a concern. Compared with the enrichment protocol of 
developing microsatellite markers, the PIMA method 
requires less expertise, less time, and, so, less expense. 
The method’s drawback is that it results mostly in 
dinucleotides, which are more plentiful because their 

mutation rate is at least six times that of other short tan-
dem repeats (STR). Although tri- and tetranucleotides 
may not be more variable than dinucleotide, they’re 
definitely easier to score and lead to a lower genotyping 
error. The various kinds of tri- tetra- penta- and hexanu-
cleotides can be obtained with the PIMA method, but 
with specific designs and much more laborious search.

Nonspecific markers are used to circumvent the exper-
tise and the expense required to develop specific mark-
ers, but they may not have adequate resolution power 
to reveal fine-scale population structure. In a direct 
comparative study, the use of 11 highly polymorphic 
red drum (nonspecific) markers failed to delineate the 
eastern and western Gulf spotted seatrout (Cynoscion 
nebulosus) samples as belonging to different clusters 
compared to only three spotted seatrout markers that 
accomplished the task (Seyoum et  al. in preparation). 
While nonspecific microsatellite loci are widely used 
[15, 16] and could reveal strong genetic breaks between 
populations, there has been no study to directly com-
pare specific vs. nonspecific microsatellite loci on equal 
terms of allelic variability in revealing fine genetic breaks 
between populations. The inadequate (and possibly mis-
leading) results of the previous work on the study of the 
genetic population structure of the sheepshead that used 
non-specific markers may be offset by these new, species-
specific markers developed in this study. We believe that 

Table 2  Characteristics of 9 adopted sparid microsatellite DNA loci in 53 specimens of sheepshead (Archosargus probato-
cephalus) from the Indian River, Florida

Four specimens did not amplify for three or more loci and were excised

Ka number of alleles, HO observed heterozygosity, HE expected heterozygosity, PIC polymorphic information content, Ref references
a   Direct submission-Jeong et al. (NCBI) 2007

Source organism Primer sequence (5′→3′)  
forward/reverse

Repeat 
motif

Allele size 
range

Ka HO HE PIC GenBank  
accession no.

Ref

Pagrus auratus GTCCGACTCCACTCCATTCCTCT
GTGCTCGATCCCTTGTGCTGATA

(CTGT)7 124–126 12 0.60 0.63 0.59 AY696589 [18]

Acanthopagrus butcheri GGTGCGTGCATTGTTAATGTGT
GATCTGCTTTCCTTTGACTCAGC

(TG)24 90–126 15 0.87 0.89 0.87 AF284352 [19]

Acanthopagrus schlegelii AGGCATTTCCGCACACTAAC
CAAACAAGAGCCTGGAGGAG

(GT)12 198–218 8 0.64 0.63 0.55 AB095014 a

Diplodus vulgaris GCCGGGCTCGACATTGACACTGAA
GCAGCCAGCAGAGCTTAAAGAACT

(CA)11 260–266 2 0.04 0.04 0.04 EF064291 [20]

Diplodus vulgaris GCGGTTATGTATACGTTGCGTTTA
TTGGCGTTGAACAGAAGTCAGACA

(CA)13 238–248 3 0.15 0.18 0.17 EF064292 [20]

Pagrus auratus AATCTTGACAGCGCCCTTTA
GCAGCGCACAGATAAACAAA

(GT)16 156–204 18 0.92 0.89 0.87 AF202881 [21]

Pagrus auratus GGACAGAGAGGGAGTGGATG
GCTCCTCTGCCTGTATCTGG

(AG)16 216–248 13 0.72 0.92 0.90 AF202885 [21]

Paqrus major TTCCAATGTGCCTTTATGC
CAAATTCCCAAGGTCATCC

(GT)24 120–128 3 0.11 0.39 0.32 AB042989 [22]

Pagrus auratus GTGCGTGTGTGTGTGTTGGa

ATCCTCCTCCACTCCATG
(TG)21 160–170 3 0.07 0.38 0.31 AB042989 [22]

Mean 8.6 0.46 0.55 0.51
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these suite of species-specific markers will shed light on 
the stock structure of the sheepshead and on the valid-
ity of the morphologically classified subspecies. The stock 
structure of this fish ought to be determined now, espe-
cially because as attention increases toward regulation 
of other Gulf species, the sheepshead is now the target 
of greater demand and pressure of in the Gulf of Mexico 
[17]. Updated knowledge of sheepshead stock structure 
will help direct relevant management actions to protect 
this species at the appropriate spatial scale across its 
range.
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