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TECHNICAL NOTE

Longitudinal multiple imputation 
approaches for body mass index or other 
variables with very low individual‑level 
variability: the mibmi command in Stata
Evangelos Kontopantelis1,2*, Rosa Parisi3, David A. Springate1,4 and David Reeves1,4

Abstract 

Background:  In modern health care systems, the computerization of all aspects of clinical care has led to the devel-
opment of large data repositories. For example, in the UK, large primary care databases hold millions of electronic 
medical records, with detailed information on diagnoses, treatments, outcomes and consultations. Careful analyses of 
these observational datasets of routinely collected data can complement evidence from clinical trials or even answer 
research questions that cannot been addressed in an experimental setting. However, ‘missingness’ is a common 
problem for routinely collected data, especially for biological parameters over time. Absence of complete data for the 
whole of a individual’s study period is a potential bias risk and standard complete-case approaches may lead to biased 
estimates. However, the structure of the data values makes standard cross-sectional multiple-imputation approaches 
unsuitable. In this paper we propose and evaluate mibmi, a new command for cleaning and imputing longitudinal 
body mass index data.

Results:  The regression-based data cleaning aspects of the algorithm can be useful when researchers analyze messy 
longitudinal data. Although the multiple imputation algorithm is computationally expensive, it performed similarly or 
even better to existing alternatives, when interpolating observations.

Conclusion:  The mibmi algorithm can be a useful tool for analyzing longitudinal body mass index data, or other 
longitudinal data with very low individual-level variability.
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Background
Missing data is a major problem for many statistical anal-
yses, in particular for both clinical trials and routinely 
collected healthcare information. ‘Missingness’ is a dif-
ficult problem to address, particularly relevant to elec-
tronic medical records (EMRs), routinely collected data 
that can be invaluable in complementing well-designed 
randomized clinical trials or contributing new knowl-
edge, especially when trials are prohibitively expensive or 
not possible [1, 2].

Data are generally considered to be missing under one 
of three possible mechanisms: missing completely at ran-
dom (MCAR), missing at random (MAR) and missing 
not at random (MNAR). In a MCAR setting the prob-
ability of an observable data point being missing (miss-
ingness probability) does not depend on any observed 
or unobserved parameters. When data are MAR the 
missingness probability depends on observed variables, 
and can be accounted for by information contained in 
dataset. Finally, when data are MNAR the missingness 
probability depends on unobserved values and is very 
difficult to be quantified and modelled (external informa-
tion is needed). In the ideal case when data are MCAR, 
parameter estimates are not biased in any way and the 
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only downside of proceeding with a complete cases anal-
ysis (effectively ignoring the issue) is a loss of statistical 
power. This loss is not always negligible, however, espe-
cially in multiple regression analyses with many predic-
tors where even low levels of ‘missingness’ on individual 
variables can result in a high total percentage of cases 
being dropped from analysis.

In the typical MAR scenario, the values (or categories) 
of a variable are associated with whether information for 
another variable, predictor or outcome, is missing or not. 
For example, under the quality and outcomes framework 
which is a UK primary care pay-for-performance scheme, 
physicians are incentivized to record the blood pressure 
of certain chronic condition patient groups (e.g. diabe-
tes). Since the introduction of the scheme in 2004, annual 
systolic and diastolic blood measurements are almost 
complete in UK Primary Care Databases (Clinical Prac-
tice Research Datalink or CPRD, The Health Improve-
ment Network or THIN, QResearch), for diabetes 
patients. However, data is more often missing for other 
patient groups, especially before 2004. Estimating the 
relationship between a diagnosis of diabetes and blood 
pressure levels is not straightforward in this context and 
a complete-case analysis could provide biased estimates. 
Currently, multiple imputation (MI) is considered the 
best practice to deal with this problem [3], with a possible 
alternative being inverse probability weighting [4]. The 
better performance of MI over other approaches, such 
as observation carried forward and complete cases, has 
been repeatedly confirmed [5, 6], although it is not a pan-
acea [7]. There are ways to assess whether data are MAR 
[8], for example, by assessing the relationship between a 
predictor’s values and missingness or not in the outcome 
through a logistic regression. Arguably, MAR is an inac-
curate term for this type of missingness and the term 
‘informative missingness’ is often preferred.

In the most challenging case, data missing under a 
MNAR mechanism, the value of the variable that is miss-
ing is related to the reason why it is missing, and it can be 
a predictor or, more worryingly, an outcome. For exam-
ple, body mass index (BMI) is more likely to be meas-
ured and recorded for obese patients and more likely to 
be missing for patients who do not look overweight. Data 
values that are MNAR cannot be reliably estimated from 
information about other variables, unless the mecha-
nism of missingness is known, which is very uncommon. 
Although multiple imputation can offer some protection 
against MNAR mechanisms, identifying and effectively 
controlling for such a mechanism can very challenging 
[9, 10].

Multiple imputations for longitudinal data are particu-
larly challenging, since it is necessary to account for vari-
able correlations both within and between time points in 

the generation of the imputed values. Nevalainen et  al. 
proposed an extension to cross-sectional methods for the 
longitudinal data setting [11], which was recently imple-
mented in the very useful twofold algorithm for Stata 
[12], evaluated and found to perform well under MCAR 
assumptions [13]. Imputations for longitudinal sequences 
have been found to perform better when based on obser-
vations from each person, rather than group averages 
[14]. For a relatively stable over time biological parame-
ter such as BMI, correlations with other variables within 
and between time points can be expected to be very 
small compared to BMI correlations across time points. 
Although models of group averages should account for 
these issues, we hypothesise that, specifically for BMI, 
there is very little information to be gained from other 
covariates, if they are available. Therefore we should 
be able to reliably impute BMI values between existing 
observations (interpolations) for each person, which will 
also give us flexibility to generate more realistic individual 
BMI trends rather than fluctuations around a trend mean.

To this end, we developed mibmi, a cleaning and mul-
tiple imputation algorithm for BMI or other variables 
with very low individual-level variability. The cleaning 
aspect of the algorithm identifies and sets to missing 
outliers that are very likely to be error values and can 
bias inference. The algorithm focuses on each individual 
to produce interpolations (between observations) and 
extrapolations (before first or after last observation) in a 
longitudinal setting for the variable of interest, provided 
at least two observations are available for an individual. 
The generated datasets are compatible with the mi family 
of commands in Stata.

Methods
The command includes two cleaning options. Standard 
cleaning limits values to a logical pre-specified range and 
a more advanced option uses regression-based cleaning 
for each individual. Provided the variable of interest is 
BMI and weight and height have been provided, the algo-
rithm will use these in addition to BMI observations at all 
available time points, to first establish the most reliable 
height estimate and use that to correct BMI and/or weight 
values. In the standard multiple imputation setting, the 
command will interpolate measurements of interest for 
patients with at least 2 observations over the time period. 
Residuals are used to quantify interpolation prediction 
errors, for all possible time-window lengths, and these are 
used to introduce uncertainty in the interpolation esti-
mates, in a multiple imputations setting. Imputed values 
are drawn from normal distributions, the means for which 
are provided by the ipolate command and the standard 
deviations are the standard errors for the predictions for 
the respective time-window length. A similar approach 
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is used for extrapolations, if requested. The algorithm 
workflow for both interpolation and extrapolation is pre-
sented in Fig.  1. User defined MNAR assumptions are 
also allowed, under which values can be imputed through 
either interpolation or extrapolation. The command is 
computationally demanding and can take a long time to 
run for very large populations, especially when both inter-
polations and extrapolations are requested. Time-win-
dows can be in years, months or even days, provided data 
completeness is reasonable. For example, in UK primary 

care databases, BMI is routinely recorded for people with 
certain chronic conditions at least once every year, since 
physicians are incentivized to measure it. In a clinical trial 
BMI may be recorded on a weekly basis and hence a much 
smaller time-window for analysis may be desirable.

Cleaning
In the standard cleaning approach, the algorithm 
simply sets values below 8 or above 210 to missing. 
BMI values outside this range are extremely unlikely, 
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across all ages [15]. If height and weight are provided, 
similar range restrictions are applied, between 0.81 
and 2.3 m and 15–500 kgs (if age is also provided the 
lower limits only apply to individuals aged 10 or over). 
The upper and lower values threshold can be edited 
by the user.

Under the more advanced regression-based cleaning 
setting, weight and height values, when available, are 
used to compute a BMI score for comparison against the 
recorded BMI values. First, height observations are used 
to estimate the median height value. Since we assume 
height to be constant over time (unless age is provided, 
in which case the approach is limited to those aged 18 
or over), height is replaced with the median value in all 
time points. Next, potentially more reliable BMI values 
are calculated using the ‘corrected’ height value and the 
available weight values (again, taking age into account if 
provided). As in standard cleaning, BMI values are set to 
missing if they are outside the [8, 210] range.

In the final step of the regression-based cleaning (and 
first if weight and height are not provided, for example 
when the variable of interest is not BMI), a linear regres-
sion of time on the variable oif interest is executed, for 
each individual with three or more observations. We run 
a separate ordinary least squares model for each indi-
vidual, analogous to some extent to previously proposed 
random-effects modelling [16]. For time points where 
the ratio of absolute model residual value (observation 
minus prediction) over the observation is higher than 0.5 
(50%), the observation is assumed to be unrealistic and is 
dropped. The value rejection threshold can be set by the 
user in the (0, 10] range.

Interpolation
The main feature of the algorithm is imputation of miss-
ing values between observations, for each individual.
Although the command and methods were originally 
developed for BMI imputation, they should be relevant to 
any variable with very low individual-level variability.

In the first step, available observations are used to 
quantify the error of predictions using the ipolate 
command. For each possible distance between time 
points, we assume existing observations are missing and 
impute them using ipolate. Subtracting each estimate 
from the actual observation we calculate the root mean 
square deviation, which we aggregate across all cases 
for each time-window width. Assuming a time-window 
width i, taking values between 2 (e.g. between time 
points 1 and 3, 2 and 4 etc) and k−1, if k is the number of 
time points:

(1)
irmsdi =

√

√

√

√

1

n

n
∑

j=1

(predij − obsij)
2

where n is the total number of cases for which a compari-
son is possible, across individuals and time-windows of 
size i. For example, assuming 5 time points, irmsd2 is cal-
culated across all patients with complete observations for 
time points 1–3, 2–4 and 3–5: values for time points 2, 
3 and 4, respectively, are assumed to be missing and are 
estimated and then compared to the observed values as 
described by (1). In other words, the root mean square 
deviation is calculated pooled across all possible time 
windows (of a specific width) and all individuals.

The second step involves the actual imputation of miss-
ing values, using interpolation. For each individual, any 
observations that can be interpolated are identified. For 
each set of values to be imputed, between two observa-
tions in time points tα and tβ, the time-window width is 
identified and linked to the respective root mean square 
deviation calculated in step 1. Next, the group of values is 
imputed sequentially, starting from time point tα + 1. For 
tα + 1, the value to be imputed is randomly drawn from 
N (mvtα+1, irmsdtβ−tα ), where mvtα+1 is the interpolation 
value provided by the ipolate command for time point 
tα + 1 using tα and tβ values. The next time point for which 
a value is imputed is tα + 2 (assuming tβ − tα > 2 ), ran-
domly drawn from N (mv′tα+2

, irmsdtβ−tα ), where mv′tα+2
 

is the interpolation value provided by the ipolate com-
mand for time point tα + 2 using tα + 1 and tβ values. In 
other words, for each imputed value, the immediately pre-
vious value is always taken into account, whether observed 
or imputed. This approach allows for imputed values that 
do not fluctuate unrealistically around a mean but rather 
simulate trends of increasing, decreasing or stable values 
between observations. The more imputed variables are 
generated, the more of these possible trends are simulated.

Extrapolation
The algorithm will also allow missing values for an indi-
vidual to be extrapolated, in a process based on the 
ipolate or regress commands. The extrapolation 
process involves three steps.

In the first step, the available dataset is edited and 
reshaped to allow for the comparison of predictions with 
observations, for all possible extrapolations. For exam-
ple, if an individual’s observations are available for time 
points tα, tβ, tγ and tδ, the algorithm will ‘drop’ values to 
generate subsets on which the comparisons will take 
place. In this case it will generate four subsets by drop-
ping tα, tα and tβ, tδ, tδ and tγ, allowing the evaluation of 
what would be extrapolated values. A minimum of two 
observations need to be available for a subset to be of use, 
hence only patients with at least three observations are 
involved in this part of the extrapolation process. All gen-
erated sub-datasets are then combined in a single tempo-
rary file.
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The temporary file is then used to calculate root mean 
square deviation estimates, in a similar way as for inter-
polation, but in this case they are much larger (since the 

The mibmi command
Syntax

methods we use to empirically quantify deviation are 
less accurate). Users can choose either an ipolate or 
a computationally more expensive regress based esti-
mation for all the values that were ‘dropped’ in the previ-
ous step, with the former using the closest two and the 
latter using all available observations. For each possible 
distance i between the ‘dropped’ value to be imputed and 
the closest observation, the root mean square deviation 
is estimated using (1). In this case, however, we call it 
ermsdi with n in the formula being the total number of 
cases in the temporary file, for which a comparison is 
possible for time distance i.

In the last step, for each individual, the missing values 
that can be estimated using extrapolation are identified 
and linked to the respective root mean square devia-
tion calculated in the previous step. As with interpola-
tion, extrapolation values are imputed sequentially for 
each individual, starting from the time point closest to 
an observation. Assuming an observation exists for time 
point tα and an extrapolation can be calculated for tα + 1 , 
the value to be imputed will be randomly drawn from 
N (mvtα+1, ermsd1), where mvtα+1 is the extrapolation 
value provided by ipolate or regress for time point 
tα + 1. Assuming tα + 2 can be extrapolated, it is ran-
domly drawn from N (

′
mvtα+2, ermsd2), where 

′
mvtα+2 the 

extrapolation value provided by ipolate or regress 
for time point tα + 2, but including the imputed value for 
tα + 1 in the process. The algorithm continues sequen-
tially and imputes values for all time points where an 
extrapolations is possible, for each individual, simulating 
realistic variable trends (as many for each individual as 
the number of variables to be generated in the imputa-
tion process). Draws for both interpolation and extrapo-
lation are effectively constrained to acceptable values in 
the [8,  210] range, although in our experience this con-
straint should never have to be invoked for interpolations 
and only very rarely for extrapolations. It should also be 
noted that each drawn interpolation or extrapolation is 
assumed to be exact, within the specific dataset, and only 
through a multiple imputation process will the uncer-
tainty in the estimate be fully captured.

Variables
The command requires three variables to be provided, 
in the following order: the unique within time individual 
identifier (varname1); a linear time variable to define 
monthly, yearly or other time-windows (varname2); 
and the main variable of interest, usually the BMI (var-
name3). An optional variable with the age in years can 
also be provided (varname4), which is used in the sim-
ple cleaning process, if requested. Also note that the data 
needs to be in long rather than wide format, in relation to 
time. A backup variable for the original variable of inter-
est is created in _varname3.

Options
Cleaning
weight(varname) Weight in kilograms. If provided 
along with height, both variables will be used to correct 
BMI and/or height and weight observations. Only rel-
evant for BMI imputation.

height(varname) Height in metres. If provided along 
with weight, both variables will be used to correct BMI 
and/or height and weight observations. Only relevant for 
BMI imputation.

clean Standard cleaning option requested to set unre-
alistic values to missing (default is >210 or <8). Assuming 
the variable of interest is BMI, if weight and height have 
been provided they are also cleaned at this stage, taking 
age into account if it has been provided.

xclean More advanced cleaning option that uses 
regression modelling to identify unrealistic changes in 
the variable of interest, which are very likely input errors, 
and set them to missing. If BMI is the variable of inter-
est, provided weight and height values will be taken into 
account: first, weight, height and BMI values are inves-
tigated longitudinally to try to verify the subject’s height 
(accounting for age, if provided). Then, using this ’most 
likely’ height value, BMI values are corrected if needed. 
The second stage, which is the only stage if the variable of 
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interest is not BMI, involves running a regression model 
for each subject to identify unrealistic changes in BMI 
and set them to missing. The threshold over which the 
observations are set to missing is set with the xclnp(#) 
option.

xclnp(#) Threshold for regression cleaning, defined as 
absolute residual value (i.e. observed minus prediction) 
over observed value. The default value is 0.5 (i.e. 50%).

xnomi By default the command is a multiple imputa-
tion command. This option suppresses multiple imputa-
tions and hence allows the command to be used solely for 
cleaning.

xsimp By default the command is a multiple imputation 
command. This option suppresses multiple imputations 
and allows simple imputation, with no standard errors 
calculated and implemented in either intrapolations or 
extrapolations. It can be issued with the ixtrapolate 
or rxtrapolate options

Multiple imputation
minum(#) Number of multiple imputations. The default 
is five.

ixtrapolate Requests extrapolation (in addition to 
interpolation), using the ipolate command. Standard 
errors for ipolate predictions are calculated (for vari-
ous time-windows), by removing observed BMI values 
and calculating model performance for them. The ipo-
late command (with the extrapolation option) is then 
used to sequentially impute extrapolated values: start-
ing from the time points closest to the observed val-
ues and moving further away. At each stage, values are 
drawn from a normal distribution the mean for which 
is provided by the ipolate command and its standard 
deviation is the standard error for the predictions for the 
respective time-window.

rxtrapolate Requests extrapolation (in addition to 
interpolation), using the regress command. Standard 

errors for regress predictions are calculated (for 
various time-windows), by removing observed BMI 
values and calculating model performance for them. 
The regress command is then used to sequentially 
impute extrapolated values: starting from the time 
points closest to the observed values and moving fur-
ther away. At each stage, values are drawn from a nor-
mal distribution the mean for which is provided by the 
ipolate command and its standard deviation is the 
standard error for the predictions for the respective 
time-window.

imnar(#) Missing not at random (MNAR) assumption 
for interpolated values. Increases or decreases the pre-
dictions by the value specified, in the [−50,+50] range 
but within the logical range for BMI.

xmnar(#) Missing not at random (MNAR) assumption 
for extrapolated values. Increases or decreases the pre-
dictions by the value specified, in the [−50,+50] range 
but within the logical range for BMI.

pmnar Indicates that a percentage change, rather than 
an absolute value increase/decrease, is to be used for 
the MNAR mechanism(s). If this option is specified, 
options imnar(#) and xmnar(#) will accept values in 
the [−0.9, +0.9] range, indicating a percentage change 
between −90 and 90%. Users should be aware that 
increases and decreases are not symmetrical under this 
option.

milng Requests the multiple imputations dataset in 
mlong format instead of wide, the default.

Other
lolim(#) Lower value threshold below which observa-
tions are dropped when using option clean and imputa-
tions are constrained. The default value, for adult BMI, is 
set to 8.

uplim(#) Upper value threshold above which observa-
tions are dropped when using clean and imputations 
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are constrained. The default value, for adult BMI, is set 
to 210.

seed(#) Set initial value of random-number seed, for 
the simulations. The default is 7. See set seed.

nodi Do not display progress. Not recommended since 
imputation can take a very long time for large databases.

Saved results
The mibmi command does not return any scalars but 
an edited dataset, mi compatible if imputations are per-
formed. In that case, additional variables are included. 
The mi standard variable _mi_miss includes binary 
information on whether values are missing or not. Vari-
ables _mi_ipat and _mi_xpat flag patients for which at 
least one value has been interpolated or extrapolated, 
respectively (the latter is only present if extrapolations 
have been requested). Assuming the default mi wide 
format is used, imputed variables are available in the 
usual Stata format _i_varname3, including observed and 
imputed values (the number of variables is defined by 
minum(#)). Finally, _i_iinfo and _i_xinfo, if extrapola-
tions are requested, include information on the imputed 
observations and the validity of the imputed values for 
the respective variable, i.e. they flag whether the imputa-
tion process would have provided a value outside the pre-
defined logical range and had to be corrected by setting 
to the minimum or maximum allowed. Such a scenario 

is extremely unlikely for interpolations and _i_iinfo 
variables do not really vary (zero for all imputed val-
ues, missing for observations). However, it does happen 
for extrapolations, although rarely, and on occasion the 
_i_xinfo variables include non-zero values. This seems 
to be more likely with the default and faster ipolate 
approach, which only accounts for two observations 
during the prediction process and is more sensitive to 
extreme or incorrect values.

Example
We explore the mibmi command with an anonymized 
sub-sample of diabetes patients from the Clinical Prac-
tice Research Datalink (CPRD). The algorithm was used 
on the full sample, in a recent investigation of the rela-
tionship between biological variables and mortality [17]. 
Here we present a significantly reduced sub-sample, 
edited using random processes to overcome sharing 
restrictions. The dataset holds information on age (in 
years), mean weight (in kg), height (in metres), mean 
BMI and the number of different drugs prescribed, from 
1 April 2004 to 31 March 2012, aggregated into eight 
financial years (1 April to 31 March). In this series of 
examples we demonstrate the use of mibmi in cleaning 
and imputing BMI data, before using multi-level Poisson 
regression modelling to quantify the association between 
BMI and the number of drug prescription over an 1-year 
period (in either simple analyses or a multiple imputation 
framework).
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We present BMI characteristics for two representa-
tive time points: 2009/10 (year 10) and 2011/12 (year 
12), the last year of the study. At least one BMI meas-
urement is available for 2605 of 3252 eligible individu-
als in 2009/10 (80.1%) and for 2315 of 3487 in 2011/12 

(66.4%). A few very high BMI values are obviously 
erroneous. Nevertheless, we make no corrections and 
proceed to investigate the relationship between aver-
age BMI and polypharmacy, using a multi-level Poisson 
regression model.
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The analysis on the original dataset indicates that the 
relationship between BMI and polypharmacy is very 
weak and non-significant. Next, we only use the simple 

cleaning approach of the mibmi command to remove 
unrealistic BMI values and correct using the provided 
weight and height, if possible.
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A handful of extreme BMI observations were set to 
missing but further corrections have been performed, 
based on available weight and height measurements. We 

repeat the multi-level Poisson regression analysis on this 
cleaned dataset.
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Analysis on the (simply) cleaned datasets suggests 
there is statistically significant relationship between BMI 
and polypharmacy. Next, we go one step further with the 

mibmi command by requesting simple and advanced 
cleaning on the original dataset.
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A few more values are dropped due to regression clean-
ing (with a low 20% threshold defined by the xclnp(#) 
option). Repeating the analysis, we obtain similar results.
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Next, we use mibmi not only to clean the data but also 
to generate a set of three MI variables holding imputed 
values.
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We focus on the characteristics of variable _1_BMI, 
but the imputed cases (not imputed values) are identical 
across all three variables. For 2009/10 (year 10) and each 
imputation set, the algorithm imputed 179 observations 
(2780 now, compared to 2601 when only using simple 
and advanced cleaning). Unsurprisingly, no values are 
interpolated for the last time point, 20111/12 (year 12). 
Three new variables provide information on the interpo-
lation process: _mi_miss flags all missing BMI observa-
tions; _1_iinfo flags cases where interpolated values 
for _1_BMI were unrealistic and had to be constrained 
(in this example there were none, amongst the 1152 that 
were imputed); and _mi_ipat flags all patients for 
whom at least one observation was interpolated, at any 
point in time. The role of _mi_ipat is to allow users 

to easily obtain the number of patients with at least one 
interpolation:

Using this interpolation dataset to run multiple impu-
tation analyses, with the mi estimate prefix, we 
obtain similar results.
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Finally, we can use all four aspects of mibmi with the 
original dataset: simple and advanced cleaning, interpo-
lation and extrapolation.

Again, we focus on the characteristics of variable _1_
BMI. For 2009/10 (year 10) and each imputation set, the 
algorithm now imputed 410 observations, of which 213 
are extrapolations (3011 now, compared to 2780 with 

interpolation and cleaning and 2601 with cleaning only). 
For the last time point, 20111/12 (year 12), 416 values 
were imputed with extrapolation (2723 now, compared to 

2307 before) . Additional new variables provide informa-
tion on the extrapolation process: _1_xinfo flags cases 
where interpolated values for _1_BMI were unrealistic 
and had to be constrained (in this example there was one 
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amongst the 1183 extrapolated values); and _mi_xpat 
flags all patients for whom at least one observation was 
interpolated, at any point in time (with a role similar 
to _mi_ipat, allowing users to obtain the number of 
patients with at least one extrapolation).

Results from a multiple imputation analysis on the 
final dataset obtained with mibmi were similar to 

those previously obtained, as expected. Practically, the 
requested imputations are assuming MCAR missingness 
since there is no conditional missingness on observed 
data, and hence inference estimates should be very simi-
lar to what we observed previously. However, this is not 
necessarily the case for standard errors (although in this 
example they are):
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and extrapolated values separately, since the underly-
ing principles in their imputations are different, for 
mibmi at least. Performance for interpolated values 
appears to be similar while twofold performs better for 
extrapolations.

In the second assessment, which focused on interpola-
tion, we again randomly selected 10,000 people but this 
time with 5 or more BMI measurements over the study 
period. Next, for each individual, we randomly set three 
concurrent BMI observations to missing but ensuring 
these were observations that would be imputed as inter-
polations under the mibmi algorithm (i.e. observations 
were available both before and after these ‘missing’ val-
ues, for all patients). As before, we used mibmi, with 
both simple and multiple imputation options, and two-
fold with the five available biological parameters for the 
multiple imputations and we aggregated to obtain mean 
errors. Results are presented in Table 2, both overall and 
for each of the three sequential observations that we set 
to missing. Performance was better with mibmi, espe-
cially for the second time point, the one furthest away 
from observations. A prediction example using a single 
patient is presented in Fig. 2.

These results indicate that, for interpolating BMI val-
ues, there is little useful information in other biological 
parameters and the additional effort of obtaining them 
is not justified. The mibmi algorithm generates realistic 
linear or curvilinear trends for BMI over time and the 
higher computational complexity pays off more as the 
number of concurrent missing values increases. How-
ever, for extrapolating BMI values, performance is bet-
ter with the twofold fully conditional specification 
algorithm and use of all biological parameters, at least 
when only two observations per individual are avail-
able. In such a scenario, each extrapolation is based on 
an individual-level model that uses only two observations 

Performance
To assess the performance of mibmi, in relation to the 
recently presented twofold algorithm, we used a ver-
sion of the diabetes patients dataset we presented previ-
ously. For this exercise, the dataset included additional 
information on HbA1c (glucose), systolic and diastolic 
blood pressure and total cholesterol. First, we applied the 
mibmi algorithm with the simple and regression clean-
ing options to obtain a more reliable measure for BMI, 
thus not allowing extreme and erroneous values to affect 
the comparison.Then we performed two assessments 
of performance, when one or three values were miss-
ing between two observations for each individual. We 
did not choose to evaluate through a simulations frame-
work since the assumptions under which we would have 
simulated the data would be critical to the analyses and 
the evaluation could be seen as self-fulfilling proph-
ecy. Rather, we used real data to assess deviations from 
observations. Therefore, we could not evaluate the per-
formance (e.g. coverage, power) of the inferential models 
since the true effects and associations were unknown.

In the first assessment, we randomly selected 10,000 
people with 3 or more BMI measurements over the study 
period and we randomly set one BMI observation per 
person to missing. We then used mibmi, with both sim-
ple (×1) and multiple imputation options (×100), and 
twofold in which we used all five available biological 
parameters for the multiple imputations. Under a mul-
tiple imputations approach, we obtained 100 BMI vari-
ables with imputed values, for each algorithm. Each set 
was then aggregated and we obtained their mean value 
for each of the 10,000 ‘missing’ observations. Finally, 
these aggregates, as well as the simple imputation BMI 
from mibmi, were compared to the ‘true’ BMI values 
to calculate absolute mean differences (mean error). 
Table  1 presents the overall results and for interpolated 

Table 1  Mean errors between observed and imputed BMI values, one missing value per individual

a  Simple refers to a single imputation that ignores variability in the observations (option xsimp); mibmi refers to the default multiple imputation approach with the 
command and 100 imputations; twofold refers to the twofold algorithm described in the paper and 100 imputations
b  All refers to both interpolations (between observations imputations) and extrapolations (not between observations imputations)

Cases Methoda Obs. Mean Std.Dev Min Max

Allb Simple ×1 10000 1.113 1.353 0.000 26.900

mibmi ×100 10000 1.120 1.351 0.000 26.888

Twofold ×100 10000 0.949 1.026 0.000 15.481

Interpolation Simple ×1 6132 0.801 0.819 0.000 11.651

mibmi ×100 6132 0.808 0.819 0.001 11.429

Twofold ×100 6132 0.804 0.810 0.000 11.180

Extrapolation Simple ×1 3868 1.606 1.808 0.000 26.900

mibmi ×100 3868 1.614 1.805 0.000 26.888

Twofold ×100 3868 1.179 1.260 0.001 15.481
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which, unsurprisingly, can generate extreme values in 
some cases. Although the accuracy of extrapolation 
predictions might improve for mibmi as the number of 
available observations increases, performance with the 
twofold algorithm should remain better.

Discussion
In this paper we presented mibmi, a new command for 
cleaning and imputing BMI values, or other variables 
with very low individual-level variability, in longitudi-
nal settings. Using a pseudo-anonymised dataset from 
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Fig. 2  Predictions example for a single patient

Table 2  Mean errors between observed and imputed BMI values, three sequential missing values per individual (interpo-
lation only)

a  Simple refers to a single imputation that ignores variability in the observations (option xsimp); mibmi refers to the default multiple imputation approach with the 
command and 100 imputations; twofold refers to the twofold algorithm described in the paper and 100 imputations
b  All refers to aggregates across all three time points

Cases Methoda Obs. Mean Std.Dev Min Max

Allb Simple ×1 30,000 0.980 1.002 0.000 16.017

mibmi ×100 30,000 0.989 1.004 0.000 16.034

Twofold ×100 30,000 1.137 1.155 0.000 18.318

Time point 1 Simple ×1 10,000 0.935 0.945 0.000 9.829

mibmi ×100 10,000 0.943 0.947 0.000 9.779

Twofold ×100 10,000 1.094 1.114 0.000 18.318

Time point 2 Simple ×1 10,000 1.059 1.068 0.000 16.017

mibmi ×100 10,000 1.069 1.071 0.000 16.034

Twofold ×100 10,000 1.234 1.231 0.000 17.126

Time point 3 Simple ×1 10,000 0.947 0.984 0.000 10.645

mibmi ×100 10,000 0.955 0.985 0.000 10.538

Twofold ×100 10,000 1.084 1.111 0.000 13.473
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the Clinical Practice Research Datalink we described the 
command’s cleaning and imputation functions over a few 
examples and we also assessed its performance. The com-
mand is available to download from the ssc archive by 
typing ssc install mibmi within Stata. Alternatively read-
ers can automatically download from the first author’s 
personal web page by typing net from http://statanalysis.
co.uk within Stata and following the instructions.

We argue that mibmi can be a useful tool for 
researchers who wish to use longitudinal values for BMI 
or other variables with very low individual-level vari-
ability, in descriptive or inferential analyses. The com-
mand is fully compatible with the mi family of Stata 
and we incorporated numerous features to allow for 
flexibility in the imputation process, allowing the user 
to assume certain MNAR mechanisms. The same pro-
cesses could be used for imputation of other param-
eters, providing one can assume very strong correlation 
over time and linearity.

The algorithm’s advantage is its ability to provide 
multiple datasets with imputed values for the vari-
able of interest when no other information is available, 
except for an individual identifier and time. For inter-
polations, BMI performance was overall better than in 
other multiple imputation approaches that use addi-
tional biological data. Because of the command’s indi-
vidual by individual approach, the interpolation and, 
especially, extrapolation processes are computationally 
expensive and, for very large datasets (of hundreds of 
thousands of patients), the command can take weeks 
to execute. When multiple imputation is selected, we 
recommend 5 generated datasets. However, the process 
can be parallelized and for large centralized data repos-
itories, like the UK Primary Care Databases (CPRD, 
THIN, QResearch), mibmi could be applied once at a 
high level and the imputed BMI values distributed to 
users when requested, on a protocol-by-protocol basis. 
The algorithm will effectively ignore patients with 
fewer than 2 BMI values over time and hence research-
ers are unlikely to have a complete final dataset to ana-
lyze. Also note that users who extrapolate should take 
care to impute at appropriate times only (e.g. not when 
age <18).

In the context of BMI imputation, when additional 
biological information is available (e.g. blood pressure 
values), we advise its use in conjunction with twofold, 
especially for extrapolations. In the first step, users can 
execute mibmi to obtain a more reliable BMI variable 
through the cleaning options and generate interpolated 
values for patients with at least two observations over the 
study period. In the second step they can use the gener-
ated variable with the twofold algorithm, to obtain 
multiple imputations for BMI and other variables.
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