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approaches for body mass index or other
variables with very low individual-level
variability: the mibmi command in Stata
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Abstract

Background: In modern health care systems, the computerization of all aspects of clinical care has led to the devel-
opment of large data repositories. For example, in the UK, large primary care databases hold millions of electronic
medical records, with detailed information on diagnoses, treatments, outcomes and consultations. Careful analyses of
these observational datasets of routinely collected data can complement evidence from clinical trials or even answer
research questions that cannot been addressed in an experimental setting. However, 'missingness'is a common
problem for routinely collected data, especially for biological parameters over time. Absence of complete data for the
whole of a individual’s study period is a potential bias risk and standard complete-case approaches may lead to biased
estimates. However, the structure of the data values makes standard cross-sectional multiple-imputation approaches
unsuitable. In this paper we propose and evaluate mibmi, a new command for cleaning and imputing longitudinal
body mass index data.

Results: The regression-based data cleaning aspects of the algorithm can be useful when researchers analyze messy
longitudinal data. Although the multiple imputation algorithm is computationally expensive, it performed similarly or

even better to existing alternatives, when interpolating observations.

Conclusion: Themibmi algorithm can be a useful tool for analyzing longitudinal body mass index data, or other

longitudinal data with very low individual-level variability.
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Background

Missing data is a major problem for many statistical anal-
yses, in particular for both clinical trials and routinely
collected healthcare information. ‘Missingness’ is a dif-
ficult problem to address, particularly relevant to elec-
tronic medical records (EMRs), routinely collected data
that can be invaluable in complementing well-designed
randomized clinical trials or contributing new knowl-
edge, especially when trials are prohibitively expensive or
not possible [1, 2].
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Data are generally considered to be missing under one
of three possible mechanisms: missing completely at ran-
dom (MCAR), missing at random (MAR) and missing
not at random (MNAR). In a MCAR setting the prob-
ability of an observable data point being missing (miss-
ingness probability) does not depend on any observed
or unobserved parameters. When data are MAR the
missingness probability depends on observed variables,
and can be accounted for by information contained in
dataset. Finally, when data are MNAR the missingness
probability depends on unobserved values and is very
difficult to be quantified and modelled (external informa-
tion is needed). In the ideal case when data are MCAR,
parameter estimates are not biased in any way and the
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only downside of proceeding with a complete cases anal-
ysis (effectively ignoring the issue) is a loss of statistical
power. This loss is not always negligible, however, espe-
cially in multiple regression analyses with many predic-
tors where even low levels of ‘missingness’ on individual
variables can result in a high total percentage of cases
being dropped from analysis.

In the typical MAR scenario, the values (or categories)
of a variable are associated with whether information for
another variable, predictor or outcome, is missing or not.
For example, under the quality and outcomes framework
which is a UK primary care pay-for-performance scheme,
physicians are incentivized to record the blood pressure
of certain chronic condition patient groups (e.g. diabe-
tes). Since the introduction of the scheme in 2004, annual
systolic and diastolic blood measurements are almost
complete in UK Primary Care Databases (Clinical Prac-
tice Research Datalink or CPRD, The Health Improve-
ment Network or THIN, QResearch), for diabetes
patients. However, data is more often missing for other
patient groups, especially before 2004. Estimating the
relationship between a diagnosis of diabetes and blood
pressure levels is not straightforward in this context and
a complete-case analysis could provide biased estimates.
Currently, multiple imputation (MI) is considered the
best practice to deal with this problem [3], with a possible
alternative being inverse probability weighting [4]. The
better performance of MI over other approaches, such
as observation carried forward and complete cases, has
been repeatedly confirmed [5, 6], although it is not a pan-
acea [7]. There are ways to assess whether data are MAR
[8], for example, by assessing the relationship between a
predictor’s values and missingness or not in the outcome
through a logistic regression. Arguably, MAR is an inac-
curate term for this type of missingness and the term
‘informative missingness’ is often preferred.

In the most challenging case, data missing under a
MNAR mechanism, the value of the variable that is miss-
ing is related to the reason why it is missing, and it can be
a predictor or, more worryingly, an outcome. For exam-
ple, body mass index (BMI) is more likely to be meas-
ured and recorded for obese patients and more likely to
be missing for patients who do not look overweight. Data
values that are MNAR cannot be reliably estimated from
information about other variables, unless the mecha-
nism of missingness is known, which is very uncommon.
Although multiple imputation can offer some protection
against MNAR mechanisms, identifying and effectively
controlling for such a mechanism can very challenging
[9, 10].

Multiple imputations for longitudinal data are particu-
larly challenging, since it is necessary to account for vari-
able correlations both within and between time points in
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the generation of the imputed values. Nevalainen et al.
proposed an extension to cross-sectional methods for the
longitudinal data setting [11], which was recently imple-
mented in the very useful twofold algorithm for Stata
[12], evaluated and found to perform well under MCAR
assumptions [13]. Imputations for longitudinal sequences
have been found to perform better when based on obser-
vations from each person, rather than group averages
[14]. For a relatively stable over time biological parame-
ter such as BMI, correlations with other variables within
and between time points can be expected to be very
small compared to BMI correlations across time points.
Although models of group averages should account for
these issues, we hypothesise that, specifically for BMI,
there is very little information to be gained from other
covariates, if they are available. Therefore we should
be able to reliably impute BMI values between existing
observations (interpolations) for each person, which will
also give us flexibility to generate more realistic individual
BMI trends rather than fluctuations around a trend mean.

To this end, we developed mibmi, a cleaning and mul-
tiple imputation algorithm for BMI or other variables
with very low individual-level variability. The cleaning
aspect of the algorithm identifies and sets to missing
outliers that are very likely to be error values and can
bias inference. The algorithm focuses on each individual
to produce interpolations (between observations) and
extrapolations (before first or after last observation) in a
longitudinal setting for the variable of interest, provided
at least two observations are available for an individual.
The generated datasets are compatible with the mi family
of commands in Stata.

Methods

The command includes two cleaning options. Standard
cleaning limits values to a logical pre-specified range and
a more advanced option uses regression-based cleaning
for each individual. Provided the variable of interest is
BMI and weight and height have been provided, the algo-
rithm will use these in addition to BMI observations at all
available time points, to first establish the most reliable
height estimate and use that to correct BMI and/or weight
values. In the standard multiple imputation setting, the
command will interpolate measurements of interest for
patients with at least 2 observations over the time period.
Residuals are used to quantify interpolation prediction
errors, for all possible time-window lengths, and these are
used to introduce uncertainty in the interpolation esti-
mates, in a multiple imputations setting. Imputed values
are drawn from normal distributions, the means for which
are provided by the ipolate command and the standard
deviations are the standard errors for the predictions for
the respective time-window length. A similar approach
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Fig. 1 Algorithm workflow

is used for extrapolations, if requested. The algorithm
workflow for both interpolation and extrapolation is pre-
sented in Fig. 1. User defined MNAR assumptions are
also allowed, under which values can be imputed through
either interpolation or extrapolation. The command is
computationally demanding and can take a long time to
run for very large populations, especially when both inter-
polations and extrapolations are requested. Time-win-
dows can be in years, months or even days, provided data
completeness is reasonable. For example, in UK primary

care databases, BMI is routinely recorded for people with
certain chronic conditions at least once every year, since
physicians are incentivized to measure it. In a clinical trial
BMI may be recorded on a weekly basis and hence a much
smaller time-window for analysis may be desirable.

Cleaning

In the standard cleaning approach, the algorithm
simply sets values below 8 or above 210 to missing.
BMI values outside this range are extremely unlikely,
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across all ages [15]. If height and weight are provided,
similar range restrictions are applied, between 0.81
and 2.3 m and 15-500 kgs (if age is also provided the
lower limits only apply to individuals aged 10 or over).
The upper and lower values threshold can be edited
by the user.

Under the more advanced regression-based cleaning
setting, weight and height values, when available, are
used to compute a BMI score for comparison against the
recorded BMI values. First, height observations are used
to estimate the median height value. Since we assume
height to be constant over time (unless age is provided,
in which case the approach is limited to those aged 18
or over), height is replaced with the median value in all
time points. Next, potentially more reliable BMI values
are calculated using the ‘corrected” height value and the
available weight values (again, taking age into account if
provided). As in standard cleaning, BMI values are set to
missing if they are outside the [8, 210] range.

In the final step of the regression-based cleaning (and
first if weight and height are not provided, for example
when the variable of interest is not BMI), a linear regres-
sion of time on the variable oif interest is executed, for
each individual with three or more observations. We run
a separate ordinary least squares model for each indi-
vidual, analogous to some extent to previously proposed
random-effects modelling [16]. For time points where
the ratio of absolute model residual value (observation
minus prediction) over the observation is higher than 0.5
(50%), the observation is assumed to be unrealistic and is
dropped. The value rejection threshold can be set by the
user in the (0, 10] range.

Interpolation

The main feature of the algorithm is imputation of miss-
ing values between observations, for each individual
Although the command and methods were originally
developed for BMI imputation, they should be relevant to
any variable with very low individual-level variability.

In the first step, available observations are used to
quantify the error of predictions using the ipolate
command. For each possible distance between time
points, we assume existing observations are missing and
impute them using ipolate. Subtracting each estimate
from the actual observation we calculate the root mean
square deviation, which we aggregate across all cases
for each time-window width. Assuming a time-window
width i, taking values between 2 (e.g. between time
points 1 and 3, 2 and 4 etc) and k—1, if k is the number of
time points:

1 n
irmsdi = ; Z (predi/ — Obsij)2 (1)
j=1
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where 7 is the total number of cases for which a compari-
son is possible, across individuals and time-windows of
size i. For example, assuming 5 time points, irmsds is cal-
culated across all patients with complete observations for
time points 1-3, 2—4 and 3-5: values for time points 2,
3 and 4, respectively, are assumed to be missing and are
estimated and then compared to the observed values as
described by (1). In other words, the root mean square
deviation is calculated pooled across all possible time
windows (of a specific width) and all individuals.

The second step involves the actual imputation of miss-
ing values, using interpolation. For each individual, any
observations that can be interpolated are identified. For
each set of values to be imputed, between two observa-
tions in time points #, and tg, the time-window width is
identified and linked to the respective root mean square
deviation calculated in step 1. Next, the group of values is
imputed sequentially, starting from time point ¢, + 1. For
to + 1, the value to be imputed is randomly drawn from
N (mvy, 41, irmsdy, s, ), where mvy, 41 is the interpolation
value provided by the ipolate command for time point
to + 1using ¢, and tg values. The next time point for which
a value is imputed is £, + 2 (assuming tg — t, > 2), ran-
domly drawn from N (mv, ,,,irmsd,—,), where mv; .,
is the interpolation value provided by the ipolate com-
mand for time point £, 4 2 using £, + 1 and tg values. In
other words, for each imputed value, the immediately pre-
vious value is always taken into account, whether observed
or imputed. This approach allows for imputed values that
do not fluctuate unrealistically around a mean but rather
simulate trends of increasing, decreasing or stable values
between observations. The more imputed variables are
generated, the more of these possible trends are simulated.

Extrapolation

The algorithm will also allow missing values for an indi-
vidual to be extrapolated, in a process based on the
ipolate or regress commands. The extrapolation
process involves three steps.

In the first step, the available dataset is edited and
reshaped to allow for the comparison of predictions with
observations, for all possible extrapolations. For exam-
ple, if an individual’s observations are available for time
points £y, tg, t, and £; the algorithm will ‘drop’ values to
generate subsets on which the comparisons will take
place. In this case it will generate four subsets by drop-
ping t, to and tg, s, ts and t,, allowing the evaluation of
what would be extrapolated values. A minimum of two
observations need to be available for a subset to be of use,
hence only patients with at least three observations are
involved in this part of the extrapolation process. All gen-
erated sub-datasets are then combined in a single tempo-
rary file.
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The temporary file is then used to calculate root mean
square deviation estimates, in a similar way as for inter-
polation, but in this case they are much larger (since the
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The mibmi command
Syntax

mibmi varnamel varname?2 varnames3 [varnanw%], [ weight (varname)

height (varname) clean xclean xclnp(#) xnomi xsimp minum(#)

ixtrapolate rxtrapolate imnar(#) xmnar(#) pmnar milng lolim(#)

uplim(#) seed(#) nodi }

methods we use to empirically quantify deviation are
less accurate). Users can choose either an ipolate or
a computationally more expensive regress based esti-
mation for all the values that were ‘dropped’ in the previ-
ous step, with the former using the closest two and the
latter using all available observations. For each possible
distance i between the ‘dropped’ value to be imputed and
the closest observation, the root mean square deviation
is estimated using (1). In this case, however, we call it
ermsd; with n in the formula being the total number of
cases in the temporary file, for which a comparison is
possible for time distance i.

In the last step, for each individual, the missing values
that can be estimated using extrapolation are identified
and linked to the respective root mean square devia-
tion calculated in the previous step. As with interpola-
tion, extrapolation values are imputed sequentially for
each individual, starting from the time point closest to
an observation. Assuming an observation exists for time
point ¢, and an extrapolation can be calculated for ¢, + 1,
the value to be imputed will be randomly drawn from
N (mvy,11,ermsd1), where mv;, 41 is the extrapolation
value provided by ipolate or regress for time point
ty + 1. Assuming £, + 2 can be extrapolated, it/is ran-
domly drawn from N (mv;, 12, ermsdy), where mvy, 1o the
extrapolation value provided by ipolate or regress
for time point £, + 2, but including the imputed value for
to + 1 in the process. The algorithm continues sequen-
tially and imputes values for all time points where an
extrapolations is possible, for each individual, simulating
realistic variable trends (as many for each individual as
the number of variables to be generated in the imputa-
tion process). Draws for both interpolation and extrapo-
lation are effectively constrained to acceptable values in
the [8, 210] range, although in our experience this con-
straint should never have to be invoked for interpolations
and only very rarely for extrapolations. It should also be
noted that each drawn interpolation or extrapolation is
assumed to be exact, within the specific dataset, and only
through a multiple imputation process will the uncer-
tainty in the estimate be fully captured.

Variables

The command requires three variables to be provided,
in the following order: the unique within time individual
identifier (varnamel); a linear time variable to define
monthly, yearly or other time-windows (varname2);
and the main variable of interest, usually the BMI (var-
name3). An optional variable with the age in years can
also be provided (varname4), which is used in the sim-
ple cleaning process, if requested. Also note that the data
needs to be in long rather than wide format, in relation to
time. A backup variable for the original variable of inter-
est is created in _varname3.

Options

Cleaning

weight(varname) Weight in kilograms. If provided
along with height, both variables will be used to correct
BMI and/or height and weight observations. Only rel-
evant for BMI imputation.

height(varname) Height in metres. If provided along
with weight, both variables will be used to correct BMI
and/or height and weight observations. Only relevant for
BMI imputation.

clean Standard cleaning option requested to set unre-
alistic values to missing (default is >210 or <8). Assuming
the variable of interest is BMI, if weight and height have
been provided they are also cleaned at this stage, taking
age into account if it has been provided.

xclean More advanced cleaning option that uses
regression modelling to identify unrealistic changes in
the variable of interest, which are very likely input errors,
and set them to missing. If BMI is the variable of inter-
est, provided weight and height values will be taken into
account: first, weight, height and BMI values are inves-
tigated longitudinally to try to verify the subject’s height
(accounting for age, if provided). Then, using this ‘'most
likely’ height value, BMI values are corrected if needed.
The second stage, which is the only stage if the variable of
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interest is not BMI, involves running a regression model
for each subject to identify unrealistic changes in BMI
and set them to missing. The threshold over which the
observations are set to missing is set with the xc1np (#)
option.

xclnp (#) Threshold for regression cleaning, defined as
absolute residual value (i.e. observed minus prediction)
over observed value. The default value is 0.5 (i.e. 50%).

xnomi By default the command is a multiple imputa-
tion command. This option suppresses multiple imputa-
tions and hence allows the command to be used solely for
cleaning.

xsimp By default the command is a multiple imputation
command. This option suppresses multiple imputations
and allows simple imputation, with no standard errors
calculated and implemented in either intrapolations or
extrapolations. It can be issued with the ixtrapolate
or rxtrapolate options

Multiple imputation
minum (#) Number of multiple imputations. The default
is five.

ixtrapolate Requests extrapolation (in addition to
interpolation), using the ipolate command. Standard
errors for ipolate predictions are calculated (for vari-
ous time-windows), by removing observed BMI values
and calculating model performance for them. The ipo-
late command (with the extrapolation option) is then
used to sequentially impute extrapolated values: start-
ing from the time points closest to the observed val-
ues and moving further away. At each stage, values are
drawn from a normal distribution the mean for which
is provided by the ipolate command and its standard
deviation is the standard error for the predictions for the
respective time-window.

rxtrapolate Requests extrapolation (in addition to
interpolation), using the regress command. Standard
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errors for regress predictions are calculated (for
various time-windows), by removing observed BMI
values and calculating model performance for them.
The regress command is then used to sequentially
impute extrapolated values: starting from the time
points closest to the observed values and moving fur-
ther away. At each stage, values are drawn from a nor-
mal distribution the mean for which is provided by the
ipolate command and its standard deviation is the
standard error for the predictions for the respective
time-window.

imnar (#) Missing not at random (MNAR) assumption
for interpolated values. Increases or decreases the pre-
dictions by the value specified, in the [—50, +50] range
but within the logical range for BMI.

xmnar (#) Missing not at random (MNAR) assumption
for extrapolated values. Increases or decreases the pre-
dictions by the value specified, in the [—50, +50] range
but within the logical range for BMI.

pmnar Indicates that a percentage change, rather than
an absolute value increase/decrease, is to be used for
the MNAR mechanism(s). If this option is specified,
options imnar (#) and xmnar (#) will accept values in
the [—0.9, +0.9] range, indicating a percentage change
between —90 and 90%. Users should be aware that
increases and decreases are not symmetrical under this
option.

milng Requests the multiple imputations dataset in
mlong format instead of wide, the default.

Other

lolim (#) Lower value threshold below which observa-
tions are dropped when using option clean and imputa-
tions are constrained. The default value, for adult BMI, is
set to 8.

uplim (#) Upper value threshold above which observa-
tions are dropped when using clean and imputations
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are constrained. The default value, for adult BMI, is set
to 210.

seed (#) Set initial value of random-number seed, for
the simulations. The default is 7. See set seed.

nodi Do not display progress. Not recommended since
imputation can take a very long time for large databases.

Saved results

The mibmi command does not return any scalars but
an edited dataset, mi compatible if imputations are per-
formed. In that case, additional variables are included.
The mi standard variable _mi_miss includes binary
information on whether values are missing or not. Vari-
ables _mi_ipat and _mi_xpat flag patients for which at
least one value has been interpolated or extrapolated,
respectively (the latter is only present if extrapolations
have been requested). Assuming the default mi wide
format is used, imputed variables are available in the
usual Stata format _i_varname3, including observed and
imputed values (the number of variables is defined by
minum (#) ). Finally, _i iinfo and _i_xinfo, if extrapola-
tions are requested, include information on the imputed
observations and the validity of the imputed values for
the respective variable, i.e. they flag whether the imputa-
tion process would have provided a value outside the pre-
defined logical range and had to be corrected by setting
to the minimum or maximum allowed. Such a scenario
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is extremely unlikely for interpolations and _i iinfo
variables do not really vary (zero for all imputed val-
ues, missing for observations). However, it does happen
for extrapolations, although rarely, and on occasion the
_i_xinfo variables include non-zero values. This seems
to be more likely with the default and faster ipolate
approach, which only accounts for two observations
during the prediction process and is more sensitive to
extreme or incorrect values.

Example

We explore the mibmi command with an anonymized
sub-sample of diabetes patients from the Clinical Prac-
tice Research Datalink (CPRD). The algorithm was used
on the full sample, in a recent investigation of the rela-
tionship between biological variables and mortality [17].
Here we present a significantly reduced sub-sample,
edited using random processes to overcome sharing
restrictions. The dataset holds information on age (in
years), mean weight (in kg), height (in metres), mean
BMI and the number of different drugs prescribed, from
1 April 2004 to 31 March 2012, aggregated into eight
financial years (1 April to 31 March). In this series of
examples we demonstrate the use of mibmi in cleaning
and imputing BMI data, before using multi-level Poisson
regression modelling to quantify the association between
BMI and the number of drug prescription over an 1-year
period (in either simple analyses or a multiple imputation
framework).
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. use mibmi_example.dta, clear

. describe

Contains data from mibmi_example.dta
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obs: 23,512

vars: 7 8 Dec 2014 10:11
size: 705,360

storage display value
variable name type format label variable label
patid int %8.0g
year byte %8.0g yrlbl Study year

age int %8.0g Age
weight double %10.0g Weight value (mean)
height double %10.0g Height value (mean)
BMI double %10.0g BMI value (mean)
all_drugs_1y byte %9.0g drugs within one year, # of different BNF
chapters

Sorted by: patid year

. count if y
3252

ear==10

. sum BMI if year==10, detail

BMI value (mean)
Percentiles Smallest

1% 19.5 2.5

5% 22.6 13.6

10% 24.2 15.4 Obs 2605
25% 26.8 16 Sum of Wgt. 2605
50% 30.4 Mean 195.7521
Largest Std. Dev. 8397.74
75% 34.5 64.6
90% 39.5 65.5 Variance 7.05e+07
95% 43 149 Skewness 51.00976
99% 51.9 428645 Kurtosis 2602.997
. count if year==12

3487

. sum BMI if year==12, detail
BMI value (mean)
Percentiles Smallest

1% 18.8 3.5

5% 22.3 14.7

10% 24.1 14.9 Obs 2315
25% 26.8 15.2 Sum of Wgt. 2315
50% 30.4 Mean 254.7009
Largest Std. Dev. 8730.968

75% 34.8 60.4

90% 39.4 61 Variance 7.62e+07
95% 43.1 112500 Skewness 43.92564
99% 52.8 404830 Kurtosis 2005.108

We present BMI characteristics for two representa-  (66.4%). A few very high BMI values are obviously
tive time points: 2009/10 (year 10) and 2011/12 (year  erroneous. Nevertheless, we make no corrections and
12), the last year of the study. At least one BMI meas- proceed to investigate the relationship between aver-
urement is available for 2605 of 3252 eligible individu- age BMI and polypharmacy, using a multi-level Poisson
als in 2009/10 (80.1%) and for 2315 of 3487 in 2011/12  regression model.
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. Xtset patid
panel variable: patid (unbalanced)

. xtpoisson all_drugs_1y BMI i.year, irr
Fitting Poisson model:

Iteration O: log likelihood = -37029.706
Iteration 1: log likelihood = -37029.705

Fitting full model:

Iteration O: log likelihood = -36643.082
Iteration 1: log likelihood = -35077.135
Iteration 2: log likelihood = -34869.319
Iteration 3: log likelihood = -34863.485
Iteration 4: log likelihood = -34863.481
Iteration 5: log likelihood = -34863.481

Random-effects Poisson regression Number of obs = 18658
Group variable: patid Number of groups = 4337
Random effects u_i ~ Gamma Obs per group: min = 1
avg = 4.3
max = 8
Wald chi2(8) = 155.80
Log likelihood = -34863.481 Prob > chi2 = 0.0000
all_drugs_1y IRR Std. Err. z P>zl [95% Conf. Intervall]
BMI 1.000001  7.07e-07 1.19 0.235 .9999995 1.000002

year
2005/6 1.038829 .0172718 2.29 0.022 1.005523 1.073239
2006/7 1.074331 .0176695 4.36 0.000 1.040252 1.1095627
2007/8 1.100251 .0179061 5.87 0.000 1.065709 1.135912
2008/9 1.133194 .0183833 7.71  0.000 1.09773 1.169804
2009/10 1.138911 .0185334 7.99  0.000 1.10316 1.175822
2010/11 1.1694 .0193558 9.45 0.000 1.132073 1.207959
2011/12 1.176261 .0198771 9.61 0.000 1.137941 1.215872
_cons 3.329395 .045813 87.41  0.000 3.240804 3.420409
/1nalpha -1.966134 .0344865 -2.033726  -1.898542
alpha .1399971 .004828 .1308471 .1497869

Likelihood-ratio test of alpha=0: chibar2(01) = 4332.45 Prob>=chibar2 = 0.000

The analysis on the original dataset indicates that the cleaning approach of the mibmi command to remove
relationship between BMI and polypharmacy is very unrealistic BMI values and correct using the provided
weak and non-significant. Next, we only use the simple  weight and height, if possible.
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. mibmi patid year BMI age, clean xnomi

sum BMI if year==10, detail

BMI value (mean)

Percentiles Smallest

1% 19.5 13.6

5% 22.7 15.4
10% 24.2 16 Obs 2603
25% 26.8 16.6 Sum of Wgt. 2603
50% 30.4 Mean 31.22808
Largest Std. Dev. 6.739653

75% 34.5 61.2
90% 39.5 64.6 Variance 45.42292
95Y% 43 65.5 Skewness 2.833741
99Y% 51.9 149 Kurtosis 39.60801

. sum BMI if year==12, detail
BMI value (mean)

Percentiles Smallest

1% 19 14.7

5% 22.3 14.9
10% 24.1 15.2 Obs 2312
25% 26.8 15.6 Sum of Wgt. 2312
50% 30.4 Mean 31.27124
Largest Std. Dev. 6.53911

75% 34.8 59.1
90% 39.4 60.4 Variance 42.75996
95Y% 42.8 60.4 Skewness .9336805
99Y% 52.7 61 Kurtosis 4.69274

A handful of extreme BMI observations were set to

repeat the multi-level Poisson regression analysis on this
missing but further corrections have been performed, cleaned dataset.

based on available weight and height measurements. We
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. Xtset patid
panel variable: patid (unbalanced)

. xtpoisson all_drugs_1y BMI i.year, irr

Fitting Poisson model:

Iteration O: log likelihood = -36836.649
Iteration 1: log likelihood = -36836.649

Fitting full model:

Iteration O: log likelihood = -36592.592
Iteration 1: log likelihood = -34998.598
Iteration 2: log likelihood = -34783.692
Iteration 3: log likelihood = -34776.463
Iteration 4: log likelihood = -34776.456
Iteration 5: log likelihood = -34776.456

Random-effects Poisson regression Number of obs = 18638
Group variable: patid Number of groups = 4334
Random effects u_i ~ Gamma Obs per group: min = 1
avg = 4.3
max = 8
Wald chi2(8) = 251.57
Log likelihood = -34776.456 Prob > chi2 = 0.0000
all_drugs_1ly IRR  Std. Err. z P>|z]| [95% Conf. Intervall
BMI 1.009969 .0010131 9.89 0.000 1.007985 1.011956

year
2005/6 1.038084 .0172791 2.26  0.025 1.004764 1.072509
2006/7 1.071399 .0176404 4.19 0.000 1.037377 1.106538
2007/8 1.094929 .0178421 5.57  0.000 1.060511 1.130463
2008/9 1.126312 .0182992 7.32  0.000 1.091011 1.162755
2009/10 1.128795 .0184135 7.43 0.000 1.093276 1.165468
2010/11 1.158824 .0192279 8.88 0.000 1.121745 1.19713
2011/12 1.167117 .0197645 9.13 0.000 1.129015 1.206505
_cons 2.462588 .0823865 26.94 0.000 2.306294 2.629475
/1nalpha -1.997716 .0349291 -2.066176 -1.929256
alpha .1356448 .004738 .1266693 .1452563

Likelihood-ratio test of alpha=0: chibar2(01) = 4120.39 Prob>=chibar2 = 0.000

Analysis on the (simply) cleaned datasets suggests mibmi command by requesting simple and advanced
there is statistically significant relationship between BMI  cleaning on the original dataset.
and polypharmacy. Next, we go one step further with the
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. mibmi patid year BMI age, weight(weight) height(height) clean xclean xclnp(0.2) xnomi
Regression cleaning, patients completed (1000s of 4633):
....4633

. sum BMI if year==10, detail

BMI value (mean)

Percentiles Smallest

1% 19.48738 13.61082

5% 22.62626 15.427
10% 24.28097 16.01948 Obs 2601
25% 26.75853 16.13539 Sum of Wgt. 2601
50% 30.34607 Mean 31.14049
Largest Std. Dev. 6.311912

75% 34.41049 58.65837
90% 39.29687 58.94834 Variance 39.84023
95% 42.77614 63.88196 Skewness .9887606
99% 51.64055 65.09373 Kurtosis 4.977097

. sum BMI if year==12, detail

BMI value (mean)

Percentiles Smallest

1% 19.07347 14.97018

5% 22.4323 15.1418
10% 24.08822 15.73361 Obs 2307
25% 26.75386 15.98455 Sum of Wgt. 2307
50% 30.40625 Mean 31.21512
Largest Std. Dev. 6.525595

75% 34.7489 58.63347
90% 39.46992 60.19419 Variance 42.58339
95% 42.86502 60.47646 Skewness .9519364
99% 52.46133 61.59169 Kurtosis 4.693461

A few more values are dropped due to regression clean-
ing (with a low 20% threshold defined by the xc1lnp (#)
option). Repeating the analysis, we obtain similar results.
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. Xtset patid

panel variable:

patid (unbalanced)

. xtpoisson all_drugs_1y BMI i.year, irr

Fitting Poisson model:

Iteration O: log likelihood = -36795.653
Iteration 1: log likelihood = -36795.653
Fitting full model:
Iteration O: log likelihood = -36559.907
Iteration 1 log likelihood = -34965.847
Iteration 2: log likelihood = -34749.567
Iteration 3: log likelihood = -34742.246
Iteration 4 log likelihood = -34742.238
Iteration 5: log likelihood = -34742.238
Random-effects Poisson regression Number of obs = 18622
Group variable: patid Number of groups = 4334
Random effects u_i ~ Gamma Obs per group: min = 1
avg = 4.3
max = 8
Wald chi2(8) = 258.26
Log likelihood = -34742.238 Prob > chi2 = 0.0000
all_drugs_1ly IRR Std. Err. z P>z [95% Conf. Intervall
BMI 1.010936 .0010707 10.27  0.000 1.00884 1.013037
year
2005/6 1.037299 .0172545 2.20 0.028 1.004026 1.071674
2006/7 1.070186 .0176112 4.12 0.000 1.036219 1.105266
2007/8 1.093714 .0178033 5.50 0.000 1.059371 1.12917
2008/9 1.124946 .0182691 7.25 0.000 1.089703 1.161329
2009/10 1.129587 .0184014 7.48 0.000 1.094091 1.166235
2010/11 1.15933 .0192135 8.92 0.000 1.122277 1.197606
2011/12 1.167963 .0197702 9.17  0.000 1.12985 1.207362
_cons 2.391486 .0839271 24.85 0.000 2.232521 2.561769
/1nalpha -1.998328 .0349578 -2.066844  -1.929812
alpha .1355618 .0047389 .1265847 .1451755
Likelihood-ratio test of alpha=0: chibar2(01) = 4106.83 Prob>=chibar2 = 0.000

Next, we use mibmi not only to clean the data but also
to generate a set of three MI variables holding imputed

values.
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. mibmi patid year BMI age, weight(weight) height(height) clean xclean xclnp(0.2) minum(3)

Regression cleaning, patients completed (1000s of 4633):

....4633

Calculating variation between observed and interpolated BMI (6 steps)

Imputing, patients completed (1000s of 4633):

....4633
. sum _1_BMI if year==10, detail
_1_BMI
Percentiles Smallest
1% 19.4 13.6
5% 22.7 15.4
10% 24.2 16 Obs 2780
25% 26.7 16.6 Sum of Wgt. 2780
50% 30.3 Mean 31.21903
Largest Std. Dev. 6.777494
75% 34.4 65.5
90% 39.5 65.94265 Variance 45.93442
95% 43 68.66491 Skewness 2.7556
99% 52.1 149 Kurtosis 37.03378
. sum _1_BMI if year==12, detail
_1_BMI
Percentiles Smallest
1% 19 14.9
5% 22.4 15.2
10% 24.2 15.6 Obs 2307
25% 26.8 15.7 Sum of Wgt. 2307
507% 30.4 Mean 31.28314
Largest Std. Dev. 6.531744
75% 34.8 59.1
90% 39.4 60.4 Variance 42.66367
95% 42.8 60.4 Skewness .9416641
99% 52.7 61 Kurtosis 4.697162
. tab _mi_miss
_mi_miss Freq. Percent Cum.
0 17,491 T4.39 T4.39
1 6,021 25.61 100.00
Total 23,512 100.00
tab _1_iinfo, missing
_1_iinfo Freq. Percent Cum.
0 1,152 4.90 4.90
22,360 95.10 100.00
Total 23,512 100.00
tab _mi_ipat
_mi_ipat Freq. Percent Cum.
0 17,491 74.39 74.39
1 6,021 25.61 100.00
Total 23,512 100.00
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We focus on the characteristics of variable 1 BMI,
but the imputed cases (not imputed values) are identical
across all three variables. For 2009/10 (year 10) and each
imputation set, the algorithm imputed 179 observations
(2780 now, compared to 2601 when only using simple
and advanced cleaning). Unsurprisingly, no values are
interpolated for the last time point, 20111/12 (year 12).
Three new variables provide information on the interpo-
lation process: mi miss flags all missing BMI observa-
tions; 1 iinfo flags cases where interpolated values
for 1 BMI were unrealistic and had to be constrained
(in this example there were none, amongst the 1152 that
were imputed); and mi ipat flags all patients for
whom at least one observation was interpolated, at any
point in time. The role of mi ipat is to allow users

. mi xtset patid
panel variable:
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to easily obtain the number of patients with at least one
interpolation:

keep if _mi_ipat==
(17491 observations deleted)

duplicates drop patid, force
Duplicates in terms of patid
(5141 observations deleted)

count
880

Using this interpolation dataset to run multiple impu-
tation analyses, with the mi estimate prefix, we
obtain similar results.

patid (unbalanced)

. mi estimate, irr: xtpoisson all_drugs_1y BMI i.year

(4401 m=0 obs. now marked as complete)
(3270 m=0 obs. now marked as incomplete)

(55791 values of imputed variable BMI in m>0 updated to match values in m=0)

Multiple-imputation estimates Imputations = 3
Random-effects Poisson regression Number of obs 19774
Group variable: patid Number of groups 4334
Random effects u_i ~ Gamma Obs per group: min = 1
avg = 4.6
max = 8
Average RVI = 0.0001
Largest FMI = 0.0002
DF adjustment: Large sample DF: min = b5.20e+07
avg = 2.27e+11
max = 2.24e+12
Model F test: Equal FMI F( 8, 1.2e+09) = 33.07
Within VCE type: 0IM Prob > F = 0.0000
all_drugs_1y IRR Std. Err. t P>t [95% Conf. Intervall
BMI 1.010885 .0010804 10.13  0.000 1.008769 1.013004

year
2005/6 1.032222 .016886 1.94 0.053 .9996514 1.065855
2006/7 1.068995 .0172694 4.13 0.000 1.035678 1.103384
2007/8 1.088244 .0174757 5.27  0.000 1.054526 1.12304
2008/9 1.120471 .0178594 7.14  0.000 1.086009 1.156028
2009/10 1.128084 .0181358 7.50 0.000 1.093093 1.164196
2010/11 1.158014 .0188572 9.01 0.000 1.121638 1.195569
2011/12 1.172456 .0198488 9.40 0.000 1.134191 1.212011
_cons 2.388141 .0845235 24.60 0.000 2.228093 2.559685
/1lnalpha -1.930755 .0336021 -1.996614  -1.864896
alpha .1450386 .0048736 .1357943 .1549123
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Finally, we can use all four aspects of mibmi with the
original dataset: simple and advanced cleaning, interpo-

lation and extrapolation.
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interpolation and cleaning and 2601 with cleaning only).
For the last time point, 20111/12 (year 12), 416 values

were imputed with extrapolation (2723 now, compared to

. mibmi patid year BMI age, weight(weight) height(height) clean xclean xclnp(0.2) ixtrapol

> ate minum(3)

Regression cleaning, patients completed (1000s of 4633):

....4633

Calculating variation between observed and interpolated BMI (6 steps)

Imputing, patients completed (1000s of 4633):

....4633
. sum _1_BMI if year==10, detail
_1_BMI
Percentiles Smallest
1% 19.1 9.559537
5% 22.3 12.249
10% 24 13.14622 Obs 3011
25% 26.6 13.6 Sum of Wgt. 3011
50% 30.2 Mean 31.0892
Largest Std. Dev. 6.866588
75% 34.49384 65.5
90% 39.3 67.32968 Variance 47.15003
95% 42.98726 77.9844 Skewness 2.563332
99% 51.9 149 Kurtosis 33.58314
. sum _1_BMI if year==12, detail
_1_BMI
Percentiles Smallest
1% 18.5 13.46851
5% 22.2 14.9
10% 23.9 15.2 Obs 2723
25% 26.7 15.6 Sum of Wgt. 2723
50% 30.4 Mean 31.29094
Largest Std. Dev. 6.69509
75% 34.9 60.4
90% 39.6 60.4 Variance 44.82423
95% 43.2 61 Skewness .9280067
99% 52.8 66.12741 Kurtosis 4.741232
. tab _1_xinfo, missing
_1_xinfo Freq. Percent Cum.
0 1,182 5.03 5.03
1 1 0.00 5.03
22,329 94.97 100.00
Total 23,512 100.00
. tab _mi_xpat
_mi_xpat Freq. Percent Cum.
0 15,477 65.83 65.83
1 8,035 34.17 100.00
Total 23,512 100.00

Again, we focus on the characteristics of variable 1
BMI. For 2009/10 (year 10) and each imputation set, the
algorithm now imputed 410 observations, of which 213
are extrapolations (3011 now, compared to 2780 with

2307 before) . Additional new variables provide informa-
tion on the extrapolation process: 1 xinfo flags cases
where interpolated values for 1 BMI were unrealistic
and had to be constrained (in this example there was one
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amongst the 1183 extrapolated values); and mi xpat
flags all patients for whom at least one observation was
interpolated, at any point in time (with a role similar
to mi ipat, allowing users to obtain the number of
patients with at least one extrapolation).

Results from a multiple imputation analysis on the
final dataset obtained with mibmi were similar to

. mi xtset patid

panel variable: patid (unbalanced)
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those previously obtained, as expected. Practically, the
requested imputations are assuming MCAR missingness
since there is no conditional missingness on observed
data, and hence inference estimates should be very simi-
lar to what we observed previously. However, this is not
necessarily the case for standard errors (although in this
example they are):

. mi estimate, irr: xtpoisson all_drugs_1ly BMI i.year

(8708 m=0 obs. now marked as complete)
(1577 m=0 obs. now marked as incomplete)

(55791 values of imputed variable BMI in m>0 updated to match values in m=0)

Multiple-imputation estimates Imputations = 3
Random-effects Poisson regression Number of obs = 20957
Group variable: patid Number of groups = 4334
Random effects u_i ~ Gamma Obs per group: min = 1
avg = 4.8
max = 8
Average RVI = 0.0022
Largest FMI = 0.0192
DF adjustment: Large sample DF: min = 5603.51
avg = 2.69e+08
max = 1.01e+09
Model F test: Equal FMI F( 8, 1.3e+06) = 26.82
Within VCE type: 0IM Prob > F = 0.0000
all_drugs_1y IRR Std. Err. t P>t [95% Conf. Intervall
BMI 1.010908 .0010641 10.31  0.000 1.008824 1.012996

year
2005/6 1.036132 .0167588 2.19 0.028 1.0038 1.069505
2006/7 1.072188 .0170877 4.37 0.000 1.039214 1.106207
2007/8 1.091743 .0172737 5.55 0.000 1.058407 1.126129
2008/9 1.125405 .0176589 7.53 0.000 1.091321 1.160554
2009/10 1.102981 .017306 6.25 0.000 1.069578 1.137427
2010/11 1.134063 .0179397 7.95 0.000 1.099441 1.169775
2011/12 1.074656 .0175422 4.41  0.000 1.040818 1.109594
_cons 2.380235 .0830446 24.86 0.000 2.222886 2.548723
/1nalpha -1.884659 .0325785 -1.948512 -1.820806
alpha .1518809 .0049481 .142486 .1618952
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Performance

To assess the performance of mibmi, in relation to the
recently presented twofold algorithm, we used a ver-
sion of the diabetes patients dataset we presented previ-
ously. For this exercise, the dataset included additional
information on HbAlc (glucose), systolic and diastolic
blood pressure and total cholesterol. First, we applied the
mibmi algorithm with the simple and regression clean-
ing options to obtain a more reliable measure for BMI,
thus not allowing extreme and erroneous values to affect
the comparison.Then we performed two assessments
of performance, when one or three values were miss-
ing between two observations for each individual. We
did not choose to evaluate through a simulations frame-
work since the assumptions under which we would have
simulated the data would be critical to the analyses and
the evaluation could be seen as self-fulfilling proph-
ecy. Rather, we used real data to assess deviations from
observations. Therefore, we could not evaluate the per-
formance (e.g. coverage, power) of the inferential models
since the true effects and associations were unknown.

In the first assessment, we randomly selected 10,000
people with 3 or more BMI measurements over the study
period and we randomly set one BMI observation per
person to missing. We then used mibmi, with both sim-
ple (x1) and multiple imputation options (x100), and
twofold in which we used all five available biological
parameters for the multiple imputations. Under a mul-
tiple imputations approach, we obtained 100 BMI vari-
ables with imputed values, for each algorithm. Each set
was then aggregated and we obtained their mean value
for each of the 10,000 ‘missing’ observations. Finally,
these aggregates, as well as the simple imputation BMI
from mibmi, were compared to the ‘true’ BMI values
to calculate absolute mean differences (mean error).
Table 1 presents the overall results and for interpolated
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and extrapolated values separately, since the underly-
ing principles in their imputations are different, for
mibmi at least. Performance for interpolated values
appears to be similar while twofold performs better for
extrapolations.

In the second assessment, which focused on interpola-
tion, we again randomly selected 10,000 people but this
time with 5 or more BMI measurements over the study
period. Next, for each individual, we randomly set three
concurrent BMI observations to missing but ensuring
these were observations that would be imputed as inter-
polations under the mibmi algorithm (i.e. observations
were available both before and after these ‘missing’ val-
ues, for all patients). As before, we used mibmi, with
both simple and multiple imputation options, and two-
fold with the five available biological parameters for the
multiple imputations and we aggregated to obtain mean
errors. Results are presented in Table 2, both overall and
for each of the three sequential observations that we set
to missing. Performance was better with mibmi, espe-
cially for the second time point, the one furthest away
from observations. A prediction example using a single
patient is presented in Fig. 2.

These results indicate that, for interpolating BMI val-
ues, there is little useful information in other biological
parameters and the additional effort of obtaining them
is not justified. The mibmi algorithm generates realistic
linear or curvilinear trends for BMI over time and the
higher computational complexity pays off more as the
number of concurrent missing values increases. How-
ever, for extrapolating BMI values, performance is bet-
ter with the twofold fully conditional specification
algorithm and use of all biological parameters, at least
when only two observations per individual are avail-
able. In such a scenario, each extrapolation is based on
an individual-level model that uses only two observations

Table 1 Mean errors between observed and imputed BMI values, one missing value per individual

Cases Method? Obs. Mean Std.Dev Min Max
AllP Simple x1 10000 1.113 1.353 0.000 26.900
mibmi x 100 10000 1.120 1.351 0.000 26.888
Twofold x 100 10000 0.949 1.026 0.000 15481
Interpolation Simple x1 6132 0.801 0.819 0.000 11.651
mibmi x 100 6132 0.808 0.819 0.001 11429
Twofold x 100 6132 0.804 0.810 0.000 11.180
Extrapolation Simple x1 3868 1.606 1.808 0.000 26.900
mibmi x 100 3868 1614 1.805 0.000 26.888
Twofold x 100 3868 1.179 1.260 0.001 15481

2 Simple refers to a single imputation that ignores variability in the observations (option xs imp); mibmi refers to the default multiple imputation approach with the
command and 100 imputations; twofold refers to the twofold algorithm described in the paper and 100 imputations

b All refers to both interpolations (between observations imputations) and extrapolations (not between observations imputations)



Kontopantelis et al. BMC Res Notes (2017) 10:41

Page 19 of 21

Table 2 Mean errors between observed and imputed BMI values, three sequential missing values per individual (interpo-

lation only)

Cases Method? Obs. Mean Std.Dev Min Max
AllP Simple x 1 30,000 0.980 1.002 0.000 16.017
mibmi x 100 30,000 0.989 1.004 0.000 16.034
Twofold x 100 30,000 1.137 1.155 0.000 18.318
Time point 1 Simple x1 10,000 0.935 0.945 0.000 9.829
mibmi x 100 10,000 0.943 0.947 0.000 9.779
Twofold x 100 10,000 1.094 1.114 0.000 18.318
Time point 2 Simple x 1 10,000 1.059 1.068 0.000 16.017
mibmi x 100 10,000 1.069 1.071 0.000 16.034
Twofold x 100 10,000 1.234 1.231 0.000 17.126
Time point 3 Simple x1 10,000 0.947 0.984 0.000 10.645
mibmi x 100 10,000 0.955 0.985 0.000 10.538
Twofold x 100 10,000 1.084 1111 0.000 13473

2 Simple refers to a single imputation that ignores variability in the observations (option xs imp); mibmi refers to the default multiple imputation approach with the
command and 100 imputations; twofold refers to the twofold algorithm described in the paper and 100 imputations

b All refers to aggregates across all three time points

Observed and predicted BMI measurements
mibmi twofold
< < |
< <
2 . 2 <
* L 2 y
© | ~e © | *
™ [sp]
= =
o o g
@ | ©
N N
< < 4
N N
o o
N N
T T T T T T T T T T T T T T T T T T
4 6 8 10 12 4 6 8 10 12
Years of follow-up Years of follow-up
Imputation 1 Imputation 2
—=e— Imputation 3 —e—— Imputation 4
Imputation 5 L 2 Observed
Fig. 2 Predictions example for a single patient
which, unsurprisingly, can generate extreme values in  Discussion

some cases. Although the accuracy of extrapolation
predictions might improve for mibmi as the number of
available observations increases, performance with the
twofold algorithm should remain better.

In this paper we presented mibmi, a new command for
cleaning and imputing BMI values, or other variables
with very low individual-level variability, in longitudi-
nal settings. Using a pseudo-anonymised dataset from
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the Clinical Practice Research Datalink we described the
command’s cleaning and imputation functions over a few
examples and we also assessed its performance. The com-
mand is available to download from the ssc archive by
typing ssc install mibmi within Stata. Alternatively read-
ers can automatically download from the first author’s
personal web page by typing net from http://statanalysis.
co.uk within Stata and following the instructions.

We argue that mibmi can be a useful tool for
researchers who wish to use longitudinal values for BMI
or other variables with very low individual-level vari-
ability, in descriptive or inferential analyses. The com-
mand is fully compatible with the mi family of Stata
and we incorporated numerous features to allow for
flexibility in the imputation process, allowing the user
to assume certain MNAR mechanisms. The same pro-
cesses could be used for imputation of other param-
eters, providing one can assume very strong correlation
over time and linearity.

The algorithm’s advantage is its ability to provide
multiple datasets with imputed values for the vari-
able of interest when no other information is available,
except for an individual identifier and time. For inter-
polations, BMI performance was overall better than in
other multiple imputation approaches that use addi-
tional biological data. Because of the command’s indi-
vidual by individual approach, the interpolation and,
especially, extrapolation processes are computationally
expensive and, for very large datasets (of hundreds of
thousands of patients), the command can take weeks
to execute. When multiple imputation is selected, we
recommend 5 generated datasets. However, the process
can be parallelized and for large centralized data repos-
itories, like the UK Primary Care Databases (CPRD,
THIN, QResearch), mibmi could be applied once at a
high level and the imputed BMI values distributed to
users when requested, on a protocol-by-protocol basis.
The algorithm will effectively ignore patients with
fewer than 2 BMI values over time and hence research-
ers are unlikely to have a complete final dataset to ana-
lyze. Also note that users who extrapolate should take
care to impute at appropriate times only (e.g. not when
age <18).

In the context of BMI imputation, when additional
biological information is available (e.g. blood pressure
values), we advise its use in conjunction with twofold,
especially for extrapolations. In the first step, users can
execute mibmi to obtain a more reliable BMI variable
through the cleaning options and generate interpolated
values for patients with at least two observations over the
study period. In the second step they can use the gener-
ated variable with the twofold algorithm, to obtain
multiple imputations for BMI and other variables.
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