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of branching thalli of liverworts
Pirom Konglerd1, Catherine Reeb2, Fredrik Jansson1 and Jaap A. Kaandorp1*

Abstract 

Background:  Many organisms such as plants can be characterized as complex-shaped branching forms. The mor-
phological quantification of the forms is a support for a number of areas such as the effects of environmental factors 
and species discrimination. To date, there is no software package suitable for our dataset representing the forms. We 
therefore formulate methods for extracting morphological measurements from images of the forms.

Results:  As a case study we analyze two-dimensional images of samples from four groups belonging to three spe-
cies of thalloid liverworts, genus Riccardia. The images are pre-processed and converted into binary images, then skel-
etonized to obtain a skeleton image, in which features such as junctions and terminals are detected. Morphological 
measurements known to characterize and discriminate the species in the samples such as junction thickness, branch 
thickness, terminal thickness, branch length, branch angle, and terminal spacing are then quantified. The measure-
ments are used to distinguish among the four groups of Riccardia and also between the two groups of Riccardia 
amazonica collected in different locations, Africa and South America. Canonical discriminant analysis results show that 
those measurements are able to discriminate among the four groups. Additionally, it is able to discriminate R. ama-
zonica collected in Africa from those collected in South America.

Conclusions:  This paper presents general automated methods implemented in our software for quantifying two-
dimensional images of complex branching forms. The methods are used to compute a series of morphological meas-
urements. We found significant results to distinguish Riccardia species by using the measurements. The methods are 
also applicable for analyzing other branching organisms. Our software is freely available under the GNU GPL.

Keywords:  Complex-shaped branching forms, Image analysis, Quantitative morphological analysis, Morphological 
variable, Liverworts
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Background
Quantification of morphological characteristics of bio-
logical objects has continuously posed a challenge due 
to varieties in their morphological changes. The mor-
phological variation offers channels for numerous stud-
ies, for example, the comprehension of causes, factors, 
and directions of biological processes [1], the influence of 

environmental changes [2, 3]. Besides, it is used in taxon-
omy to identify, describe, and classify species or taxa as 
well as evolutionary systematics study. The growth mor-
phology of many modular organisms such as plants pre-
sents a branched and complex-shaped structure. Their 
growth can be indeterminate [4], making the quantifica-
tion and analysis of their form more complicated.

There are three well known morphometric approaches 
for form analysis: traditional, landmark-based, and out-
line-based. Landmark-based morphometrics [5] consid-
ers discrete anatomical loci, while outline-based captures 
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outlines of form structures. Both are more suitable for 
non-modular organisms, but less applicable for the analy-
sis of indeterminate growth forms of modular organisms, 
which prefers traditional approach by measuring linear 
distances (width, length), angles, and ratios.

There are several 2D and 3D imaging technologies used 
to gather quantitative characters related to the growth 
form. Although advances of 3D imaging techniques can 
theoretically quantify the characters more accurately, for 
some plant organisms such as liverworts, which are used 
in our study, their characteristic features are thin and flat; 
therefore, 2D imaging techniques are more suitable than 
3D which are complicated in terms of procedures, imple-
mentation, and executing time. Moreover, in case of field 
work, it is more practical for 2D image acquisition by 
using a camera or a microscope.

Methods in morphological analysis of 2D images of the 
growth forms of branching organisms have been devel-
oped in several studies [6, 7]. In these studies the analy-
sis is based on the construction of a 2D morphological 
skeleton of a branching object in the images. The mor-
phological skeleton of the branching object can be used 
to measure various biologically relevant characteristics. 
Many steps in this analysis have been done in a manual 
way requiring visual interaction in many places. To date, 
there are open 2D image analysis software that perform 
on plant organs such as leaves (LeafJ [8], LAMINA [9], 
and leaf processor [10]). These programs can measure 
mainly shape, length, width, perimeter, surface of leaves, 
and leaf venation pattern, but they are not designed to 
measure some other important morphological traits, 
which are very essential to our samples, such as branch 
thickness and branch spacing. Root system architecture 
(RSA) software (DART [11], root system analyzer [12], 
RootReader2D [13]) are the most similar to our soft-
ware. Their algorithms share some similar features such 
as junction radius, branch length, and branch angle; how-
ever, those also lack the measurements of branch thick-
ness and branch spacing.

Riccardia, a plant genus in the liverwort family Aneu-
raceae, is represented by pinnate to tripinnate thalloid 
plants creeping or erecting on various substrates (rocks, 
dead wood, soil), and grows mainly in tropical areas 
and always in humid climate. Its dimension ranges from 
some millimeters to a few centimeters. It is the largest 
genus among the family Aneuraceae, with more than 
300 names [14], which should be a hundred of accepted 
species after greatly-needed revision [15]. The genus 
has mystified bryologists for many years due to its poly-
morphic morphology. For taxonomical studies, the spe-
cies are still doubtful in taxonomic classification and the 
morphological variability of Riccardia across its large 
geographical range has not been extensively studied, in 

particular, African Riccardia. In the literature, African 
Riccardia are described mostly by their morphological 
characters such as axis width, length, and angles [16–
23], while other characters can also be expressed, for 
example, Riccardia amazonica is described as winged 
(wing is at least 2 rows of unistratose cells at the mar-
gin of the thallus) [23, 24] and as not winged [18, 19]. In 
any case, due to such plastic phenotypes, it is not easy to 
express their variability.

The aim in this study is to develop a general and semi-
automatic software implementing methods to quanti-
tatively measure and analyze morphological characters 
from a class of 2D image of complex-shaped branching 
objects stemming from indeterminate growth. The mor-
phological characters are junction thickness, branch 
thickness, terminal thickness, branch length, branch 
angle, and terminal spacing. The methods are developed 
in the context of a review of African (and Indian Ocean) 
Riccardia which have never really been studied at the 
continental scale nor in an integrative framework. The 
morphometrical approach presented here will be used 
at a larger scale in order to be compared with molecular 
species delineation [25].

Methods
Plant materials
Riccardia samples come from three recognized species 
[26]: R. amazonica (Spruce) Schiffn. exGradst., Ricca-
rdia obtusa S.W. Arnell, and Riccardia compacta (Steph.) 
Arnell. The samples were loaned by different herbaria 
(Additional file  1: Table SI1). As Riccardia collections 
are usually very intricate mats of  plants, in several lay-
ers, each sample (collection pocket) contains dozen to 
hundreds of thalli. For each collection, 1–16 thalli were 
randomly picked with broken ones discarded in order 
to keep a natural variety of the complete living thalli. No 
recent field collections were conducted for this study and 
none of the species studied belongs to a protected spe-
cies or to the convention on international trade in endan-
gered species of wild fauna and flora (CITES). Since R. 
amazonica samples were collected from South America 
and Africa, we then separated the samples into R. ama-
zonica-AF and R. amazonica-SA respectively. A total of 
138 samples are therefore categorized into four taxonom-
ical groups [Fig.  1, the number of the samples for each 
species is in (Additional file 1: Table SI2 )].

Framework
Our framework consists of different procedures (Fig. 2). 
Images from Image Acquisition are pre-processed before 
Morphometric Software, which automatically produces 
quantitative measurements. A statistical analysis tool, R 
in our case, is then used to analyze the measurements.
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Image acquisition
The experimental images used in this work originate 
from two sources: (1) artificial images, which are used 
to systematically test the software (2) images of our sam-
ples. Each sample was precisely laid on a glass slide in a 
droplet of water, and their images were then taken with 
a Nikon Coolpix P6000 through a binocular microscope.

Image pre‑processing
We used the raster graphics editor, GIMP 2.6.12 [27] 
and the image processing package based on ImageJ, Fiji 
[28], to process original color sample images. The color 
image is converted to 8-bit grayscale, thereafter thresh-
olding is performed using the Ostu method to obtain 
a binary image. However, the given threshold value is 

then adjusted to obtain the best binary image closet to 
the original image. Therefore, different threshold values 
are assigned for different images. We use morphological 
operations to improve the quality of the image by using 
opening operation to remove some stray foreground pix-
els in the background and closing operation to fill holes 
in the foreground.

Morphometric software
In our morphometric software, a number of proce-
dures were applied to obtain quantitative measurements 
(Fig. 3). Skeletonization produces a skeleton image from 
the pre-processed image. Skeleton graph generation then 
uses the skeleton image to generate skeleton graph. The 
morphological measurements use the pre-processed 

Fig. 1  Sample images of thalloid liverwort Riccardia, Aneuraceae with different species, a Riccardia amazonica-AF, b Riccardia amazonica-SA, c Ric-
cardia compacta, d Riccardia obtusa

Fig. 2  The framework of the morphological measurement and analysis system

Fig. 3  Schematic overview of procedures in our proposed software
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image, skeleton image and skeleton graph to produce a 
set of quantitative results, which are visualized in graphi-
cal representation and stored in text files.

The software was written entirely in C language for 
high performance under the developing environment of 
QT Creator. This allows for greater visual interactivity 
and control. The software is able to run on Mac and OSX, 
Linux, and Windows. The software is available under 
the GNU General Public License (GNU GPL), and can 
be downloaded from https://github.com/UvA-compsci/
branchometer. Figure 4 shows its graphical user interface.

Skeletonization
Skeletonization is the process of reducing an image to 
its skeleton. By reducing an object to only a skeleton, 
unimportant features and image noise are filtered out. 
Additionally, it is easier to determine critical features 
such as connection points and end points as well as 
greatly speeding up any subsequent analysis of images. 
Skeletonization algorithms are generally classified into 
three categories: (1) distance transforming method, 
which converts the original image into foreground 
and background elements, generates a distance map 
where each element gives the distance to the nearest 
background element and then detects ridges in the dis-
tance map as skeletal points. This method guarantees 
a central position of the skeleton, but it is sensitive to 
the noise, and generally doesn’t guarantee the skeleton 
connectivity [29, 30]. (2) Voronoi-Skeleton method, 

which calculates the Voronoi diagram generated by 
the boundary points or pixels. When the number of 
boundary points goes to infinity, the corresponding 
diagram converges to the skeleton [31]. It generates a 
connected skeleton, however it is a time consuming 
process especially for large objects. Therefore, it is not 
suitable to be applied complicated images to branch-
ing objects used in our study. (3) Thinning methods, 
which remove the pixels from the object boundary that 
will not change the topology of the object until obtain-
ing a single-pixel-wide skeleton. Thus the method pre-
serves the topology and connectivity of the skeleton, 
and guarantees the medial position of the skeleton [32, 
33].

For our purpose, we needed a method that guaranteed 
the connectivity and topology of the skeleton in order to 
form the skeleton graph; therefore the thinning method 
was adopted. There are many thinning algorithms avail-
able such as the Zhang Suen algorithm [34], the Rosen-
feld algorithm [35] and the Hilditch algorithm [36]. The 
skeletonization in this study was based on the thinning 
algorithm by Zhang and Suen because it is robust, fast, 
and easy to implement. The algorithm uses a lookup table 
to repeatedly remove pixels from the edges of objects in a 
binary image until a single-pixel-wide skeleton remains. 
After the skeletonization is done, the following signifi-
cant features are extracted: (1) junction, a point having 
three or more adjacent points (branches) in a skeleton. 
(2) Terminal, the endpoint or tip of the skeleton.

Fig. 4  A screenshot of the graphical user interface of our software

https://github.com/UvA-compsci/branchometer
https://github.com/UvA-compsci/branchometer
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Skeleton graph generation
Graph representation, which only preserves the topo-
logical structure of the object, is an essential step for the 
image measurement and analysis. The measurement and 
analysis can substantially be simplified if the skeleton 
image is represented as a formal graph structure. The 
graph is defined as G =  (V, E) where V is a set of verti-
ces or nodes, E is a set of edges or curves connecting the 
vertices. In this case, V is junctions or terminals and E is 
branches in the skeleton (Fig.  5). By following the skel-
eton pixels in the 8-connectivity sense from a vertex to 
another vertex, each branch path and length will be kept. 
To travel through the graph, depth first search algorithm 
is used by starting from a terminal selected as a root of 
the graph and keep track of all visited junctions, termi-
nals and branch paths.

Morphological measurements
We used morphometric methods to automatically quan-
tify a number of localized morphological variables. These 
variables are thought to be useful in various applications, 
for instance, growth study that tells branch splitting rate, 
environmental influences on growth, and species clas-
sification that uses them as continuous characters to 
differentiate species. The variables are further used to 
discriminate species among the genus Riccardia as our 
case study. The measurement results are initially cal-
culated in pixels. A scale tool provided by our software 
allows the user to define the pixel to other unit scale and 
all the measurements will be calculated from the scale 
setting.

Junction thickness (da)
The thickness of the branch centered at a junction in 
the skeleton. The circular disc (Fig.  6a) representing da 
is created by using euclidean distance map [37] which 

calculates the shortest euclidean distance from the junc-
tion to the background of the image.

Branch thickness (db)
The thickness of the branch centered on a point along the 
skeleton after its last found da. The circular disc (Fig. 6b) 
representing db is created by using the euclidean distance 
map which calculates the shortest distance from a point 
along the skeleton to the boundary of the da or the back-
ground of the image.

Terminal thickness (dc)
The thickness of the terminal branch centered at the tip 
of the skeleton. Similar to da, the circular disc (Fig.  6c) 
representing dc is created by using the euclidean distance 
map which calculates the shortest distance to the back-
ground of the image.

Branch length
The number of branch pixels along the skeleton and 
euclidean distance between two successive vertices 
(Fig. 6d).

Branch angle
The angle between the two vectors originating from a 
junction in the skeleton and the center of successive db 
disc (Fig. 6e).

Branch spacing
The euclidean distance from a tip of a terminal branch to 
the nearest tip of another terminal branch (Fig. 6f ).

Statistical analysis
The morphological quantification results obtained 
by our software are analyzed with analysis of variance 
(ANOVA) to confirm the significant differences among 

Fig. 5  Graph representation of a skeleton. a Object image (yellow) with its skeleton (green line), b the generated graph from the skeleton in a shows 
light blue dots as junctions, pink dots as terminals, a white dot as the root of the skeleton graph, and red lines as links among junctions and terminals
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the four taxonomical groups of Riccardia by taking one 
morphological variable at a time. Multivariate analysis 
of variance (MANOVA) assesses the statistical signifi-
cance of the group differences by considering all of the 
variables simultaneously. Our analysis goal is to distin-
guish a group from the four groups by considering the 
variables; therefore, canonical discriminant analysis 
(CDA) was applied by finding the combinations of the 
variables that maximize the discrimination of the pre-
defined groups, testing whether the means of those 
groups are significantly different, and computing clas-
sification rate. Statistical analysis was performed using 
RStudio Team [38].

Results
We used a dataset with 138 images from the four taxo-
nomical groups of thalloid liverworts, which consist of 
37 samples from R. amazonica collected from Africa, 26 
samples of R. amazonica collected from South America, 
25 samples of R. compacta collected from Africa, and 50 
samples of Riccardia obtusa collected from Africa. The 
morphological variables described above were quantified 
with our software. The graphical result of some of the 
sample images of thalloid liverworts are shown in Addi-
tional file 2: Figure SI1. Table 1 shows descriptive statis-
tics of the six morphological measurement variables for 
each group.

Fig. 6  Types of measurements, the object image is shown in yellow color with skeleton in green line. a Junction thickness (red disc), b branch thick-
ness (gray disc), c) terminal thickness (blue disc), d branch length (pink line), e branch angle (blue area), f branch spacing (white circle)

Table 1  Descriptive statistics of the measured morphological variables according to the four groups of samples

Morphological variable Mean ± SD

R. amazonica_AF
N = 37

R. amazonica_SA
N = 26

R. compacta
N = 25

R. obtusa
N = 50

Junction thickness 0.4 ± 0.09 0.49 ± 0.14 0.31 ± 0.05 0.67 ± 0.06

Branch thickness 0.28 ± 0.07 0.34 ± 0.08 0.22 ± 0.04 0.45 ± 0.11

Terminal thickness 0.18 ± 0.05 0.22 ± 0.07 0.15 ± 0.03 0.29 ± 0.07

Branch length 1.03 ± 0.25 1.31 ± 0.35 1.47 ± 0.46 1.28 ± 0.28

Branch spacing 0.99 ± 0.31 1.33 ± 0.3 1.33 ± 0.43 1.18 ± 0.31

Branch angle 119.02 ± 15.94 118.88 ± 18.02 128.19 ± 14.74 112.69 ± 14.74
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From Table 1a, means of some variables seem to differ 
noticeably among the four groups, which offer an oppor-
tunity to use the variables to distinguish samples in one 
group from the others. As considering the variables for 
R. amazonica samples from Africa (R. amazonica_AF), 
the mean value of its branch thickness, terminal thick-
ness, branch length and branch spacing is lower than 
those from South America (R. amazonica_SA) except 
junction thickness which is very close each other. There-
fore, it is possible to consider branch thickness, terminal 
thickness, branch length and branch spacing to separate 
the two groups. Moreover, R. compacta has the lowest 
mean value while R. obtusa has the highest mean value 
for junction thickness, branch thickness, and terminal 
thickness. The density plot of the mean of the morpho-
logical variables (Fig.  7) is also demonstrated and the 
Shapiro-Wilks normality test (Additional file  1: Table 
SI3) indicates that the variables are likely normally 
distributed.

From Fig. 7, the distribution of the mean values of each 
of the six morphological variables among the four groups 

appears that they differ from one another, except branch 
length and the branch angle between R. amazonica SA 
and R. compacta. Also, the result of ANOVA reveals sig-
nificant differences among the four groups by consider-
ing each of the variables (Additional file 1: Table SI4).

Univariate ANOVA by using multiple comparison 
method was conducted to test the significant differences 
of each morphological variables. For each pair of the four 
groups, we test whether the mean of morphological vari-
ables are significantly different from each other. From the 
result of p value in Table 2, p value of the junction thick-
ness (da) for each pair of the four groups is significant (p 
value <0.0001). This means junction thickness can differ-
entiate among those groups, whereas p values of branch 
angle (ba) are insignificant for all pairs of the four groups 
except the pair between R. obtusa (R.ob) and R. compacta 
(R.co). Additionally, as considering p value of da, db, and 
dc, it is possible to take the combination of da, db, and 
dc into an account to separate the four groups. However 
this univariate approach does not account for correlation 
among the variables.

Fig. 7  The density plot of taxonomical groups of Riccardia with the six measured morphological variables: junction thickness, branch thickness, 
terminal thickness, branch length, branch spacing, and branch angle
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The correlation of these morphological variables pro-
vides some indication of how much each variable can 
contribute to the analysis. If two variables are very highly 
correlated, then they will be contributing shared informa-
tion to the analysis. A Pearson product-moment correla-
tion coefficient was computed to assess the relationship 
between two morphological variables. The bivariate plot 
(Fig.  8) shows the result of how the data spread among 
different groups by considering two out of the six mor-
phological variables.

Figure 8 shows relationship between each pair of vari-
ables. It appears that all the widths given by the disc 
diameter measurements (da, db, and dc) are positively 
correlated to branch length and branch spacing. Con-
sidering R. compacta (black dots), its low variation of 
the disc diameter (da, db, dc) is associated with large 
variation of branch length and branch spacing. The other 
groups show almost linear relation between widths and 
branch length and branch spacing except R. amazon-
ica SA, for which it is difficult to conclude on the rela-
tion between width and branch length. However, branch 
angle does not show clear relations with the other vari-
ables. Also, the relationship can be confirmed by the cor-
relation coefficients (r) matrix with its corresponding p 
values (Table 3).

Amongst these correlated variables and their corre-
sponding p-values Table  3, we found the four strongest 
significantly (p < 0.0001) correlated variables among the 
four groups. The strongest linear correlation (r =  0.96, 
p < 0.0001) was observed between junction thickness (da) 
and branch thickness (db). The other two strong corre-
lations were between branch thickness (db) and termi-
nal thickness (dc) (r = 0.89, p < 0.0001) and correlation 
(r =  0.87, p  <  0.0001) between junction thickness (da) 
and terminal thickness (dc). Additionally, branch length 
(bl) is also correlated (r = 0.72, p < 0.0001) with branch 
spacing (bs).

We use canonical discriminant analysis to distinguish 
groups by considering the morphological measure-
ments as the discriminating variables (MANOVA result 
shows significant differences with Wilks =  0.232 and p 
value  <2.2e−16). Discriminant function analysis allows 
to find functions which are a combination of the varia-
bles to maximize the differences among the groups. From 
our samples, we obtained three discriminant functions 
(Table 4)

As seen in Table 4, there are three discriminant func-
tions and all of them are statistically significant. The 
percentage separation achieved by the first discriminant 
function and the second discriminant function account 
for 89.72 and 8.3% of the total variance existing in dis-
criminating variables among the species, respectively. 
Therefore, the first discriminant function does achieve a 
good separation between the four groups, but the second 
discriminant function may improve the separation of the 
groups, so is it worth using the second discriminant func-
tion as well. For first discriminant function, its canonical 
correlation is high (0.702) which indicates good discrimi-
nation among the groups and its Wilks’s Lambda is low 
(0.23) showing that group means appear to differ with 
low p-value (<2.20E−16) which indicates the difference 
is significant, whereas other two discriminant functions 
are less correlated. The correlation between each variable 
and the discriminant functions can be revealed by the 
coefficients of discriminant function (Table 5).

From Table  5a, the first discriminant function is a 
linear combination of variables: 0.504*junction thick-
ness +  0.756*branch thickness +  0.086*terminal thick-
ness  −  0.677*branch length  −  0.319*branch spacing 
−0.002*branch angle. The coefficient values of the dis-
criminant functions indicate that terminal thickness and 
branch angle have very little discriminating ability for 
these four groups. Junction thickness, branch thickness, 
branch length and branch spacing have a strong impact 

Table 2  p values of six morphological variables for each pair of the four groups using ANOVA

R.a.AF Riccardia amazonica collected from Africa, R.a.SA Riccardia amazonica collected from South America, R.ob Riccardia obtusa, R.co Riccardia compacta, ns  
non-significance

Significant codes *** 0.001, ** 0.01, * 0.05, . 0.1

Morphological variable p value

R.a.AF vs R.a.SA R.a. AF vs R.ob R.a.AF vs R.co R.a.SA vs R.ob R.a.SA vs R.co R.ob vs R.co

da 0.00039 (**) <0.0001 (***) <0.0001 (***) <0.0001 (***) <0.0001 (***) <0.0001 (***)

db 0.00078 (***) <0.0001 (***) 0.00077 (***) <0.0001 (***) <0.0001 (***) <0.0001 (***)

dc 0.00087 (**) <0.0001 (***) 0.0146 (*) 0.00069 (***) <0.0001 (***) <0.0001 (***)

bl 0.00031 (***) <0.0001 (***) <0.0001 (***) 0.69 (ns) 0.18(ns) 0.036 (*)

bs <0.0001 (***) 0.0062 (**) 0.00051 (***) 0.042 (*) 0.99(ns) 0.8 (.)

ba 0.973 (ns) 0.059 (.) 0.0257 (*) 0.112 (ns) 0.049 (*) <0.0001 (***)
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Fig. 8  Bivariate plot of the six measurement variables (junction thickness, branch thickness, terminal thickness, branch length, branch spacing, and 
branch angle) with regression line (red line) of the four groups (Riccardia amazonica collected from Africa (red), Riccardia amazonica collected from 
South America (green), Riccardia compacta (black), and Riccardia obtusa (blue)

Table 3  Correlation coefficients between the measured variables and its corresponding p values

ns non-significance

* Significance at p value <0.0001

Morphological variable da db dc bl bs ba

da 1.00 0.96 (*) 0.87 (*) 0.34 (*) 0.29 −0.28 (ns)

db 0.96 (*) 1.00 0.89 (*) 0.40 (*) 0.33 (*) −0.27 (ns)

dc 0.87 (*) 0.89 (*) 1.00 0.39 (*) 0.38 (*) −0.24 (ns)

bl 0.34 (*) 0.40 (*) 0.39 (*) 1.00 0.72 (*) 0.19 (ns)

bs 0.29 (ns) 0.33 (*) 0.38 (*) 0.72 (*) 1.00 0.10 (ns)

ba −0.28 (ns) −0.27 (ns) −0.24 (ns) 0.19 (ns) 0.10 (ns) 1.00
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on the first discriminant function. The group means on 
the canonical variables (Table  5b) give some indication 
of how the groups are separated. The means on the first 
function show that R_compacta group separated farthest 
from the R_obtusa group. Interestingly by its mean, the 
second discriminant function is able to separate R_ama-
zonica_AF from R_amazonica_SA, while the first dis-
criminant function cannot. The best two discriminant 
functions are also virtualized by scatterplot (Fig. 9) to see 
how well the groups are separated.

Figure  9 shows that of the two canonical variables 
Can1 is able to clearly distinguish between R. com-
pacta and R. obtusa. It can also separate R. amazon-
ica_AF and R. amazonica_SA from R. compacta and 
R. obtusa with small overlap. However, Can1 cannot 
be used to separate R. amazonica_AF from R. ama-
zonica_SA. In this case Can2 can be helpful, but with 
substantial overlap. Therefore, to achieve a good sepa-
ration of the four groups, it would be best to use both 
the first and second discriminant functions together, 

since the first discriminant function can separate R. 
compacta and R. obtusa very well, and the second dis-
criminant function can separate R. amazonica_AF and 
R. amazonica_SA.

Finally the discriminant function analysis is validated 
by classifying the samples to their original groups. As 
shown in Table  6, 83.8% (31/37) of R. amazonica_AF, 
26.9% (7/26) of R. amazonica_SA, 68% (17/25) of R. com-
pacta, and 84% (42/50) of R. obtusa are correctly classi-
fied. Therefore the proportions of all samples correctly 
classified are 70.3% (97/138).

The R. amazonica samples collected from South Amer-
ica and Africa were supposed to belong to the same 
species. From Table 2, the ANOVA analysis shows a dis-
crimination between the two groups (R. amazonica_AF 
vs R. amazonica_SA) as considering five measurements 
(da, db, dc, bl, and bs) except ba which is not significant. 
CDA is also applied to this case. The CDA result shows 
samples correctly classified to their original groups were 
81% (Table 7).

Table 4  Summary of canonical discriminant functions

Significant codes *** 0.001, ** 0.01

Discriminant function Canonical correlation Eigen value Wilks’s Lambda Proportion F-test Num DF p value

1 0.702 2.358 0.23 89.72 29.38 9 <2.20E−16 (***)

2 0.179 0.218 0.78 8.30 8.78 4 1.13E−06 (***)

3 0.049 0.052 0.95 1.98 6.97 1 0.0093 (**)

Table 5  Discriminant function coefficients (a) and group means (b)

Morphological variable Discriminant coefficients

Discriminant function 1 Discriminant function 2 Discriminant function 3

a

 Junction thickness 0.504 −0.196 1.128

 Branch thickness 0.756 0.046 −1.320

 Terminal thickness 0.086 0.079 0.163

 Branch length −0.677 −0.777 1.072

 Branch spacing −0.319 −0.246 −1.196

 Branch angle −0.002 0.071 0.0249

Species Group mean

Discriminant function 1 Discriminant function 2 Discriminant function 3

b

 R_amazonica_AF −0.383 0.749 0.026

 R_amazonica_SA −0.288 −0.229 −0.450

 R_compacta −2.548 −0.433 0.200

 R_obtusa 1.708 −0.218 0.114
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Discussion
We develop a semi-automated software to quantify 
some important morphological characters of liverworts 
which represent irregular and complex-shaped branch-
ing organisms. The characters are used for the purpose of 
species discrimination in genus Riccardia.

In our software, we use 2D image analysis techniques 
to automatically quantify the morphological variables. 
Most measurements are performed automatically. Some 
manual operations may still be required, such as removal 
of spurious branches that are created during the skel-
etonization due to boundary irregularities on the object 
in the image and loops in the skeleton which arise from 
overlapping branches. For these loops, automatic loop 
breaking is very complicated due to difficulty in deciding 
which edge in the loop should be deleted. Its complica-
tion is varied according to the number of loops which can 
lead to high possibility to produce false measurement and 
analysis. The software can report the number of loops as 
well as their locations, however, user has to decide how 
to do with the loops, which can be (1) manually remov-
ing an edge forming the loop, (2) edit but preserve the 
main characteristics of original sample image as much as 
possible by inserting a single pixel-wide gap to separate 
the overlapping branch or (3) prepare samples without 
loop. For our experiment, we have done (2) in order to 
compute the measurement automatically. For some thalli 
images presenting several overlapping branches, these 
branches were manually separated into new images with-
out overlapping. Two or three images can be generated 
from the original and treated separately by the software. 
The original image with overlapping branches was also 
measured in order to compare the data.

The quantitative data of some morphological charac-
ters of African R. amazonica, R. compacta, and R. obtusa 

Fig. 9  The scatterplot of the canonical discriminant function

Table 6  The classification matrix of  the four groups as  a 
result of canonical discriminant analysis

Species N Classified as

R. ama-
zonica AF

R. ama-
zonica SA

R. com-
pacta

R. obtusa

R. amazon-
ica_AF

37 31 (83.8%) 4 (10.8%) 1 (2.7%) 1 (2.7%)

R. amazon-
ica_SA

26 8 (30.8%) 7 (26.9%) 4 (15.4%) 7 (26.9%)

R. compacta 25 7 (20%) 1 (4%) 17 (68%) 0 (0%)

R. obtusa 50 6 (12%) 2 (4%) 0 (0%) 42 (84%)

Table 7  The classification matrix of  R. amazonica 
from Africa and South America as a result of canonical dis-
criminant analysis

Species Classified as

R. amazonica AF R. amazonica SA

R. amazonica AF 32 (86.5%) 5 (13.5%)

R. amazonica SA 7 (26.9%) 19 (73.1%)
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from literature were reported (Table  8). At the species 
level, it seems difficult to compare the literature data in 
Table  8 with our data due to the imprecision of meas-
urements and different protocols. However, if we just 
compare width (junction thickness) and length (branch 
length), our data (Table 1) seem to provide lower values 
than the literature data. This could be due to the meas-
urements between skeleton nodes that are not taken in 
account in the literature data, unlike our methods which 
defined precisely how to measure them based on points 
defined by junctions or nodes in the image skeleton.

Classification rate from discriminant analysis showed 
that the species can be discriminated with 70.3% accu-
racy using the six morphological characteristics. The 
rate indicates the significance of morphological traits in 
the discrimination of Riccardia species. This result may 
confirm the indication that genetical differences could be 
expressed in the general dimensions of the thalli. The R. 
amazonica samples collected from South America and 
Africa were supposed to belong to the same species. With 
a classical morpho-anatomical revision of R. amazonica, 
a study of the historical material and recent collections 
[40] showed that some doubts remained on the inclu-
sion of South American and African material in the same 
species. Therefore, we also investigated the two groups 
based on the morphological measurements. The ANOVA 
analysis shows a discrimination between the two groups 
and the CDA result shows samples correctly classified 
(Table 7) to their original groups were 81%.

We suggest, from our samples, that R. amazonica from 
South America and Africa show the significant differ-
ences in their morphometric features, and we propose 
the hypothesis that they could belong to different spe-
cies. This hypothesis of species should be included in 

the revision of integrative taxonomy, which is the most 
consensual framework of today taxonomists [41–44]. It is 
engaged on the genus Riccardia in Africa, including both 
molecular and morphological analysis [25]. Morpho-
logical analysis is probably not as powerful as molecular 
analysis to delineate species because phenotype can be 
influenced by both original genotype and environmental 
conditions. However, this approach can be used as sup-
plementary tool combined with other approach, such as 
molecular delineation methods (automatic barcode gap 
discovery (ABGD), generalized mixed yule coalescent 
(GYMC), haplowebs, see [44]). In case of congruence of 
the different results morphometry can support species 
hypothesis. On the opposite side, if the morphometric 
results separate samples that are recognized as the same 
species by other methods, it could suggest some other 
directions of investigation, for example, among ecological 
conditions to explain these differences. The morphologi-
cal approach can also allow clear interspecific variations 
analysis. However, morphological variation together with 
molecular analysis and biogeographic studies are the best 
efficient way to classify species more accurately.

Conclusions
A framework and software for taxonomic study using 
morphometric approach on 2D image have been pre-
sented in this paper. Our results provided evidence that 
quantitative characteristics determined by image pro-
cessing and analysis techniques used in our software 
can be useful for taxonomic differentiation of the genus 
Riccardia. Also the characteristics are valuable for dis-
criminating same species influenced by surrounding 
conditions from different geographical locations (R. 
amazonica collected from South America and Africa). 

Table 8  Comparison of  quantitative data using different morphological characters among  the three species of  African 
Riccardia

Measurement Species References

R. amazonica (AF) R. compacta R. obtusa

Main axis width 500–800 µm No data Up to 900 µm Perold [21–23]

Main axis length 13–14 mm Up to 15 mm 10–15 mm

Terminal branch length 575–875 µm No data 350–2375 µm (no differences between 
primary and terminal)

Terminal branch width 285–500 µm No data Up to 525 µm

Angle between branches No data Up to 30° 40–70°

Branch width No data No data 200-600 µm Jones [18, 39] did not make difference 
between the axis levelsBranch length No data No data 0.6–1.5 (mm)

Plant length No data Up to 20 mm long No data Meenks [19]

Plant length No data Up to 7 mm No data Arnell [16]

Plant width No data 1–2 mm No data

Primary branch width No data Up to 500 µm No data
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Furthermore, our morphometric software can be applied 
to quantify branching growth form of other modular 
organisms.
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