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SHORT REPORT

Arginase-I enhances vascular 
endothelial inflammation and senescence 
through eNOS-uncoupling
Cuicui Zhu1, Yi Yu1, Jean‑Pierre Montani1,2, Xiu‑Fen Ming1,2* and Zhihong Yang1,2*

Abstract 

Background: Augmented arginase‑II (Arg‑II) is implicated in endothelial senescence and inflammation through a 
mutual positive regulatory circuit with S6K1. This study was conducted to investigate whether Arg‑I, another isoform 
of arginase that has been also reported to play a role in vascular endothelial dysfunction, promotes endothelial senes‑
cence through similar mechanisms.

Results: The non‑senescent human endothelial cells from umbilical veins (passage 2 to 4) were transduced with 
empty recombinant adenovirus vector (rAd/CMV) as control or rAd/CMV‑Arg‑I to overexpress Arg‑I. Overexpressing 
Arg‑I promoted eNOS‑uncoupling, enhanced senescence markers including p53‑S15, p21 and senescence‑associated 
β‑galactosidase (SA‑β‑gal) staining, and increased inflammatory vascular adhesion molecule‑1 (VCAM‑1) and intercel‑
lular adhesion molecule‑1 (ICAM‑1) as well as monocyte adhesion to endothelial cells without activating S6K1. All the 
effects of Arg‑I were inhibited by the anti‑oxidant N‑acetylcysteine (NAC).

Conclusions: Our study demonstrates that Arg‑I promotes endothelial senescence and inflammatory responses 
through eNOS‑uncoupling unrelated to activation of the S6K1 pathway.
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Background
Aging is a prominent risk factor for cardiovascular dis-
eases [1]. Evidence has been presented that vascular 
aging and age-associated vascular diseases are attribut-
able to endothelial senescence, an irreversible prolifera-
tion arrest with functional alterations [2–5]. Endothelial 
senescence or aging is characterized by reduced nitric 
oxide (NO) generation with concomitant augmented pro-
duction of O2

.− resulting from endothelial NO synthase 
(eNOS)-uncoupling [2, 6–8], and enhanced inflamma-
tory molecule expression such as VCAM-1 and ICAM-1 
[3, 9]. This leads to enhanced adhesion and transmigra-
tion of monocytes into vascular wall, which facilitates the 

initiation and progression of atherosclerosis in aging [10, 
11].

Among the various mechanisms of eNOS-uncoupling 
in aging and cardiovascular pathologies [8], augmented 
arginase activity in endothelial cells has been reported 
to cause eNOS-uncoupling through competing for their 
common substrate l-arginine [12]. Two isoforms of argi-
nase encoded by different genes have been identified, i.e., 
Arg-I and Arg-II [13]. Previous studies including our own 
have shown that in human and murine vascular endothe-
lial cells, Arg-II is the predominant isoenzyme [14–17], 
and inhibition of Arg-II improves endothelial function in 
mouse models of atherosclerosis, diabetes, and aging [14, 
15, 18, 19].

Studies also report that Arg-I is the major isoform 
expressed in rat endothelial cells and contributes to 
impaired endothelial function in aging of this species [12, 
20, 21]. Moreover, Arg-I is shown to be upregulated in 
the bone marrow stromal cells of diabetic mouse models, 
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contributing to diabetes-associated osteoporosis [22]. A 
recent study also reports that Arg-I is upregulated in a 
mouse myocardial infarction model and in human aortic 
endothelial cells under ischemia through the transcrip-
tion factor FoxO4, leading to decreased NO production 
and cardiac damage [23]. Interestingly, both Arg-I and 
Arg-II are upregulated in the perivascular adipose tis-
sues of mice fed high-fat-diet, which is linked to eNOS-
uncoupling in this tissue [24]. These studies suggest a 
role of both Arg-I and Arg-II in various aspects of cardio-
vascular disease depending on the models, species, and 
tissues of interest. There is evidence that Arg-I and Arg-
II exert certain distinct biological functions, although 
they share the same enzymatic function in metabolizing 
l-arginine [25].

Therefore, it is important to investigate whether 
Arg-I and Arg-II share the same molecular mechanism 
in causing endothelial dysfunction. Recently, we pro-
vided evidence for a causal role of Arg-II in endothelial 
inflammatory responses and endothelial senescence 
through a mutual positive regulatory circuit with S6K1 
[16]. However, it is unknown whether upregulation of 
Arg-I is capable of inducing aging-associated endothelial 
dysfunction. The main goal of our short study is there-
fore to investigate whether Arg-I plays a causal role in 
promoting endothelial cell senescence through similar 
mechanisms as Arg-II, i.e., through mTOR/S6K1 and/or 
eNOS-uncoupling.

Methods
Materials
All chemicals including those used for immunoblotting 
and anti-tubulin (T5168) antibody were obtained from 
Sigma (Buchs, Switzerland). Antibody against p21Cip1 
(OP64) was purchased from Calbiochem (Genève, Swit-
zerland); antibody against phosphor-p53-S15 (#9284s) 
was from Cell Signalling (Allschwil, Switzerland); anti-
bodies against Arg-I (sc-18351), Arg-II (sc-20151) and 
p53 (sc-6243) were from Santa-Cruz (Nunningen, Swit-
zerland); Alexa Fluor680-conjugated anti-mouse IgG 
(A21057); Carboxyfluorescein diacetate succinimidyl 
ester (CFDA-SE) and dihydroethidium (DHE) were from 
Molecular Probes/Invitrogen (Lucerne, Switzerland); 
IRDye800-conjugated anti-rabbit IgG (926-32211) were 
from LI-COR Biosciences (Bad Homburg, Germany); the 
membrane-permeable 4,5-Diaminofluorescein diacetate 
(DAF-2DA) was from VWR international SA (Dietikon, 
Switzerland); X-gal was from Promega (Dübendorf, Swit-
zerland); Endothelial cell growth supplement (ECGS) 
pack was from PromoCell GmbH (Allschwil, Switzer-
land) and all cell culture media and materials were pur-
chased from Gibco BRL (Lucerne, Switzerland).

Generation of recombinant adenoviral (rAd)
Expression plasmids encoding a murine Arg-I (pCMV6-
kan/neo-ArgI) was purchased from OriGene Technolo-
gies, Inc. Recombinant adenoviruses expressing the 
murine Arg-I (rAd/CMV-Arg-I) was carried out with 
the Gateway Technology (Invitrogen life Technologies) 
according to manufacturer’s instruction. The control 
empty rAd/CMV was from Invitrogen life Technologies.

Endothelial cell culture and adenoviral transduction of the 
cells
The primary human umbilical vein endothelial cells 
(HUVEC) were generated from human umbilical cords. 
Isolation, culture and transduction of HUVEC by 
recombinant adenovirus were performed as previously 
described [2]. Human umbilical cords were obtained 
anonymously, following a prior informed consent, from 
healthy mothers after normal, full-term deliveries at 
the Daler Hospital, Fribourg, which does not require 
approval from a cantonal ethics committee according to 
the applicable laws, rules and regulations of the Swiss 
Association of Ethics Committees for research involving 
humans. The non-senescent cells of passage 2 to 4 (P2 
to P4) were used for experiments. For experiments with 
NAC, NAC (5 mmol/L, pH 7.4) was added immediately 
after transduction until experiments were performed.

Senescence‑associated β‑galactosidase (SA‑β‑gal) staining
SA-β-galactosidase staining was performed 7  days post 
transduction as described [2].

Immunoblotting
Cell lysate preparation, SDS-PAGE, and immunoblotting, 
antibody incubation and signal detection were performed 
as described [26]. Quantification of the signals was per-
formed using NIH Image 1.62 software.

Detection of NO and superoxide level
NO and superoxide levels in cultured endothelial cells 
were assessed by staining the cells with fluorescent dyes 
DAF-2DA and DHE, respectively, as described previously 
[2].

Monocyte adhesion to endothelial cells
The adhesion assay was performed as described previ-
ously [26]. Briefly, the human monocytic THP-1 cells 
were labeled with 5 μmol/L CFDA-SE in PBS at 37 °C for 
8 min. The labeling was stopped with 1 ml of heat-inac-
tivated FBS for 1  min. The labeled monocytes (4 ×  105 
THP-1) were then added to the HUVECs that were trans-
duced with recombinant adenoviruses and serum-starved 
for 12 h prior to the addition of labeled monocytes. After 
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incubation for 15 min at 37 °C, the non-adherent THP-1 
cells were washed twice with PBS and fixed in 2% para-
formaldehyde. The images of adherent monocytes were 
captured under the fluorescent microscope (three dif-
ferent fields per sample were captured). The number of 
adherent monocytes was counted using the NIH ImageJ 
software (U. S. National Institutes of Health).

Statistics
Data are given as mean  ±  SEM. In all experiments, n 
represents the number of independent experiments indi-
cated in each figure. The Kolmogorov–Smirnov test was 
used to first determine whether the data deviated from 
Gaussian distributions. For normally distributed val-
ues, statistical analysis was performed with the Student 
t test for unpaired observations or analysis of variance 
(ANOVA) with Bonferroni’s post-test. For non-normally 
distributed values, nonparametric statistical analysis was 
performed with the Mann–Whitney test or the Kruskal–
Wallis test with a Dunn’s multiple comparison post-test. 
p ≤ 0.05 was considered statistically significant.

Results
Overexpressing Arg‑I in endothelial cells up‑regulates 
adhesion molecule expression
In human endothelial umbilical vein cells, in which 
endogenous Arg-I expression is not detectable [14–16], 
adenovirus-mediated ectopic expression of Arg-I, as veri-
fied by immunoblotting (Fig. 1a), significantly enhanced 
expression levels of the inflammatory adhesion molecules 
i.e., VCAM-1 and ICAM-1 as well as the senescence 
markers, including p53-S15, p21Cip1 (Fig.  1a), and the 
number of SA-β-gal positive cells (see Fig. 3b in the later 
section). In contrast to the previously published study 
investigating the Arg-II isoenzyme [16], Arg-I did not 
activate mTOR/S6K1 signalling pathway as monitored by 
the phosphorylation status of its substrate S6 at S235/236 
(Fig.  1a). To ensure that the effect of Arg-I overexpres-
sion was not due to the changes in Arg-II, the expres-
sion of Arg-II was monitored by immunoblotting. The 
Arg-II expression tended to be downregulated by Arg-I 
overexpression in the endothelial cells. However, this did 
not reach statistical significance (Fig.  1b), which rather 
excludes a role of Arg-II in Arg-I-induced endothelial 
senescence and dysfunction. These results provide evi-
dence for a causal role of Arg-I in promoting endothe-
lial senescence and senescence-associated inflammatory 
responses, which is independent of S6K1 activation.

Overexpressing Arg‑I in endothelial cells causes 
eNOS‑uncoupling
In endothelial cells, overexpression of Arg-I caused eNOS-
uncoupling, i.e., impaired NO production (DAF-2DA 

staining) and enhanced intracellular superoxide gen-
eration (DHE staining) which was inhibited by the eNOS 
inhibitor L-NAME (1  mmol/L, 1  h, Fig.  2a). This result 
demonstrates a causal role of Arg-I in eNOS-uncoupling. 
Moreover, treatment of the cells with anti-oxidant NAC 
(5 mmol/L) prevented eNOS-uncoupling evoked by Arg-I, 
i.e., inhibition of superoxide generation (DHE signal) and 
enhanced bioavailability of NO (DAF-2DA signal), demon-
strating re-coupling of eNOS by the drug (Fig. 2b).

Recoupling of eNOS prevents Arg‑I‑induced endothelial 
inflammation and senescence
We then further investigated if recoupling of eNOS func-
tion is able to prevent senescence-promoting effects 
of Arg-I. For this purpose, NAC (5 mmol/L) was added 
to cells overexpressing Arg-I in young endothelial cells 
to recouple eNOS function as show in Fig.  2b. Cellu-
lar senescence and inflammatory responses caused by 
Arg-I gene overexpression, (i.e., enhanced VCAM-1 and 
ICAM-1 expression, elevated p53-S15 and p21Cip1 pro-
tein levels, and increased number of positively stained 
cells for SA-β-gal), were all prevented by NAC (Fig.  3a, 
b). In accordance, adhesion of THP-1 monocytes on 
endothelial cells was significantly enhanced in the cells 
with Arg-I gene overexpression, which was inhibited by 
NAC (Fig.  3c). These results demonstrate that eNOS-
uncoupling is not only associated with endothelial senes-
cence, but also mediates endothelial senescence and 
senescence-associated inflammation caused by Arg-I.

Discussion
Endothelial senescence phenotypes including eNOS dys-
function and inflammatory activation are considered to 
promote age-associated progression of vascular diseases 
[10, 11, 27]. Enhanced expression and activity of argin-
ase including both Arg-I and Arg-II isoforms have been 
shown to play a role in vascular aging [12, 15, 16, 19, 
21, 28]. Our recent published study provides additional 
evidence that Arg-II isoenzyme is not only involved in 
eNOS-uncoupling, but also plays a causal role in pro-
moting endothelial aging [16]. Moreover, we uncovered 
a novel mechanism by which Arg-II promotes endothe-
lial senescence, i.e. through a positive feedback loop 
with the S6K1 pathway, an important player in cellular 
and organism aging [16]. The isoenzyme Arg-I, which 
was originally identified as a constitutively-expressed 
enzyme in hepatocytes, is also inducible in other cells/
tissues including macrophages, endothelial cells in the 
heart of mice or endothelial cells of rats, bone marrows, 
and perivascular adipose tissues [23, 24, 26]. Although 
both isoenzymes share the same enzymatic function in 
metabolizing l-arginine, there is evidence that Arg-I and 
Arg-II exert certain distinct biological functions [25]. In 
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the current study, we demonstrate that Arg-I, once over-
expressed in vascular endothelial cells, similar to Arg-II, 
also plays a causal role in promoting endothelial senes-
cence. However, this effect of Arg-I is independent on a 
crosstalk with S6K1 signalling.

Previous studies, including our own, have shown that 
in human and murine endothelial cells, Arg-II is the pre-
dominant isoenzyme [14–17]. Our studies on the roles of 
arginase in various pathologic cardiovascular processes 
have thus far focused on Arg-II because of the nature 
of our working system, i.e. human endothelial cells and 
mice as animal model [14, 16, 26, 29–33]. Despite the dif-
ference in their expression pattern in various species, the 
role of Arg-I and Arg-II in eNOS dysfunction and aging 
seems the same [12, 15, 19, 21, 28], suggesting that they 
exert their physiological or pathophysiological functions 
through similar mechanism(s). However, direct evi-
dence remains to be provided. In the current study, by 

overexpressing Arg-I in HUVECs which do not express 
detectable level of Arg-I under basal conditions [14–
16], we demonstrate that Arg-I, once expressed in the 
cells, also plays a causal role in induction of endothelial 
senescence phenotype including increased senescence 
markers, eNOS-uncoupling, elevated adhesion mol-
ecule expression, enhanced monocyte-endothelial cell 
interaction. Similar to Arg-II, Arg-I-induced endothelial 
senescence phenotype is attributable to eNOS-uncou-
pling, since the recoupling of eNOS by anti-oxidant 
NAC blunted the effect of Arg-I. However, Arg-I does 
not share all the functions of Arg-II. We have recently 
provided evidence showing that a mutual positive cross-
talk between S6K1 and Arg-II causes eNOS-uncoupling, 
leading to acceleration of vascular endothelial aging [16]. 
In contrast to Arg-II [16, 32], we did not observe S6K1 
activation by overexpressing Arg-I in the same type of the 
cells, suggesting that S6K1 is not necessarily the mediator 
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Fig. 1 Overexpression of Arg‑I promotes endothelial senescence and inflammation. The non‑senescent endothelial cells (passage 2 to 4) were 
transduced with empty rAd/CMV vector as control (con) or rAd/CMV‑Arg‑I (Arg‑I). Forty‑eight hours post‑transduction, the cells were serum‑starved 
for 16 h, the cell lysates were then prepared and subjected to immunoblotting analysis of a Arg‑I, expression of endothelial inflammation markers 
VCAM‑1 and ICAM‑1, and senescence markers p53‑S15, p53 and CDK inhibitor p21Cip1 levels; b Arg‑I and Arg‑II expression. Bar graphs in the right 
panels show quantification of the signals. Tubulin served as loading control. ***p < 0.005 vs. control (con). n.s. not significant
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of Arg-I-induced eNOS-uncoupling and cellular senes-
cence. Moreover, we found no significant increase of 
Arg-II (rather a tendency toward a decrease) in the cells 
overexpressing Arg-I. These results exclude the possibil-
ity that the effect of Arg-I is mediated through Arg-II.

Conclusion
Taken together, our study provides evidence for a causal 
role of Arg-I in promoting endothelial senescence, con-
firming that both Arg-I and Arg-II, once upregulated, 
have similar functions to induce eNOS-uncoupling and 
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Fig. 2 Overexpression of Arg‑I causes eNOS uncoupling, which is prevented by antioxidant NAC. Cells were transduced as described in Fig. 1. Forty‑
eight hours post‑transduction, the cells were serum‑starved for 16 h and then subjected to DHE and DAF‑2DA staining for detection of O2

.− (red) and 
NO (green), respectively. a Cells were treated with or without the eNOS inhibitor L‑NAME (1 mmol/L, 1 h) during the last hour to demonstrate eNOS‑
uncoupling. b NAC (5 mmol/L) was added immediately after transduction and present in the culture medium until experiments were performed. 
Bar graphs in the corresponding right panels show quantification of the signals. *p < 0.05, **p < 0.01 and ***p < 0.005 vs. control (con); ##<0.01 and 
vs. Arg‑I. Scale bar  0.2 mm

(See figure on next page.) 
Fig. 3 The antioxidant NAC significantly blunted senescence and inflammation caused by Arg‑I overexpression in endothelial cells. Non‑senescent 
endothelial cells were transduced and treated with NAC as described in Fig. 2b. a Immunoblotting analysis of endothelial inflammation markers 
VCAM‑1 and ICAM‑1 expression, and senescence markers p53‑S15 and p21Cip1 levels. Tubulin served as loading control. Lysates were prepared 64 h 
post‑transduction with serum‑starvation for the last 16 h. b SA‑β‑gal staining on day 5 post‑transduction. Bar graphs show quantification of rela‑
tive of SA‑β‑gal positive cells. c Monocytes adhesion assay. Arg‑I overexpressing HUVECs were treated with or without NAC (5 mmol/L, 64 h) after 
transduction. CFDA‑SE fluorescence labeled THP‑1 monocytes were then added to HUVECs. After washing, adhesion of the labeled monocytes to 
endothelial cells was evaluated. Bar graphs in the right or lower panels show quantification of the corresponding signals. ***p < 0.005 vs. control (con). 
#p < 0.05, ##p < 0.01 vs. Arg‑I. Scale bar  0.2 mm



Page 6 of 8Zhu et al. BMC Res Notes  (2017) 10:82 

0

2

4

6

Fo
ld

ch
an

g e

***

***

#
#

n=4

p53-S15/tubulin
p53/Tubulin
p21/Tubulin

Con Arg-I Arg-I 
    +

0

5

10

15

Fo
ld

ch
an

g e

VCAM-1/Tubulin
ICAM-1/Tubulin

n=4
***

***

##
##

Con Arg-I Arg-I 
    +
NAC

VCAM-1 

ICAM-1 

p53-S15

Tubulin

Arg-I 

a

0

2

4

6

8

A
dh

er
en

t m
on

o c
yt

es
(F

o l
d

ch
an

g e
)

n=3
***

##

Con Arg-I Arg-I 
    +
NAC

0

20

40

60

80

%
SA

-β
-g

a l
po

s i
t iv

e
ce

lls ***

#

Con Arg-I Arg-I
NAC

n=4

NAC
SA-β-gal

Arg-I 
+ 

NAC

Con Arg-I 

CFDA-SE labelled THP1 adhesion to EC

Arg-I 
+ 

NAC

Con Arg-I 

b
c

Con Arg-I Arg-I 
+ 

NAC

Con Arg-I 

p53

p21

Tubulin

Arg-I 
+ 

NAC



Page 7 of 8Zhu et al. BMC Res Notes  (2017) 10:82 

accelerate endothelial senescence. In contrast to Arg-II, 
the effect of Arg-I does not involve activation of S6K1 
signaling. The molecular basis for this subtle difference 
between Arg-I and Arg-II awaits further investigation.
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