
O’Halloran ﻿BMC Res Notes (2017) 10:275
DOI 10.1186/s13104-017-2616-7

TECHNICAL NOTE

fastQ_brew: module for analysis,
preprocessing, and reformatting of FASTQ
sequence data
Damien M. O’Halloran1,2* 

Abstract 

Background:  Next generation sequencing datasets are stored as FASTQ formatted files. In order to avoid down-
stream artefacts, it is critical to implement a robust preprocessing protocol of the FASTQ sequence in order to deter-
mine the integrity and quality of the data.

Results:  Here I describe fastQ_brew which is a package that provides a suite of methods to evaluate sequence data
in FASTQ format and efficiently implements a variety of manipulations to filter sequence data by size, quality and/or
sequence. fastQ_brew allows for mismatch searches to adapter sequences, left and right end trimming, removal of
duplicate reads, as well as reads containing non-designated bases. fastQ_brew also returns summary statistics on the
unfiltered and filtered FASTQ data, and offers FASTQ to FASTA conversion as well as FASTQ reverse complement and
DNA to RNA manipulations.

Conclusions:  fastQ_brew is open source and freely available to all users at the following webpage: https://github.
com/dohalloran/fastQ_brew.

Keywords:  FASTQ, NGS, Sequencing

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
FASTQ format has become the principal protocol for the
exchange of DNA sequencing files [1]. The format is com-
posed of both a nucleotide sequence as well as an ASCII
character encoded quality score for each nucleotide. Each
entry is four lines, with the first line starting with a ‘@’
character followed by an identifier. The second line is
the nucleotide sequence. The third line starts with a ‘+’
character and optionally followed by the same sequence
identifier that was used on the first line. The fourth line
lists the quality scores for each nucleotide in the second
line. In order to evaluate the quality of the FASTQ data-
set and to avoid downstream artefacts, it is imperative for
the user to employ robust quality control and preproc-
essing steps prior to downstream FASTQ applications.

Furthermore, FASTQ has now become widely used in
additional downstream applications and pipelines, and
so diverse preprocessing tools are necessary to handle
various FASTQ file manipulations [2, 3]. Here, I describe
fastQ_brew, which is a robust package that performs
quality control, reformatting, filtering, and trimming of
FASTQ formatted sequence datasets.

Implementation
fastQ_brew was developed using Perl and successfully
tested on Microsoft Windows 7 Enterprise ver.6.1, Linux
Ubuntu 64-bit ver.16.04 LTS, and Linux Mint 18.1 Ser-
ena. fastQ_brew does not rely on any dependencies that
are not currently part of the Perl Core Modules (http://
perldoc.perl.org/index-modules-A.html), which makes
fastQ_brew very straight forward to implement. fastQ_
brew is composed of two separate packages: fastQ_brew.
pm and fastQ_brew_Utilities.pm. fastQ_brew_Utilities.
pm provides fastQ_brew.pm with access to various sub-
routines that are called to handle FASTQ manipulations

Open Access

BMC Research Notes

*Correspondence: damienoh@gwu.edu
2 Department of Biological Sciences, The George Washington University,
636 Ross Hall, 2300 I St. N.W., Washington, DC 20052, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-5752-2131
https://github.com/dohalloran/fastQ_brew
https://github.com/dohalloran/fastQ_brew
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://perldoc.perl.org/index-modules-A.html
http://perldoc.perl.org/index-modules-A.html
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-017-2616-7&domain=pdf

Page 2 of 4O’Halloran ﻿BMC Res Notes (2017) 10:275

and quality control. The fastQ_brew object is instantiated
by calling the constructor subroutine called “new” which
creates a ‘blessed’ object that begins gathering methods
and properties by calling the load_fastQ_brew method.
Once the object has been populated, the user can call
run_fastQ_brew to begin processing the FASTQ data.
Sample data are provided at the GitHub repo and direc-
tions for usage are described in the README.md file.

The command-line arguments supplied to the fastQ_
brew object are as follows: (1) -lib, which can be either
sanger or illumina; (2) -path, specifies the path to the input
file (can use “./” for current directory with UNIX or “.\” on
Windows cmd); (3) -i, this is the name of the file contain-
ing the FASTQ reads; (4) -smry, return summary statistics
table on the unfiltered data and filtered data; (5) -qf, this
option will filter reads by Phred (also called Q score) qual-
ity score—any reads having an average Phred score below
the threshold will be removed: e.g. -qf = 20 will remove
reads with Phred scores below 20; (6) -lf, this will filter
reads below a specified length; (7) -trim_l, will trim the
specified number of bases from the left end of each read;
(8) -trim_r, same as left-trim except that here the reads will
be trimmed from the right side; (9) -adpt_l, will remove
a specified adapter sequence from the left end of a read;
(10) -adpt_r, same as -adpt_l except that here the reads
will be trimmed from the right side; (11) -mis_l, allows for
a specified number of mismatches between the user pro-
vided -adpt_l sequence and each read e.g. a mismatch = 1,
would match a hypothetical 3 base adapter, TAG, to the
left end of a sequence that started with TAG or AAG or
TAA or any of the nine possibilities; (12) -mis_r, same as
-mis_l except that this relates to the adpt_r sequence sup-
plied by the user; (13) -dup, removes duplicate reads; (14)
-no_n, removes reads that contain non-designated bases
i.e. bases that are not A, G, C or T e.g. N; (15) -fasta, this
option will convert the FASTQ file to FASTA format; (16)
-rev_comp, will reverse complement reads in the supplied
FASTQ file; (17) -rna, will convert each read to the corre-
sponding RNA sequence in the supplied FASTQ file; (18)
-clean, option to delete temporary files created during the
run. If the summary option is selected, fastQ_brew will
return a results table to STDOUT with summary statistics
of the FASTQ data file prior to filtering and after filtering.
The summary report will provide a table detailing max,
min, and average GC% values for all reads; max, min, and
average read lengths, max, min, and average Phred scores,
and max, min, and average error probabilities. The Phred
score (denoted as Q) represents the probability of an error
for each base, and is logarithmically related to the base-
calling error probability, P such that:

or

Q = −10 log10 P

In the case of arguments 15–17 above, a new file will
be generated in each case, whereas for all other options
the user-supplied arguments will be chained together to
return a single filtered file.

Results
Testing of fastQ_brew was performed by plotting runt-
ime against file size (Fig. 1a). FASTQ formatted sequence
data from 110 MB (462,664 reads) to 4.5 GB (24,159,698
reads) in size were used to benchmark the runtime of
fastQ_brew. In each case, fastQ_brew efficiently returned
summary statistics from each file in 36 s for 110 MB
FASTQ file to 25 min and 33 s for 4.5 GB. The runtime
will scale with the number of methods called within
fastQ_brew.

To evaluate more specific methods within fastQ_brew,
the relationship between nucleotide position within a
given read and the corresponding Phred quality score
was determined (Fig. 1b). This method tested the trim-
ming and Phred calculation methods within fastQ_brew.
The Phred quality score is used as a metric to determine
the quality of a given nucleotide’s identification within a
read [4]. Phred quality scores are related (logarithmically)
to the base-calling error probabilities [5] (see equation
above). The average Phred quality scores for a randomly
chosen FASTQ data file after left-side trimming (-trim_l)
method invocations within fastQ_brew from position
1–20 were plotted (Fig. 1b). There was a negative corre-
lation between increasing nucleotide position and Phred
quality score (R2 = −0.99969), that is, bases closer to
the beginning of each read exhibit higher Phred quality
scores, as compared with nucleotides closer to the middle
of the read. This observation is in keeping with previous
observations on Phred quality across reads [6–8] (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/).
The data set used in this test was comprised of 462,664
reads with an average read length of 99 bases. The small-
est read length was 25 bases and the largest was 100 bases.

To further examine the quality filtering method of
fastQ_brew, FASTQ data were downloaded from the
NCBI sequence read archive (SRA—https://www.ncbi.
nlm.nih.gov/sra) using the sra-toolkit (https://github.
com/ncbi/sra-tools). Distribution of read quality was
plotted prior to filtering (blue bars) and after filtering
(red bars) using fastQ_brew revealing a shift in Phred
scores towards increased quality after filtering (Fig. 1c).

Finally, to compare fastQ_brew to other FASTQ filter-
ing tools, I examined the execution time for some of the
most commonly used filtering tools in trimming FASTQ
data, and compared their execution speeds to that of

P = 10
−Q

10

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
https://github.com/ncbi/sra-tools
https://github.com/ncbi/sra-tools

Page 3 of 4O’Halloran ﻿BMC Res Notes (2017) 10:275

fastQ_brew. For all analyses, the same FASTQ file was
used, and in each case methods were invoked to trim 8
bases from the left and right sides of every read in the
file. The following software were used: fastq_brew ver
1.0.2; Trimmomatic ver 0.36 [9]; NGSQCToolkit ver 2.3.3
[6]; Prinseq ver 0.20.4 [10]; seqtk (https://github.com/
lh3/seqtk); Fastxtoolkit ver 0.0.13 (http://hannonlab.cshl.
edu/fastx_toolkit/index.html); BBDuk ver 37.22 (http://
jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/
bbmap-guide/); ngsShoRT ver 2.2 [11]; and Cutadapt ver
1.9.1 (http://journal.embnet.org/index.php/embnetjour-
nal/article/view/200). For some other software tools, this
exact invocation was not possible due to limitations on
the trimming method. The data from this analysis is pre-
sented in Fig. 1d. fastQ_brew compares well with other
commonly employed filtering tools. The fastest tool
was BBDuk which finished trimming all reads in only
1.532 s, and this was followed very closely by seqtk which

completed the task in 1.99 s. By examining across these
tools we can obtain some insight into how the execution
speeds for fastQ_brew compares with commonly used
trimming software. However, it is important to point out
that each tool offers many specific adaptations and fea-
tures that are not reflected in a basic trimming task, and
while speed is important when dealing with very large
data-sets, other features that include accessibility, docu-
mentation, ease of use, as well as applicability of options
are equally important.

In summary, I here describe fastQ_brew, a very light-
weight Perl package for robust analysis, preprocess-
ing, and manipulation of FASTQ sequence data files.
The main advantage of fastQ_brew is its ease of use, as
the software does not rely on any modules that are not
currently contained within the Perl Core. fastQ_brew
is freely available on GitHub at: https://github.com/
dohalloran/fastQ_brew.

0

200

400

600

800

1000

1200

1400

1600

1800

0 5,000,000 10,000,000 15,000,000 20,000,000 25,000,000 30,000,000

Ti
m

e
(s

ec
s)

Number of Reads

0

10

20

30

40

0 5 10 15 20

Ph
re

d
Q

ua
lit

y
Sc

or
e

Nucleotide Position

100 50 0 50 100

Ph
re

d
Q

ua
lit

y
Sc

or
e

40

20

ba

dc

Tr
im

m
in

g
tim

e
(s

ec
s)

 p
er

 1
06

re
ad

s

Fig. 1  a Performance testing of fastQ_brew. FASTQ formatted files containing different numbers of reads (110 MB [462,664 reads] to 4.5 GB
[24,159,698 reads]) were provided as input to fastQ_brew and ran using default settings to return summary statistics for each dataset. b Relationship
between nucleotide position and Phred quality score. fastQ_brew was used to determine the average Phred quality score from a FASTQ dataset
comprising 462,664 reads after the length trimming methods was invoked to trim each read from position 1–20. A negative correlation between
increasing nucleotide position and quality was observed. c The quality filter method within fastQ_brew was tested by plotting the Phred scores
before (blue bars) and after (red bars) quality filtering. After filtering, there was a shift in the distribution of reads towards higher quality Phred values.
d Execution speed for commonly used FASTQ filtering tools were compared with fastQ_brew. For all analyses, the same file and trimming task was
applied. The following software were compared and presented: fastq_brew ver 1.0.2, trimmomatic ver 0.36, NGSQCToolkit ver 2.3.3, Prinseq ver 0.20.4,
seqtk, Fastxtoolkit ver 0.0.13, ngsShoRT ver 2.2, BBDuk ver 37.22, and Cutadapt ver 1.9.1

https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
http://hannonlab.cshl.edu/fastx_toolkit/index.html
http://hannonlab.cshl.edu/fastx_toolkit/index.html
http://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/
http://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/
http://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/
http://journal.embnet.org/index.php/embnetjournal/article/view/200
http://journal.embnet.org/index.php/embnetjournal/article/view/200
https://github.com/dohalloran/fastQ_brew
https://github.com/dohalloran/fastQ_brew

Page 4 of 4O’Halloran ﻿BMC Res Notes (2017) 10:275

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Author details
1 Institute for Neuroscience, The George Washington University, 636 Ross
Hall, 2300 I St. N.W., Washington, DC 20052, USA. 2 Department of Biological
Sciences, The George Washington University, 636 Ross Hall, 2300 I St. N.W.,
Washington, DC 20052, USA.

Acknowledgements
I thank members of the O’Halloran lab for critical reading of the manuscript.

Competing interests
The author declares no competing interests.

Availability of data and materials
Project name: fastQ_brew.
Project home page: https://github.com/dohalloran/fastQ_brew.
Operating system(s): Platform independent.
Programming language: Perl.
Other requirements: none.
License: GNU.
Any restrictions to use by non-academics: no restrictions or login
requirements.

Funding
The George Washington University (GWU) Columbian College of Arts and
Sciences, GWU Office of the Vice-President for Research, and the GWU Depart-
ment of Biological Sciences.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 19 January 2017 Accepted: 8 July 2017

References
	1.	 Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file

format for sequences with quality scores, and the Solexa/Illumina FASTQ
variants. Nucleic Acids Res. 2010;38(6):1767–71.

	2.	 Kim M, Zhang X, Ligo JG, Farnoud F, Veeravalli VV, Milenkovic O.
MetaCRAM: an integrated pipeline for metagenomic taxonomy iden-
tification and compression. BMC Bioinform. 2016;17:94. doi:10.1186/
s12859-016-0932-x.

	3.	 Ferraro Petrillo U, Roscigno G, Cattaneo G, Giancarlo R. FASTdoop: a
versatile and efficient library for the input of FASTA and FASTQ files
for MapReduce Hadoop bioinformatics applications. Bioinformatics.
2017;33:1575–7.

	4.	 Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated
sequencer traces using phred. I. Accuracy assessment. Genome Res.
1998;8(3):175–85.

	5.	 Ewing B, Green P. Base-calling of automated sequencer traces using
phred. II. Error probabilities. Genome Res. 1998;8(3):186–94.

	6.	 Patel RK, Jain M. NGS QC toolkit: a toolkit for quality control of next gen-
eration sequencing data. PLoS ONE. 2012;7(2):e30619.

	7.	 Schmieder R, Lim YW, Rohwer F, Edwards R. TagCleaner: identification and
removal of tag sequences from genomic and metagenomic datasets.
BMC Bioinform. 2010;11:341. doi:10.1186/1471-2105-11-341.

	8.	 Cox MP, Peterson DA, Biggs PJ. SolexaQA: at-a-glance quality assess-
ment of Illumina second-generation sequencing data. BMC Bioinform.
2010;11:485. doi:10.1186/1471-2105-11-485.

	9.	 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illu-
mina sequence data. Bioinformatics. 2014;30(15):2114–20.

	10.	 Schmieder R, Edwards R. Quality control and preprocessing of metagen-
omic datasets. Bioinformatics. 2011;27(6):863–4.

	11.	 Chen C, Khaleel SS, Huang H, Wu CH. Software for pre-processing
illumina next-generation sequencing short read sequences. Source Code
Biol Med. 2014;9:8. doi:10.1186/1751-0473-9-8.

https://github.com/dohalloran/fastQ_brew
http://dx.doi.org/10.1186/s12859-016-0932-x
http://dx.doi.org/10.1186/s12859-016-0932-x
http://dx.doi.org/10.1186/1471-2105-11-341
http://dx.doi.org/10.1186/1471-2105-11-485
http://dx.doi.org/10.1186/1751-0473-9-8

	fastQ_brew: module for analysis, preprocessing, and reformatting of FASTQ sequence data
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Results
	Acknowledgements
	References

