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SAR1a promoter polymorphisms are not 
associated with fetal hemoglobin in patients 
with sickle cell disease from Cameroon
Gift Dineo Pule1, Valentina Josiane Ngo Bitoungui2, Bernard Chetcha Chemegni2, Andre Pascal Kengne3 
and Ambroise Wonkam1* 

Abstract 

Background:  Reactivation of adult hemoglobin (HbF) is currently a dominant therapeutic approach to sickle cell 
disease (SCD). In this study, we have investigated among SCD patients from Cameroon, the association of HbF level 
and variants in the HU-inducible small guanosine triphosphate-binding protein, secretion-associated and RAS-related 
(SAR1a) protein, previously shown to be associated with HbF after HU treatment in African American SCD patients.

Results:  Only patients >5 years old were included; hemoglobin electrophoresis and a full blood count were con-
ducted upon arrival at the hospital. RFLP-PCR was used to describe the HBB gene haplotypes and Gap PCR to inves-
tigate the 3.7 kb α-globin gene deletion. The iPLEX Gold Sequenom Mass Genotyping Array and cycle sequencing 
were used for the genotyping of four selected SNPs in SAR1a (rs2310991; rs4282891; rs76901216 and rs76901220). 
Genetic analysis was performed using an additive genetic model, under a generalized linear regression framework. 
484 patients were studied. No associations were observed between any of the promoter variants and baseline HbF, 
clinical events or other hematological indices.

Conclusion:  The results of this study could be explained by possible population-specificity of some tagging genomic 
variants associated with HbF production and illustrated the complexity of replicating HbF-promoting variants associa-
tion results across African populations.
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Background
Reactivation of adult fetal hemoglobin (HbF) is currently 
the dominant approach for the treatment of sickle cell 
disease (SCD). The expression of adult HbF is a quantita-
tive trait that is subject to several predisposing loci affect-
ing the persistence of HbF in adulthood, particularly 
three principal loci; BCL11A, HBS1L-MYB intergenic 
variants and the five sequence polymorphisms along the 
β-globin gene cluster that confer the SCD haplotype [1–
3]. Taken in sum, these loci have been associated with the 
disease-ameliorating HbF and account for 10–20% of the 

variance [4–7]. Furthermore, the BCL11A erythroid-spe-
cific enhancer variants have been shown to account for 
significant variance in HbF in African American [8, 9], 
Tanzanian [10] and Cameroonian SCD patient cohorts 
[11].

HbF response to hydroxyurea (HU), has been shown to 
be subject to a myriad of genetic variations (SNPs, signal-
ling pathways and pharmacogenomics interactions) and 
environmental factors (socio-economic factors, quality 
of care, exposure to malaria and infections) [12]. Further-
more, some of these variants have been associated with 
favourable pharmacologic response to HU treatment like 
the small guanosine triphosphate (GTP)-binding protein, 
secretion-associated and RAS-related (SAR) protein [13]. 
SAR proteins have been shown to be critical to γ-globin 
expression [14] via the Giα/JNK/Jun pathway [15] in 
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response to HU. Four variants (rs2310991; rs4282891; 
rs76901216 and rs76901220) in the SAR1a promoter 
were associated with significant increases in HbF levels in 
African American SCD patients on HU for 2 years [13]. 
Much like variants in BCL11A, MYB and KLF-1 have 
been shown to be associated to Hb F levels in both HU-
exposed and HU-naïve conditions [6, 12], in the present 
study, we have investigated the relationship between the 
four SAR1a promoter variants and baseline HbF in SCD 
patients from Cameroon, without any HU treatment.

Research hypothesis
In this study, we hypothesize that selected variants in 
SAR1a promoter associated with significant increases in 
HbF levels in African American SCD patients on HU, are 
also associated with baseline HbF in SCD patients from 
Cameroon, without any HU treatment.

Methods
Study population and HbF measurement
Patients’ recruitment occurred at the Yaoundé Central 
Hospital and Laquintinie Hospital in Douala, Cameroon. 
Only clinically stable patients, 5 years and older, with no 

history of blood transfusion, HU treatment, or hospitali-
sation in the preceding 6 weeks were included and clini-
cal events were prospectively collected (Table 1). Whole 
blood counts of patients and Hb electrophoresis were 
conducted on arrival at the hospital, initially using the 
alkali denaturation test (ADT) in 55.5% (n = 266) of the 
cohort, and when it became available, high performance 
liquid chromatography (HPLC). In a previous study of 
this cohort, the SCD patient cohort was disaggregated 
based on the technique used for HbF assessment (HPLC 
vs ADT) and found similar but independently exam-
ined associations between HbF levels and BCL11A and 
HBS1L-MYB intergenic variants [5].

Genotyping
HbS mutation and HBB haplotypes
DNA was extracted from peripheral blood following 
the manufacturer’s instructions (Puregene Blood Kit, 
Qiagen®, USA). Molecular analysis to determine the 
presence of the sickle mutation was carried out on 200 ng 
DNA by PCR to amplify a 770 bp segment of the β-globin 
gene, followed by DdeI restriction analysis of the PCR 
product [16].

Table 1  Cohort description

RBC red blood cells, Hb hemoglobin, MCV mean corpuscular volume, MCHC mean corpuscular haemoglobin concentration, WBC white blood cells, HbA2 hemoglobin 
α2, HbF hemoglobin F
a  Number of individuals and not alleles

Variables Mean ± SD Value range Number of observations

Age (years) 17.9 ± 10.6 5–57 484

Haematological indices RBC (1012/l) 2.8 ± 0.7 1.2–5.5 484

Hb (g/dl) 7.8 ± 1.6 4.0–13.5 484

MCV(fl) 84.6 ± 10.0 61–112 484

MCHC (g/dl) 34.2 ± 3.8 22.3–54.0 484

WBC (109/l) 14.7 ± 6.4 3.5–48.8 484

Lymphocytes (109/l) 6.1 ± 3.3 0.87–20.4 484

Monocytes (109/l) 1.7 ± 1.4 0.1–10.9 484

Platelets (109/l) 371.5 ± 131.6 108–827 484

HbA2 (%) 3.6 ± 2.1 0.1–18.2 484

HbF (%) 10.1 ± 8.5 0–37.4 484

Clinical events Vaso-occlusive crisis (No./year) 2.8 ± 3.3 0–40 484

Consultations (No./year) 3.0 ± 3.9 0–24 484

Hospitalisation (No./year) 1.4 ± 2.5 0–30 484

Overt stroke 4.5% 22/484

3.7del α-globin gene genotypes αα/αα 62.9% 304/484a

αα/α3.7 28.5% 138/484a

α3.7/α3.7 8.6% 42/484a

β-globin gene haplotypes Benin/Benin 50.2% 243/484a

Benin/Cameroon 21.7% 105/484a

Benin/Atypical 4.1% 20/484a

Cameroon/Cameroon 4.1% 20/484a
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Using published primers and methods, five restric-
tion fragment length polymorphism (RFLP) sites in the 
β-globin gene cluster were amplified [17] to analyse the 
XmnI (5′Gγ), HindIII (Gγ), HindIII (Aγ), HincII (3˙’Ψβ) 
and HinfI (5′β) for the HBB haplotype background [18].

Detection of 3.7 kb α‑globin gene deletions
Using the expand-long template PCR (Roche®, UK), the 
3.7  kb α-globin gene deletion was successfully screened 
following the instructions reported [19] with some modi-
fications previously published [20].

SNPs
A total of 484 samples were analysed initially using SNaP-
shot sequencing and capillary electrophoresis (n = 234), 
then the rest analysed using the iPLEX Gold Sequenom 
Mass Genotyping Array (Inqaba Biotec, South Africa). 
The results were validated by direct cycle sequencing of 
a subset (n = 48; 10%) of the samples using previously 
reported methods [5].

Data analysis
Descriptive statistics were obtained for all quantitative 
data using SPSS (IBM, USA version 21.0). A Chi squared 
test, with 1 degree of freedom, was used to perform the 
Hardy–Weinberg Equilibrium (HWE) test on the SNPs 
genotype with three SNPs (rs4282891; rs2310991 and 
rs76901216) out of HWE (p  <  0.05). Using an additive 
genetic model, under a generalized linear regression 
framework, we investigated the relationship between the 
SNPs and HbF levels, using the R statistical package ver-
sion 3.0.3 (The R Foundation for statistical computing, 
Vienna, Austria). Significance was set at 5%.

Results
Patient cohort
Table  1 summarises the main characteristics of the 
cohort. All patients had confirmed SCA diagnosis 
(HbSS) among whom 50.2% (n = 243) were female and 
the mean age of the cohort was 17.9 years (±10.6). After 

genotyping β-globin gene haplotypes for 968 chromo-
somes, the most prevalent were Benin (72.5%, n = 702) 
and Cameroon (19.2%, n  =  186). Haplotypes given in 
combinations, the Benin/Benin haplotype was 50.2% 
(n  =  243) and the Benin/Cameroon haplotype 21.7% 
(n = 105) of the patient cohort (Table 1). The frequency 
of the 3.7  kb α-globin gene deletion (α3.7) was 22.5% 
(n = 222) of 968 chromosomes, where 28.5 and 8.6% of 
patients had co-inherited a single (αα/α3.7) and double 
(α3.7/α3.7) deletions, respectively (Table  1). The aver-
age number of annual reported vaso-occlusive crises was 
2.8 (±3.3) with a similar yearly rate of hospital consulta-
tion (3.0 ± 3.9) and mean 1.4 (±2.5) hospitalization per 
year. Overt stroke was reported in 4.5% (n = 22) of the 
patients.

No association between SNPs and HbF
The minor allele frequency (MAF) of the SAR1a pro-
moter SNPs is shown in Table 2. There was no associa-
tion between the four selected promoter SNPs and HbF 
levels in the patient cohort neither was there an asso-
ciation with clinical events or hematological indices. 
The influence of the electrophoretic technique, α-globin 
genotypes and β-globin haplotypes on the relationship 
between the SNPs and HbF levels was tested and no sig-
nificant effect was observed.

Discussion
Four variants (rs2310991; rs4282891; rs76901220 and 
rs76901216) have previously been associated with higher 
percent HbF and significant change in HbF levels after 
HU treatment for 2  years in African American SCA 
patients enrolled in the National Institutes of Health 
(NIH)’s Sickle Cell Pulmonary Hypertension Screening 
Study (ClinicalTrials.org; NCT00011648). It has been 
reported that SAR1 is induced by HU towards the pro-
duction of HbF in erythroid cells [14, 15] via activation 
of the Giα/JNK/Jun pathway. This and other critical sig-
nalling pathways in HU-induced HbF as well as genomic 
variants associated with HbS mutation and the disease 

Table 2  Association between SAR1a promoter polymorphisms and baseline HbF in Cameroon SCD patients

MAF minor allele frequency
a  Alleles: major/minor
b  Effect size and range

SNP SNP position Chromosome loci Allelesa MAF Effect sizeb (SE) p value

rs2310991 −1377 10:70171890 A/C 0.334 0.03 (−0.08 to 0.13) 0.645

rs4282891 Intron 1
+100

10:70170313 A/C 0.336 0.25 (−1.61 to 2.12) 0.791

rs76901216 −809 71601084 C/G 0.295 −0.05 (−0.14 to 0.05) 0.335

rs76901220 −385 10: 71600660 G/C 0.204 −0.07 (−0.20 to 0.05) 0.265
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course have been reviewed [12]. Given the responsive-
ness of SAR1 to HU treatment and prior associations 
with HU-induced HbF, four promoter polymorphisms 
were investigated in a cohort of SCA patients not treated 
with HU to determine possible associations between the 
SNPs and baseline HbF. If these variants result in differ-
ential expression of SAR1 and thus HbF, this loci could 
become a candidate for therapeutic manipulation for 
ameliorating SCA and other hemoglobinopathies. How-
ever, none of the selected SNPs were associated with 
HbF, other hematological indices or clinical events. Fur-
thermore, the difference between the minor allele fre-
quencies (MAF) in African American SCA patients [13] 
and results from the present study may be attributed to 
the well reported high diversity among African popula-
tion [21, 22] and more specifically to admixture among 
African Americans, with African ancestry that could vary 
from 1 to 99% [23, 24]. Replication of association studies 
across different populations, particularly of varied genetic 
backgrounds and environmental settings, is imperative to 
understanding the complex processes of HbF production 
and genetic polymorphisms predisposing to persistence 
of adult HbF, more so in sub-Saharan Africa where the 
burden of disease is highest.
SAR1a is a known regulator of HbF expression under 

HU therapy [13, 14], previously demonstrated in bone 
marrow CD34+  and K562 cells [15]. This erythroid 
binding protein primarily acts through the p-JNK/Jun 
and GATA-2 pathways alongside a network of various 
other erythroid regulators for HbF activation such as 
MYB, BCL11A and MAPKs [12]. Much like variants in 
BCL11A, MYB and KLF-1 have been shown to be asso-
ciated to Hb F levels in both HU-exposed and HU-naïve 
conditions [6, 12, 25, 26], we investigated whether vari-
ants at SAR1a could, be equally associated with Hb F 
level in HU-naïve patients. This is a possible limitation 
of this exploratory study, but equally strength for this 
novel investigation with results that have implications 
for future researches on therapy of SCD. Indeed, showing 
that variants at SAR1a are not associated in HbF regu-
lation at steady state in SCD patients could be consider 
interesting; the findings provide further evidence of the 
complex nature of Hb F regulation, highlighting that 
steady-state genetic regulators of γ-globin expression are 
not necessarily best suited targets for therapeutic inter-
ventions, therefore suggesting widening of the search for 
drug-responsive targets for HbF activation.

Conclusion
The present study did not find any association between 
selected SNPs in the HU-inducible SAR1a promoter 
polymorphisms, and HbF among SCD patients from 
Cameroon. The findings provide further evidence of 

the complex nature of HbF regulation, highlighting 
that steady-state regulators of γ-globin expression are 
not necessarily best suited targets for therapeutic inter-
ventions, therefore suggesting widening of the search 
for drug-responsive targets for HbF activation. The 
results of this study also emphasize the genetic hetero-
geneity of populations of African ancestry affected by 
SCD, with regard to HbF-promoting loci, and the need 
to perform replication studies of key association find-
ings in several SCD populations to fully capture their 
significance.
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