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Abstract 

Background:  Distylium lepidotum is a small tree endemic to the Ogasawara Islands located in the northwestern 
Pacific Ocean. This species is a sole food for an endemic locust, Boninoxya anijimensis. Here, we developed microsatel-
lite markers to investigate genetic diversity and genetic structure and to avoid a genetic disturbance after transplanta-
tion to restore the Ogasawara Islands ecosystem.

Results:  Microsatellite markers with perfect dinucleotide repeats were developed using the next-generation 
sequencing Illumina MiSeq Desktop Sequencer. Thirty-two primer pairs were characterized in two D. lepidotum popu-
lations on Chichijima and Hahajima Islands of the Ogasawara Islands. The number of alleles for the markers ranged 
from three to 23 per locus in the two populations. Expected heterozygosity per locus in each population ranged from 
0.156 to 0.940 and 0.368 to 0.845, respectively.

Conclusions:  These microsatellite markers will be useful for future population genetics studies of D. lepidotum and 
provide a basis for conservation management of the Ogasawara Islands.
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Findings
Background
Microsatellite markers, or simple sequence repeats, are 
widely applicable as DNA-based markers for population 
genetics studies. Moreover, their cost-effective develop-
ment has been increasingly facilitated by applying next-
generation sequencing (NGS) technologies [20].

Distylium lepidotum Nakai (Hamamelidaceae) is a 
small tree endemic to the oceanic Ogasawara Islands 
in the northwestern Pacific Ocean. The species is the 
dominant tree in the Distylium–Pouteria dry scrub 
[18], which is inhabited by Boninoxya anijimensis Ishi-
kawa, a locust recorded as a new genus and species [8]. 
The locust utilizes D. lepidotum as the sole food, i.e., it 
is monophagous [8, 9]. Although it is only distributed 

on Anijima Island of the Ogasawara Islands, it has been 
exposed to alien predatory species such as Anolis caro-
linensis. Conservation/benign introduction measures 
of B. anijimensis are needed on the Ogasawara Islands, 
except Anijima Island, to protect the B. anijimensis pop-
ulations. As D. lepidotum is an essential food source, it 
may be possible to transplant the species. Therefore, it is 
important to reveal the genetic structure of the species to 
minimize any genetic disturbance due to the transplant. 
Here, we developed microsatellite markers to investigate 
the genetic diversity and structure in D. lepidotum.

Methods
Microsatellite markers were developed for D. lepidotum 
using an Illumina MiSeq Desktop Sequencer (Illumina, 
San Diego, CA, USA). Total genomic DNA was extracted 
from one silica-gel dried D. lepidotum leaf sample col-
lected from Chibusayama (26°39′17.4″N 142°10′03.6″E) 
on Hahajima Island of the Ogasawara Islands using a 
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DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany). A 
shotgun library was prepared using the Nextera DNA 
Sample Preparation Kit v2 (Illumina), and the raw de 
novo sequencing data were obtained using the MiSeq 
Reagent Kit v2 (500 cycles) (Illumina). The raw reads 
were divided into each index, extra sequences (adapt-
ers and indices) were trimmed, and FASTAQ files were 
generated using the MiSeq Reporter v.2.5.1 (Illumina). 
The paired-end reads were merged using PEAR 0.9.6 [21] 
with default parameter settings. After the paired-end 
assembly, the low quality reads (<95 % with Phred qual-
ity score of 30) were removed using the script fastq_qual-
ity_filter included in the FASTX-Toolkit v.0.0.14 [7]. The 
resulting FASTQ files were converted to FASTA format 
using the ShortRead package [12]. A total of 1734,031 
contigs with an average length of 241 bp were obtained.

The microsatellites were identified and the primer 
pairs were designed with QDD2.1 [11]. A total of 41,367 
unique sequences containing pure/compound microsat-
ellite regions (2–6 nucleotide motifs with >5 repeats) and 
primer-designable flanking regions were selected. The 
primer pairs were designed with Primer3 [17] and imple-
mented in QDD2.1 using the following criteria: (1) poly-
merase chain reaction (PCR) product size of 90–500 bp 
and (2) primer lengths of 20–27 bp, melting temperature 
of 57–63° C, and GC content of 20–80 %. Finally, 18,239 
microsatellite primer pairs were designed using Primer3.

Amplification and polymorphism were confirmed in 48 
selected primer pairs after considering the microsatellites 
(one single dinucleotide motif with more than ten repeti-
tions), design type (“A” or “B” in QDD2.1), and PCR prod-
uct size to apply multiplex amplification (Table 1). Four 
universal primers with different fluorescent tags designed 
by Blacket et al. [1] were prepared, and the 5′ end of each 
forward primer was attached to the same sequence as a 
tail. In addition, as the 5′ end sequences of each reverse 
primer became 5′-GTTT-3′, a PIG-tail (5′-GTTT-3′, 
5′-GTT-3′, 5′-GT-3′, or 5′-G-3′) was added to reduce 
stuttering due to inconsistent addition of adenine by Taq 
DNA polymerase [2].

PCR amplification was performed using the QIAGEN 
Multiplex PCR Kit. Multiplex PCRs were performed 
for each of the four primer pair sets using the following 
thermal cycle conditions: initial denaturation for 15 min 
at 95°  C, 35 cycles of denaturation for 30  s at 95°  C, 

annealing for 1.5  min at 57°  C, extension for 1  min at 
72° C, and final extension for 30 min at 60° C. The PCR 
products were separated by capillary electrophoresis 
on an ABI3130 Genetic Analyzer (Life Technologies, 
Waltham, MA, USA) with the GeneScan 600 LIZ Size 
Standard (Life Technologies). The fragments were sized 
using GeneMapper 4.0 (Life Technologies).

We finally tested two populations from Chichijima and 
Hahajima Islands in the central part of the Ogasawara 
Islands to evaluate the allelic polymorphisms: 24 indi-
viduals from Asahiyama (27°05′40.7″N 142°12′35.6″E) 
on Chichijima Island and 20 individuals from Omoto-
hama (26°37′28.9″N 142°10′41.7″E) on Hahajima Island. 
Voucher specimens of the representative individuals 
were deposited in the Makino Herbarium (MAK) of the 
Tokyo Metropolitan University, Japan (Asahiyama: no. 
MAK436933; Omotohama: no. MAK436934). The num-
ber of alleles per locus (NA), observed heterozygosity 
(HO), expected heterozygosity (HE), and fixation index 
(FIS) were calculated to characterize each locus using 
GenAlEx 6.501 [13]. The Hardy–Weinberg equilibrium 
(HWE) at each locus of each population and linkage dis-
equilibrium (LD) between each locus pair in each pop-
ulation were tested with Genepop 4.0 [16]. In addition, 
the null allele frequencies (FNull) were estimated with 
CERVUS 3.07 [10]. To examine genetic differentiation 
between the two populations, Weir and Cockerham’s 
[19] estimate of pairwise FST was calculated using FSTAT 
2.9.3.2 [6]. The deviation of each pairwise FST from zero 
was tested based on 1000 randomizations. Genetic struc-
ture was also evaluated by a Bayesian clustering method 
implemented in STRUCTURE  2.3.4 [4, 5, 15]. Markov 
chain Monte Carlo methods consisted of 100,000 burn-
in steps and followed by 100,000 iterations. Ten replicate 
runs were performed at each K value from one to five 
under an admixture model with correlated allele frequen-
cies. The log-likelihood probability at each run and the 
rate of change in the log-likelihoods between adjacent 
K values, ΔK [3], were calculated and compared across a 
range of K values to determine the best fit for the data.

Results and discussion
Of the 48 tested microsatellite markers, 32 primer pairs 
were polymorphic among 44 individuals (Table  1). 
NA ranged from three to 22 alleles in the Chichijima 
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population and from one to nine alleles in the Hahajima 
population (Table  2). HE ranged from 0.156 to 0.940 in 
the Chichijima population and from 0.368 to 0.845 in the 
Hahajima population (Table  2). Locus Isu07063 in the 
Hahajima population was monomorphic; only one allele 

was found in six samples, and the remaining 14 samples 
were not successfully amplified, suggesting the exist-
ence of null alleles. In addition, FNull was high (Table 2). 
The Isu00524 locus in both populations deviated signifi-
cantly from HWE. Significant deviations from HWE in 

Table 1  Characteristics of the 32 microsatellite markers developed for Distylium lepidotum

Locus Repeat  
motif

Forward primer  
sequence (5′–3′)a

Reverse primer  
sequence (5′–3′)b

Ta (°C) Size
range (bp)

GeneBank  
accession no.

Isu00524 (CT)30 [tail C] TTTATGCTTATTCACCCTTGAACC gtttAAACACCCATTAGTTCTTCTGTCTG 57 136–194 LC085250

Isu01062 (TC)25 [tail B] TACGAATGATGGGTCAAACTGTAA gtttGCCTTAAATTGACTGGAAGTGATT 57 228–270 LC085251

Isu01853 (AG)19 [tail D] CACTAGTTATTGAGGTAGGCGGGT gTTTGTTAACGAATGAGTTGGGATT 57 274–302 LC085252

Isu03838 (TC)24 [tail D] TTCCTGAAACGGTTACACAATACA gtttAGTGGAGATGATAAACGGATTGAC 57 111–135 LC085253

Isu04069 (GA)24 [tail B] TTAGATTTGAAGGCGATAAAGGTT gttTCCTTGATCTGTCCAATGTCA 57 135–171 LC085254

Isu04385 (TC)22 [tail A] AATGGGTCAGTGAGAATCTGTCTT gtttCAAGGAAATCGTATATGCAGAACA 57 215–245 LC085255

Isu04423 (GA)22 [tail B] AAGCAGAGCTTACCATGATTCACT gttTAGATCTCTGAGGAGGGACACATT 57 260–308 LC085256

Isu04472 (AG)26 [tail D] ATTTGGATCATCACTCGAGGTAAA gtTTATTCGTTTGCACTCTTATTTGA 57 214–266 LC085257

Isu04870 (CT)16 [tail B] TTAATTGGTTTCCCATTTGATCTC gtttCATGCAGATGCAGACTCTAAGAAG 57 285–299 LC085258

Isu04950 (GA)22 [tail A] AGACAATTCTGTGCTCCAGTATCA gtttAACATTGAAAGTTGAAGACCCAAC 57 263–299 LC085259

Isu04954 (TC)31 [tail A] CTAATCCAAATCAACCCATCTACG gtttCACCTCTCGTTTACTTCCATTGAT 57 128–156 LC085260

Isu05730 (AT)11 [tail A] ACATCGTCACCTCTATTAACCGAC gtttCAAGAGATTTCGAAGTGAAACAGA 57 346–366 LC085261

Isu06843 (AG)27 [tail B] GTTGACATCCCTACTCCTCCTACC gttTCTAAGCAAATGTGCATCGTTAGT 57 96–132 LC085262

Isu07049 (CT)26 [tail A] TCCATGTATTTATTTCGATCCTCC gtttGGGAAATACCATAAACATAAAGATGG 57 90–134 LC085263

Isu07063 (GA)24 [tail C] AGCTTGCATGAGGTTTCACTAAGA gtttCGACAACAGTACTAATCAACACGG 57 109–143 LC085264

Isu09807 (GA)23 [tail D] AACGCAAGATTTATCATTACCAGC gtttAAGACTCTCAAGATCTGTGCCAA 57 213–239 LC085265

Isu09853 (GA)22 [tail D] CAATTCCCTCAATTGTTGTTTCTT gtttAGAAACTTAAAGACAAACCGGGAT 57 304–326 LC085266

Isu10193 (GA)24 [tail B] ATTTATGTGGAAGTAGTAGCCGGA gttTACTGCTGGCTTGACATAGAAAGA 57 214–236 LC085267

Isu11459 (AG)19 [tail D] TAAAGCATCAAACAAGCGAATATG gtttACAATAAGAAAGCGACATGCTCA 57 265–291 LC085268

Isu12115 (GA)11 [tail A] TACGATTCAAGCTTGTCATACTCG gtttATATTTACGCGCAAACTCTCGC 57 413–417 LC085269

Isu12238 (CT)24 [tail D] CCAAGATTATGCAACCTAAGGAAG gtttACCCTGAATTCCATCTAGACCTTT 57 116–156 LC085270

Isu12265 (TC)21 [tail C] TGATAGATACATGTCCCACTGTCTT gttTAAACCTAGCCAAACAAATCCAAC 57 85–121 LC085271

Isu12586 (AT)11 [tail C] TAGACAACTTTCTGGATCAAAGCC gtttGGCTGTGTATATGTATGCGTGTTT 57 319–359 LC085272

Isu13849 (CT)12 [tail D] CAAGATCAAGATTGAAATGGAATTG gtttATCCGATAGATCAGTACTTGGTGG 57 326–350 LC085273

Isu13965 (AG)25 [tail B] GTGTAAGTTGTGGGTTTAACGGAT gtttAAGACATCAGCAAACTAGTCCACC 57 155–183 LC085274

Isu15054 (TC)24 [tail A] CGGGATGTAAACATAGATGTCAAA gttTATGGCCTAGGAAGATAATGTTGG 57 219–273 LC085275

Isu16246 (CT)26 [tail C] AATCATGTAGCGAGCTTGAACTTT gtttCATGAATATGAGCACAAGGTATTATTT 57 132–174 LC085276

Isu16408 (TC)18 [tail C] AGATTACTGCTTCGTTCGACCTTA gtTTGGTGCTATAATTAGGATTTGGC 57 285–307 LC085277

Isu16655 (CT)16 [tail C] GAAAGGTAGGTCCATAACTCCACA gtTTGAGGATACAATGCTTTCACTTG 57 270–290 LC085278

Isu16805 (GA)26 [tail B] CGCTCTTAAACAGAATATGGAAGG gtttGATTGTCAATTCCACGGAGAAC 57 83–115 LC085279

Isu17435 (AG)20 [tail B] TAAATACAAAGATGATGTGCCAGC gttTGTACATGTAGTTCCCAGGCAAT 57 82–114 LC085280

Isu17619 (AG)13 [tail A] CAATTCCCTTGTGAAGAATTATCG gtttGTTTACAGTACTGCACTGACGCAT 57 317–329 LC085281

Ta = annealing temperature
a  Tails of the forward primers are indicted as follows: [Tail A] = 5′-GCCTCCCTCGCGCCA-3′; [Tail B] = 5′-GCCTTGCCAGCCCGC-3′; [Tail 
C] = 5′-CAGGACCAGGCTACCGTG-3′; and [Tail D] = 5′-CGGAGAGCCGAGAGGTG-3′
b  Reverse primer sequences contained the PIG-tail sequence [2]. Tail sequences are shown in lower case letters
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the Chichijima or Hahajima populations were detected 
at several loci (Table  2; Isu04069, Isu07049, Isu10193, 
Isu12265, Isu15054, and Isu16805). These loci possibly 
involved null alleles, because null alleles are a common 
cause of apparent deviations from HWE [14]. Actually, 
FNull values were high in most of these loci (Table  2). 
However, these HWE deviations may have been caused 
by inbreeding, which can often occur in small popula-
tions. In either case, these loci should be used cautiously 
in further analyses. No significant LD was observed 
between the markers in the two populations.

Of all the 397 alleles that were detected, the 193 alleles 
which were detected in the Chichijima population were not 
found in the Hahajima population. On the other hand, the 53 
alleles which were detected in the Hahajima population were 
not found in the Chichijima population. In addition, the two 
populations were significantly differentiated (FST = 0.0971). 
The Bayesian clustering analysis represented the highest ΔK 
value at K = 2 (ΔK = 121.4; Appendix). The Chichijima pop-
ulation was almost entirely composed of the cluster I (dark 
gray); the Hahajima population generally comprised the clus-
ter II  (light gray) (Fig. 1). However, because admixture was 

Table 2  Genetic diversity of the 32 microsatellite markers in the two Distylium lepidotum populations

N = number of genotyped individuals; NA = number of alleles per locus; HO = observed heterozygosity; HE = expected heterozygosity; FIS = fixation index; FNull = null 
allele frequency
a   Asterisks indicate significant deviation from Hardy–Weinberg equilibrium after Bonferroni correction (*P < 0.05, **P < 0.01, ***P < 0.001)

Locus Chichijima Island Hahajima Island FNull

N NA HO HE FIS
a N NA HO HE FIS

a

Isu00524 22 5 0.182 0.381 0.523* 20 5 0.450 0.650 0.308* 0.265

Isu01062 24 19 0.917 0.925 0.009 20 9 0.850 0.829 −0.026 0.018

Isu01853 24 12 0.875 0.891 0.018 20 8 0.750 0.836 0.103 0.038

Isu03838 24 8 0.625 0.800 0.219 20 6 0.700 0.749 0.065 0.116

Isu04069 24 9 0.375 0.793 0.527*** 20 6 0.550 0.551 0.002 0.249

Isu04385 24 14 0.917 0.884 −0.037 20 7 0.950 0.788 −0.206 −0.032

Isu04423 24 16 0.750 0.844 0.111 20 8 0.850 0.826 −0.029 0.045

Isu04472 24 18 0.958 0.913 −0.049 20 6 0.600 0.613 0.020 0.026

Isu04870 24 4 0.833 0.702 −0.187 20 4 0.700 0.638 −0.098 −0.057

Isu04950 24 7 0.625 0.661 0.055 20 9 0.950 0.830 −0.145 0.050

Isu04954 24 7 0.583 0.582 −0.003 20 5 0.750 0.678 −0.107 0.032

Isu05730 24 8 0.833 0.816 −0.021 20 6 0.800 0.771 −0.037 −0.004

Isu06843 24 14 0.875 0.886 0.013 20 8 0.900 0.805 −0.118 −0.004

Isu07049 24 15 0.833 0.917 0.091 20 8 0.550 0.746 0.263* 0.109

Isu07063 17 9 0.235 0.843 0.721*** 6 1 – – – 0.659

Isu09807 24 13 0.750 0.788 0.048 20 5 0.850 0.726 −0.170 −0.001

Isu09853 24 7 0.625 0.787 0.206 20 8 0.700 0.756 0.074 0.112

Isu10193 24 9 0.750 0.848 0.116 20 7 0.400 0.770 0.481** 0.174

Isu11459 24 8 0.625 0.500 −0.250 20 4 0.400 0.368 −0.088 −0.104

Isu12115 24 3 0.333 0.588 0.433 20 3 0.700 0.609 −0.150 0.141

Isu12238 24 12 0.958 0.858 −0.117 20 7 0.600 0.693 0.134 0.019

Isu12265 24 13 0.583 0.845 0.310** 20 7 0.800 0.800 0.000 0.126

Isu12586 24 14 0.875 0.862 −0.015 20 9 0.650 0.769 0.154 0.051

Isu13849 24 9 0.875 0.780 −0.122 20 4 0.500 0.524 0.045 −0.014

Isu13965 24 12 0.875 0.885 0.012 20 6 0.800 0.769 −0.041 0.010

Isu15054 24 22 0.833 0.940 0.114* 20 8 0.800 0.845 0.053 0.060

Isu16246 24 12 0.667 0.840 0.207 20 9 0.800 0.836 0.043 0.087

Isu16408 24 9 0.917 0.842 −0.089 20 7 0.600 0.578 −0.039 0.046

Isu16655 24 10 0.667 0.789 0.155 20 7 0.750 0.800 0.063 0.073

Isu16805 24 11 0.500 0.857 0.416* 20 8 0.500 0.701 0.287 0.284

Isu17435 24 12 0.833 0.838 0.005 20 6 0.800 0.703 −0.145 0.014

Isu17619 24 3 0.167 0.156 −0.067 20 3 0.600 0.496 −0.209 −0.047

Average – 10.8 0.695 0.776 0.105 – 6.4 0.675 0.689 0.016 –
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observed  in some individuals of the Hahajima population, 
the infrequent gene flow between islands might occur. These 
data indicated that these markers can be used to analyze 
population genetic structure in the future.

Conclusions
These 32 novel microsatellite markers will be valuable for 
elucidating the genetic diversity and structure of D. lepi-
dotum, since they have enough polymorphisms and they 
can clearly distinguish the two populations. The genetic 
data would be useful to investigate the genetic diversity 
and structure of D. lepidotum which is necessary for 
a food source of the endangered locust species on the 
Ogasawara Islands.
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Appendix
See Fig. 2.

Fig. 1  Results of Bayesian clustering, STRUCTURE, at K = 2 of the two 
Distylium lepidotum populations. Vertical columns represent individual 
plants, and the heights of bars of each color are proportional to the 
posterior means of estimated admixture proportions. For population 
localities, see Table 1

Fig. 2  Results of Bayesian clustering, STRUCTURE, of the two Distylium lepidotum populations. a Changes in the log-likelihood, b ΔK as the number 
of clusters (K ranging from one to five)

http://www.ddbj.nig.ac.jp/index-e.html
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