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Abstract 

Background:  In the first stage of meta-analytic structural equation modeling (MASEM), researchers synthesized 
studies using univariate meta-analysis (UM) and multivariate meta-analysis (MM) approaches. The MM approaches are 
known to be of better performance than the UM approaches in the meta-analysis with equal sized studies. However 
in real situations, where the studies might be of different sizes, the empirical performance of these approaches is yet 
to be studied in the first and second stages of MASEM. The present study aimed to evaluate the performance of the 
UM and MM methods, having unequal sample sizes in different primary studies. Testing the homogeneity of correla-
tion matrices and the empirical power, estimating the pooled correlation matrix and also, estimating parameters of a 
path model were investigated using these approaches by simulation.

Results:  The results of the first stage showed that Type I error rate was well under control at 0.05 level when the 
average sample sizes were 200 or more, irrespective of the types of the methods or the sample sizes used. Moreover, 
the relative percentage biases of the pooled correlation matrices were also lower than 2.5% for all methods. There 
was a dramatic decrease in the empirical power for all synthesis methods when the inequality of the sample sizes was 
increased. In fitting the path model at the second stage, MM methods provided better estimation of the parameters.

Conclusions:  This study showed the different performance of the four methods in the statistical power, espe-
cially when the sample sizes of primary studies were highly unequal. Moreover, in fitting the path model, the MM 
approaches provided better estimation of the parameters.
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Background
Meta-analysis (MA), as a popular statistical technique, is 
used for the purpose of integrating and summarizing the 
findings of different studies in order to yield more pre-
cise and reliable effect size of interest across independ-
ent studies. The dramatic growth of structural equation 
modeling (SEM) techniques in different types of sciences 
has attracted the attention of researchers on the methods 
that utilized the ideas of MA and SEM in synthesizing 

the results of several studies [1]. The term meta-analytic 
structural equation modeling (MASEM) refers to a set 
of statistical techniques used for testing hypothetical 
models in psychology, medicine and management and 
accounting researches [2–4]. Two stages are considered 
when analyzing data in MASEM: the first stage involves 
a combination of correlation matrices of independent 
studies together to form a pooled correlation matrix, if 
the homogeneity hypothesis is held across studies. In the 
second stage, SEM analysis is performed to fit the SEM 
model by the pooled correlation matrix [1].

There are different methods for synthesizing correlation 
matrices in the first stage of MASEM. These methods are 
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categorized as UM and MM methods. The UM methods 
are frequently used in applied researches [5–8]. Univariate-
z (UNIz) and Univariate-r (UNIr), introduced by Hedges 
and Olkin [9] and Hunter and Schmidt [10], are the most 
popularly used UM techniques in MASEM researches. 
These approaches synthesize correlation matrices among 
k studies by taking the weighted average of correlation, ri . 
However, one problem associated with these approaches 
is that they fail to take into account the dependencies 
between correlations. This can cause a bias estimation of 
the pooled correlation matrix [11]. Given this deficiency, 
MM methods have been proposed and applied to provide 
more accurate results. GLS and TSSEM are the two best 
MM methods introduced by Becker [12] and Cheung and 
Chan [13]. Becker used generalized least squares estima-
tion method to model the dependency between correla-
tion coefficients in the first stage. However, due to some 
poor performance of this method in comparison with 
UMs [13–15], the researchers recommended different 
modifications in order to improve the traditional GLS 
method [11, 14, 15]. In TSSEM approach, correlations are 
pooled by multiple group SEM techniques at stage one and 
the pooled matrix is used for the analysis of SEM in the 
second stage.

Previous studies have shown that MM approaches per-
form better than UMs and also provide results with good 
and relatively unbiased estimators [13–17]. It should be 
noted that in most of the previous studies, the comparison 
between the mentioned methods and their properties was 
based on equal sample sizes within each MA. However, 
usually this does not occur in actual practice. Since prior 
results showed that trial sample sizes, n, influence treat-
ment effect estimates substantially [18], it was hypoth-
esized that these methods would perform inadequately, if 
a combination of very unequal-sized studies are included 
in an MA. Such a situation is not uncommon and fre-
quently occurs, especially in clinical trials and medical sci-
ences. For example, in the sample of 22,453 meta-analyses, 
Davey et al. demonstrated that in general, the sample size 
of individual studies varied considerably across MAs with 
a median of 91, an interquartile range from 44 to 210 and 
maximum of 1,242,071 individuals. They also concluded 
that sample sizes varied substantially across medical spe-
cialties, with the lowest and highest values of median size 
(61 and 154) for pathological conditions, symptoms and 
signs and for cancer, respectively [19].

Although several simulation studies were carried 
out to compare the performance of the UM and MM 
approaches [11, 13, 17], there exist no empirical study 
to evaluate these methods when there is a mixture of 
very unequal sample sizes design in MA. Differences in 
the sample sizes of primary studies within each MA are 
one of the problems encountered by MA studies when 

dealing with meta-analytical methods [20]. To the best 
of our knowledge, comparisons between the methods 
with unequal sample sizes have been evaluated only in 
some studies in which the variation of sample size was 
obtained under the specific requirements of the formula 
and spatial distributions [15, 16, 21, 22]. Although the 
use of these uneven sample sizes for MA studies might 
improve the findings [22], the produced sample sizes did 
not have significant difference when compared with the 
equal sized studies.

This study aimed to assess the effect of different une-
qual sample sizes scenarios on the statistical properties 
of approaches and made comparison with equal sample 
sizes.

Methods
Study design
Homogeneous studies
A simulation study was conducted to evaluate the perfor-
mance of UNIr, UNIz, MGLS and TSSEM approaches in 
both stages under different combinations of sample sizes. 
In this study, a path model with four observed variables 
was considered as shown in Fig.  1, which was already 
used by the pioneer researchers [17, 23].

The general form of the model is written as:

where Y 2×1 and X2×1 are vectors of endogenous and 
exogenous variables with B2×2 and Γ 2×2 as their coef-
ficients matrices, respectively. The term ζ 2×1 is the dis-
turbance vector with variance–covariance matrix �2×2. 
This model is an over-identified model with one degree 
of freedom. Population covariance matrix (�) which is a 
function of the parameters model is given as:

where I2×2 and �2×2 are identity matrix and covari-
ance matrix of X. If the model parameters are chosen 

as Ŵ =

[
0.4 0.5

0.3 0

]
, B =

[
0 0

0.5 0

]
, � =

[
1 0.2

0.2 1

]
 and 

Y = Γ X + BY + ζ

Σ =

[
(I − B)−1

(
ΓΦΓ

′

+ Ψ
)
(I − B)

′−1 (I − B)−1ΓΦ

ΦΓ
′

(I − B)−1 Φ

]
,

Fig. 1  Path model used to simulate data samples. X1 and X2 are inde-
pendent variables; Y1 is mediator; Y2 is dependent variable
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� =

[
0.51 0

0 0.51

]
, then the population covariance (Σ) 

implied by this model is derived as:

� can also serve as the common population correlation 
matrix. It was used to generate the simulated data. SEM 
techniques were used to estimate the parameters of the 
model [24].

Heterogeneous studies
In order to evaluate the statistical power of the four 
methods for rejecting homogeneity hypothesis correctly, 
another simulation study was performed in which simu-
lated correlation matrices were classified into two homo-
geneous subgroups. Two fixed population matrices were 
used to represent between group differences under the 
fixed-effects model [13]. � and �′ were also used as two 
population correlation matrices under the fixed-effects 
model in order to generate the heterogeneous studies. 
Heterogeneity was assessed at two levels: 20% for small 
heterogeneity and 50% for large heterogeneity. This 
implied that 20, 50% of the correlation matrices were 
selected from another population matrix. Selection of the 
parameters of the path model was in such a way that the 
�′ was obtained as:

Sample sizes
In MA of homogeneous and heterogeneous studies, the 
simulated data were based on three forms of the sample 
sizes designs: equal, moderately unequal and highly une-
qual sample sizes, such that the total sample size is the 
same. First, equal numbers of subjects were assigned to 
each MA studies. Second, for moderately unequal sam-
ples, the percentage of allocation of total sample sizes 
was considered as 40 and 60% for the large and small 
studies, respectively. At this point, larger studies had 
about 2.7 times more subjects than the small studies. 
Third, for highly unequal sized studies, the total sample 
size was assigned very unequally such that 40, 20 and 
40% of the samples were selected as small, medium and 
large, respectively. In this case, studies with larger sample 
sizes had 1.6 and 4 times more subjects than the studies 
with medium and small sample sizes. For example, in the 
MA with five studies and n̄ = 50, the authors determined 
the sample sizes as 30, 30, 30, 80 and 80 for moderately 

Σ =





1

0.65 1

0.50 0.55 1

0.58 0.35 0.20 1





�′
=





1

0.45 1

0.30 0.35 1

0.40 0.19 0.15 1





unequal samples and 20, 20, 50, 80 and 80 for highly une-
qual samples.

The effects of inequality in each MA study and differ-
ent values of number of studies (k =  5, 10 and 15) on 
the statistical properties of the four approaches and also 
the influence of heterogeneities on the statistical power 
of the four methods were also evaluated. A total of 1000 
random samples were generated from multivariate nor-
mal distribution with a mean vector of zero and vari-
ance covariance matrix of � in each simulation in order 
to achieve simulated correlation matrices. Moreover, the 
value of n̄ per study was set at 50, 100, 200, 500 and 1000 
subjects. Hence, this study included 15 MAs for each of 
the synthesizing methods.

Estimation methods
In order to test the homogeneity of correlation matrices 
for the UM methods, the Bonferroni-adjusted at-least-
one (BA1) approach [15] was used in the first stage. QGLS 
and maximum likelihood (ML) methods which have been 
described by Cheung et al. [13] were used for the MGLS 
and TSSEM approaches, respectively. Rejection rates 
were calculated based on α = 0.05 in the first stage.

In the second stage, ML and asymptotically distribu-
tions free (ADF) estimation methods were used for fitting 
path model with UM and MM approaches, respectively. 
In addition, the total sample sizes were considered for 
the estimation of the parameters. For every parameter 
estimates, the relative percentage bias was defined as 
Bias

(
θ̂

)
=

¯̂
θ−θ
θ

× 100%. The value of ¯̂θ is the mean of the 

estimates of the parameters in 1000 simulations and θ is 
the population value of the parameters.

The relative percentage bias of the standard error of 
each parameter estimate was used to assess the accuracy 
of the standard error estimates in fitting SEM. This value 
is defined as Bias (SE(θ̂)) = SE(θ̂)−SD(θ̂)

SD(θ̂)
× 100%, where 

SE(θ̂) is the mean of the estimated standard errors and 
SD(θ̂) is the empirical standard deviation of the param-
eter estimates across 1000 replications. The values of 
less than 5% for the parameter estimates and 10% for the 
standard errors were treated as acceptable bias [25]. The 
R software version 3.2.1 was used to perform these simu-
lation analyses using lavaan and metaSEM packages [26, 
27]. The metaSEM runs under the OpenMx package [28].

Results
Results of stage 1
The results of observed rejection percentages of the pre-
sent approaches for the simulated combinations of sam-
ple sizes in the first stage are shown in Table  1. With 
small average sample sizes (e.g., 50 and 100), there was 
over-rejection of the true model in some cases by UNIr, 
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MGLS and TSSEM approaches. This over-rejection 
increased especially for TSSEM, when the number of 
studies and inequality in samples increased. However, 
UNIz approach performed very well under different sam-
ple sizes. The present findings revealed that the error 
rates were well under control under large sample sizes 
(e.g. 200 and above), regardless of the methods or the 
design of the sample sizes used for the analysis.

Table  2 shows relative percentage biases of correla-
tion coefficients obtained by four approaches at stage 
one. By comparing values with 2.5% which is known as 
an acceptable criterion [29], all the methods exhibited 
relative biases lower than 2.5% for all types of the sample 
sizes design. The values of relative percentage biases were 
approximately decreased with increasing average sample 
sizes, in almost all conditions. Furthermore, the findings 
showed that the UNIr and MGLS had the same relative 
percentage biases in almost all conditions.

Table  3 illustrates the empirical power of homoge-
neity tests under various combinations of k, n̄ and ine-
quality of the sample sizes within each study for 20% 
and 50% heterogeneity of population matrices. Broadly 
speaking, there was increase in the power of homoge-
neity tests approximately in all scenarios of sample size 
designs when the number of MA studies and the sample 
sizes within each study were increased irrespective  of 
the  method  studied. With a heterogeneity percent-
age equal to 20%, the power of the tests are ranked as 
MGLS ≥  UNIr ≥  TSSEM ≥  UNIz in all cases except 

for k =  5 and n̄ = 50 with equal and moderately une-
qual sized studies. Based on the results of this table, 
substantial reduction occurred in the power in mod-
erately and highly unbalanced studies. By comparing 
moderately unequal and equal samples, the average 
rates of reduction of approximately 19, 17 and 13% were 
detected in the power of UNIr method, when the num-
ber of studies was equal to 5, 10 and 15, respectively. In 
UNIz approach, the reductions were approximately 23, 
32 and 27% when k was equal to 5, 10 and 15, respec-
tively. These rates were also about 17, 8 and 13% for the 
MGLS method for k =  5, 10 and 15. Moreover, there 
was reduction in the power of the TSSEM approach 
approximately by 21, 24 and 22% for the given value of 
k, respectively. For highly unequal sample sizes, more 
decrease of the power was obtained in comparison with 
equal sample sizes for each of the four methods than 
moderately unequal samples. There was an approxi-
mate decrease in the power of test by 36, 24 and 25% for 
the UNIr, 58, 50 and 47% for UNIz, 31, 17 and 22% for 
MGLS, and 54, 42 and 38% for TSSEM methods, for the 
same sequence of k.

When the heterogeneity of correlation matrices was 
50%, the same results were observed, except for the 
TSSEM method in which the power of the test was to 
be relatively higher than the others when the sample 
sizes were equal. Moreover, less decrease was observed 
in this condition for the average of the power com-
pared to 20% heterogeneity under different unequal 

Table 1  Type I error rates of the methods for different combination of sample sizes in homogenous studies

n̄ average sample sizes k number of studies, UNIr univariate-r, UNIz univariate-z, MGLS modified generalized least squared, TSSEM two-stage structural equation 
modeling, E equally sized studies M moderately unequal sized studies H highly unequal sized studies

* Values falls outside the 95% acceptance regions

n̄ Types k = 5 k = 10 k = 15

UNIr UNIz MGLS TSSEM UNIr UNIz MGLS TSSEM UNIr UNIz MGLS TSSEM

50 E 4.4 3.8 4.8 6.7* 6.4* 5.4 6.8* 9.1* 6.7* 5.3 7.9* 10.7*

M 5.6 4.2 5.7 6.7* 7.0* 5.2 7.2* 11.4* 8.1* 4.8 8.8* 11.0*

H 6.7* 5.6 8.5* 10.0* 6.6* 4.6 8.6* 10.1* 8.5* 5.4 9.8* 13.3*

100 E 5.1 5.8 5.9 7.3* 5.2 5.3 5.2 6.7* 5.2 3.7 5.3 6.2

M 5.9 5.2 6.0 7.1* 6.6* 4.3 6.2 7.4* 4.7 4.2 6.5* 6.6*

H 5.9 4.3 6.0 5.7 6.2 4.7 6.7* 6.6* 6.8* 4.4 7.6* 8.3*

200 E 4.4 4.4 5.1 5.2 5.3 4.9 5.5 6.0 5.1 3.8 5.4 5.9

M 4.5 3.3* 4.4 4.5 4.7 4.5 6.2 7.2* 4.9 4.1 5.1 5.6

H 5.0 4.9 5.7 5.6 4.4 4.2 5.4 5.5 7.1* 6.0 6.5* 6.2

500 E 5.3 5.4 5.7 5.7 5.2 6.2 5.8 5.9 3.7 3.2* 5.3 5.5

M 4.7 4.8 5.6 5.3 5.3 5.2 5.0 5.0 3.9 3.8 5.7 5.3

H 5.4 4.7 4.9 5.2 5.1 4.3 5.0 5.3 5.2 4.5 6.4* 6.3

1000 E 4.8 5.0 5.0 5.4 4.9 5.3 4.2 4.2 4.2 4.2 5.3 5.3

M 4.2 3.9 5.5 5.6 4.5 4.2 4.5 4.8 5.2 5.0 5.2 5.4

H 4.7 5.0 5.7 5.6 4.3 4.6 5.2 5.6 4.1 3.9 4.5 5.2
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Table 2  Relative percentage bias of correlation coefficients in the pooled correlation matrix at stage 1

Types Average UNIr UNIz

ρ21 ρ31 ρ41 ρ32 ρ42 ρ43 ρ21 ρ31 ρ41 ρ32 ρ42 ρ43

k = 5

 50 E −0.26 −0.37 −0.81 −0.99 −0.71 −0.46 0.68 0.84 0.31 0.13 0.73 1.10

M −0.40 −1.08 −0.41 −1.06 −0.76 −0.78 0.57 0.14 0.70 0.08 0.66 0.78

H −0.54 −0.85 −0.52 −1.04 −0.23 0.27 0.43 0.35 0.59 0.16 1.18 1.83

 100 E −0.43 −0.55 −0.39 −0.41 −0.34 −0.92 0.04 0.08 0.18 0.17 0.40 −0.15

M −0.19 −0.64 −0.17 −0.54 0.12 −0.02 0.27 −0.01 0.39 0.02 0.86 0.77

H −0.30 −0.39 −0.42 −0.57 −0.54 −0.18 0.17 0.21 0.14 −0.01 0.16 0.60

 200 E −0.12 0.15 −0.07 0.15 −0.05 0.70 0.10 0.45 0.18 0.44 0.29 1.08

M −0.14 −0.05 −0.23 −0.05 −0.28 −0.65 0.10 0.25 0.04 0.24 0.07 −0.26

H −0.03 0.00 −0.11 −0.07 −0.02 0.36 0.20 0.30 0.15 0.21 0.32 0.74

 500 E −0.09 0.02 −0.04 −0.07 −0.17 0.32 0.00 0.13 0.07 0.04 0.04 −0.03

M −0.05 −0.05 −0.16 −0.02 −0.02 0.08 0.04 0.07 −0.04 0.09 0.13 0.24

H −0.11 −0.08 −0.11 −0.11 −0.06 −0.01 −0.02 0.02 0.00 0.00 0.08 0.14

 1000 E −0.08 −0.13 0.01 −0.12 0.09 0.07 −0.04 −0.07 0.06 −0.07 0.16 0.15

M 0.00 −0.10 −0.07 0.10 0.02 −0.11 0.04 −0.04 −0.02 0.15 0.09 −0.03

H −0.07 −0.03 −0.05 −0.04 −0.11 0.10 −0.02 0.03 0.01 0.01 −0.04 0.18

k = 10

 50 E −0.57 −0.81 −0.34 −0.56 0.05 0.32 0.52 0.59 0.90 0.73 1.73 1.48

M −0.71 −0.56 −0.85 −0.77 −1.38 −0.60 0.39 0.86 0.37 0.54 0.25 1.22

H −0.51 −0.57 −0.64 −0.59 −0.79 −0.24 0.54 0.80 0.59 0.73 0.82 1.49

 100 E −0.39 −0.50 −0.33 −0.57 −0.94 −0.74 0.15 0.17 0.27 0.07 −0.14 0.11

M −0.52 −0.51 −0.43 −0.38 −0.81 −0.24 0.01 0.18 0.18 0.26 −0.02 0.62

H −0.23 −0.35 −0.21 −0.41 −0.36 −0.86 0.30 0.34 0.41 0.23 0.43 0.03

 200 E −0.16 −0.14 −0.16 −0.17 −0.05 0.20 0.10 0.20 0.14 0.15 0.35 0.64

M −0.13 −0.49 −0.18 −0.29 −0.32 −0.85 0.13 −0.15 0.11 0.03 0.08 −0.41

H −0.15 −0.39 −0.28 −0.22 −0.40 −0.48 0.11 −0.05 0.01 0.09 −0.01 −0.06

 500 E −0.06 −0.01 −0.06 −0.02 −0.16 −0.12 0.04 0.13 0.06 0.11 0.00 0.05

M −0.02 −0.08 −0.09 −0.18 −0.01 −0.26 0.09 0.06 0.03 −0.05 0.15 −0.09

H −0.09 −0.15 −0.08 −0.15 −0.14 −0.38 0.02 −0.01 0.04 −0.03 0.02 −0.21

 1000 E −0.02 −0.03 0.02 −0.02 0.09 0.31 0.03 0.04 0.08 0.04 0.17 0.40

M 0.02 0.05 −0.03 0.03 0.06 0.11 0.08 0.12 0.03 0.09 0.14 0.19

H −0.03 −0.02 −0.06 −0.07 −0.05 −0.28 0.02 0.05 0.00 −0.01 0.03 −0.19

k = 15

 50 E −0.61 −0.69 −0.57 −0.84 −1.04 −1.82 0.51 0.79 0.70 0.49 0.69 0.03

M −0.78 −0.84 −0.73 −1.14 −0.90 −1.45 0.33 0.60 0.57 0.22 0.76 0.37

H −0.64 −0.66 −0.70 −0.43 −1.21 −1.03 0.50 0.79 0.57 0.92 0.47 0.79

 100 E −0.17 −0.17 −0.30 −0.15 −0.37 0.20 0.38 0.54 0.32 0.51 0.46 1.12

M −0.31 −0.33 −0.26 −0.46 −0.44 −0.33 0.24 0.38 0.36 0.20 0.40 0.59

H −0.21 −0.13 −0.37 −0.28 −0.17 0.55 0.34 0.60 0.26 0.37 0.67 1.47

 200 E −0.14 −0.20 −0.21 −0.25 −0.11 −0.35 0.13 0.15 0.10 0.06 0.30 0.10

M −0.18 −0.27 −0.16 −0.18 −0.32 −0.51 0.09 0.09 0.15 0.15 0.10 −0.07

H −0.09 −0.07 −0.15 −0.17 −0.03 0.31 0.18 0.28 0.16 0.16 0.38 0.76

 500 E −0.11 −0.21 −0.16 0.13 −0.18 −0.39 −0.01 −0.07 −0.04 0.00 −0.02 −0.21

M −0.10 −0.20 −0.09 −0.20 0.05 −0.28 0.01 −0.06 0.04 −0.07 0.21 −0.10

H −0.06 −0.03 −0.02 −0.10 −0.04 0.04 0.05 0.11 0.10 0.03 0.12 0.21

 1000 E −0.01 −0.05 −0.08 −0.05 −0.11 −0.18 0.05 0.03 −0.02 0.03 −0.03 −0.09

M −0.02 −0.04 −0.03 −0.02 −0.09 −0.06 0.04 0.03 0.04 0.05 −0.01 0.03

H −0.02 −0.03 −0.02 −0.07 −0.06 −0.10 0.03 0.04 0.05 0.00 0.02 −0.01
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Table 2  continued

Types Average MGLS TSSEM

ρ21 ρ31 ρ41 ρ32 ρ42 ρ43 ρ21 ρ31 ρ41 ρ32 ρ42 ρ43

k = 5

 50 E −0.26 −0.37 −0.81 −0.99 −0.71 −0.46 0.64 0.75 0.24 0.10 0.63 1.00

M −0.40 −1.07 −0.40 −1.05 −0.75 −0.77 0.52 0.04 0.63 0.05 0.56 0.57

H −0.54 −0.85 −0.51 −1.04 −0.23 0.28 0.40 0.31 0.53 0.14 1.08 1.69

 100 E −0.43 −0.55 −0.39 −0.41 −0.34 −0.92 0.03 0.03 0.15 0.14 0.36 −0.19

M −0.19 −0.64 −0.17 −0.54 0.12 −0.02 0.26 −0.07 0.36 0.00 0.80 0.72

H −0.29 −0.39 −0.42 −0.57 −0.54 −0.19 0.16 0.16 0.12 −0.03 0.12 0.53

 200 E −0.12 0.15 −0.08 0.15 −0.05 0.70 0.09 0.43 0.17 0.43 0.26 1.04

M −0.14 −0.05 −0.23 −0.05 −0.28 −0.65 0.09 0.24 0.02 0.23 0.04 −0.29

H −0.03 0.00 −0.11 −0.07 −0.02 0.36 0.18 0.28 0.14 0.20 0.29 0.70

 500 E −0.09 0.02 −0.04 −0.07 −0.17 0.32 0.00 0.13 0.07 0.04 −0.03 0.47

M −0.05 −0.05 −0.16 −0.02 −0.02 0.08 0.04 0.06 −0.05 0.09 0.11 0.23

H −0.11 −0.09 −0.11 −0.11 −0.06 −0.01 −0.02 −0.02 −0.01 −0.01 0.07 0.12

 1000 E −0.08 −0.13 0.01 −0.12 0.09 0.07 −0.04 −0.07 0.06 −0.07 0.15 0.14

M 0.00 −0.10 −0.07 0.10 0.02 −0.11 0.04 −0.04 −0.02 0.15 0.08 −0.04

H −0.07 −0.03 −0.05 −0.04 −0.11 0.10 −0.02 0.02 0.00 0.01 −0.05 0.17

k = 10

 50 E −0.57 −0.82 −0.35 −0.56 0.05 0.32 0.49 0.50 0.84 0.71 1.63 1.35

M −0.71 −0.55 −0.85 −0.76 −1.38 −0.60 0.34 0.76 0.31 0.51 0.13 1.09

H −0.50 −0.56 −0.64 −0.59 −0.78 −0.24 0.50 0.69 0.52 0.68 0.69 1.30

 100 E −0.39 −0.50 −0.33 −0.57 −0.94 −0.74 0.13 0.13 0.23 0.05 −0.21 0.05

M −0.52 −0.51 −0.43 −0.38 −0.81 −0.24 −0.01 0.13 0.15 0.24 −0.08 0.57

H −0.23 −0.34 −0.20 −0.41 −0.36 −0.86 0.28 0.30 0.38 0.21 0.39 −0.03

 200 E −0.16 −0.14 −0.16 −0.17 −0.05 0.20 0.09 0.18 0.12 0.14 0.31 0.59

M −0.13 −0.49 −0.18 −0.29 −0.32 −0.85 0.12 −0.17 0.09 0.02 0.04 −0.47

H −0.15 −0.39 −0.28 −0.22 −0.40 −0.48 0.10 −0.07 −0.01 0.09 −0.05 −0.10

 500 E −0.06 −0.01 −0.06 −0.02 −0.16 −0.12 0.04 0.12 0.05 0.11 −0.01 0.04

M −0.02 −0.08 −0.09 −0.18 −0.01 −0.26 0.09 0.05 0.02 −0.05 0.14 −0.09

H −0.09 −0.15 −0.08 −0.15 −0.14 −0.38 0.01 −0.01 0.04 −0.03 0.01 −0.22

 100 E −0.02 −0.03 0.02 −0.02 0.09 0.31 0.03 0.03 0.08 0.04 0.16 0.39

M 0.02 0.05 −0.03 0.03 0.06 0.11 0.07 0.12 0.02 0.09 0.13 0.19

H −0.03 −0.02 −0.06 −0.07 −0.05 −0.28 0.02 0.05 −0.01 −0.01 0.02 −0.20

k = 15

 50 E −0.61 −0.69 −0.57 −0.84 −1.04 −1.82 0.46 0.68 0.64 0.46 0.54 −0.13

M −0.78 −0.84 −0.72 −1.14 −0.90 −1.44 0.29 0.52 0.49 0.19 0.62 0.25

H −0.63 −0.65 −0.70 −0.43 −1.21 −1.03 0.46 0.71 0.52 0.91 0.35 0.65

 100 E −0.17 −0.17 −0.30 −0.15 −0.37 0.20 0.35 0.49 0.28 0.49 0.39 1.04

M −0.31 −0.33 −0.26 −0.46 −0.44 −0.33 0.22 0.34 0.33 0.19 0.34 0.51

H −0.21 −0.13 −0.37 −0.28 −0.17 0.56 0.31 0.53 0.22 0.35 0.59 1.39

 200 E −0.14 −0.20 −0.21 −0.25 −0.11 −0.35 0.11 0.12 0.08 0.05 0.26 0.04

M −0.18 −0.27 −0.16 −0.18 −0.32 −0.51 0.08 0.06 0.13 0.14 0.06 −0.11

H −0.09 −0.07 −0.15 −0.17 −0.03 0.31 0.17 0.27 0.14 0.15 0.35 0.73

 500 E −0.11 −0.21 −0.16 −0.13 −0.18 −0.39 −0.01 −0.08 −0.04 0.00 −0.04 −0.23

M −0.10 −0.20 −0.08 −0.20 0.05 −0.28 0.01 −0.06 0.03 −0.07 0.20 −0.11

H −0.06 −0.03 −0.02 −0.10 −0.04 0.04 0.04 0.10 0.10 0.03 0.11 0.20

 1000 E −0.01 −0.05 −0.08 −0.05 −0.11 −0.18 0.04 0.02 −0.02 0.01 −0.03 −0.09

M −0.02 −0.04 −0.03 −0.02 −0.09 −0.06 0.04 0.03 0.03 0.05 −0.01 0.02

H −0.02 −0.03 −0.02 −0.07 −0.06 −0.10 0.03 0.04 0.04 0.00 0.01 −0.02

All of the notations are described in Table 1
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sample sizes designs. It should be noted that these 
results were obtained when the average sample sizes 
were less than 500. When the sample size was equal to 
or greater than 500, the power was approximately sim-
ilar for all methods and no substantial reduction was 
observed.

Results of stage 2
Table 4 summarizes the results of Chi square test statis-
tics and their standard deviations for evaluation of model 
fit of four methods in all conditions of sample sizes. In 
general, the true model significantly was over-rejected 
by UNIr and UNIz methods. The difference between the 

Table 3  Rejection frequency percentage (statistical power) of stage 1 in heterogeneous studies

n̄ average sample sizes, k number of studies, UNIr univariate-r, UNIz univariate-z, MGLS modified generalized least squared, TSSEM two-stage structural equation 
modeling, E equally sized studies, M moderately unequal sized studies, H highly unequal sized studies

k n̄ Types Low heterogeneity (20%) High heterogeneity (50%)

UNIr UNIz MGLS TSSEM UNIr UNIz MGLS TSSEM

5

50 E 40.1 37.6 44.6 47.6 39.0 35.3 40.4 43.9

M 34.6 37.0 36.2 45.8 39.3 25.4 46.1 33.5

H 22.9 11.3 29.6 18.4 38.6 20.0 45.8 25.6

100 E 61.4 51.8 65.1 58.6 76.4 74.1 80.4 81.2

M 46.3 31.1 52.0 37.1 71.1 58.1 78.1 65.0

H 40.6 23.5 44.8 26.2 60.0 38.1 69.9 46.7

200 E 93.6 90.6 96.3 92.9 98.5 98.3 99.4 99.4

M 77.3 64.9 84.8 72.0 97.6 93.6 98.5 96.8

H 63.0 45.7 69.6 50.6 89.7 79.9 93.0 83.6

500 E 100 100 100 100 100 100 100 100

M 99.5 99.3 100 100 100 100 100 100

H 96.9 93.2 98.7 95.2 99.9 99.9 100 100

10

50 E 45.0 36.6 47.2 44.4 57.8 59.3 59.6 67.7

M 34.7 19.3 42.3 28.0 67.6 48.0 76.0 60.9

H 32.5 14.4 40.0 23.0 63.0 39.9 76.7 57.5

100 E 82.9 75.3 84.2 78.2 94.7 94.9 96.9 97.6

M 63.9 47.1 73.9 56.1 93.6 86.1 96.3 92.1

H 56.1 29.4 62.7 37.4 91.4 81.7 96.3 88.1

200 E 99.5 99.0 99.6 99.3 100 100 100 100

M 95.5 88.3 97.7 91.2 100 100 100 100

H 86.4 69.7 90.3 72.9 99.8 99.5 100 99.9

500 E 100 100 100 100 100 100 100 100

M 100 100 100 100 100 100 100 100

H 100 99.5 100 99.9 100 100 100 100

15

50 E 56.8 42.7 59.4 55.9 72.5 72.6 76.0 81.5

M 45.5 25.1 47.2 36.0 75.8 53.6 79.0 68.9

H 35.9 14.1 39.9 27.9 73.3 40.8 77.0 59.4

100 E 94.0 88.3 95.0 90.7 99.0 99.3 99.4 99.5

M 77.3 57.8 78.7 65.3 98.4 95.5 98.9 96.4

H 63.8 37.4 65.5 44.7 96.8 88.9 97.7 92.9

200 E 100 100 100 99.9 100 100 100 100

M 98.7 94.8 99.2 97.4 100 100 100 100

H 94.4 82.7 96.4 85.4 100 100 100 99.9

500 E 100 100 100 100 100 100 100 100

M 100 100 100 100 100 100 100 100

H 100 100 100 100 100 100 100 100
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observed and expected values of Chi square statistics 
was increased significantly when the n̄ and k increased. 
The lowest and the highest positive bias referred to mod-
erately unequal and highly unequal samples of UNIr 
method when k  =  5, n̄ = 50 and k  =  15, n̄ = 1000 , 
respectively. However the test statistics of MGLS and 
TSSEM approaches tended to converge to the expected 
means and standard deviation in almost all conditions. 
Furthermore, there was no dramatic difference for mod-
erately and highly unequal than equal sample sizes for all 
approaches.

Figure 2 displays the relative percentage bias of param-
eter estimates for given values of k. Figure 2a–c shows the 
bias values of parameter estimates for the studies with 
equal, moderately unequal and highly unequal samples, 
respectively. As a result of the space limitations, one rep-
resentative parameter, γ11, was selected to be displayed. 
Interested readers should refer to Additional file  1 for 
more details.

The results showed that the estimates of the four 
parameters (e.g., γ11,β21,ϕ12 andψ22) were unbiased for 
UNIr and UNIz approaches with the values being lower 
than 5% in all studies. Two parameters, namely γ12 and 
ψ11, were close to 5% for almost all conditions. The lowest 
and highest values of relative percentage bias for the last 
parameter, γ21, were 11.3 and 14.2%. However, for MMs, 
the relative unbiased estimates were observed for all the 
parameters in all combinations of the studies, inequality 
in the sample sizes and n̄. In general, similar results were 
observed for the bias of the parameter estimates using 

the MGLS and TSSEM approaches. The relative percent-
age bias of the parameter estimates from these two meth-
ods was lower than 2% (the highest value was 1.97% for 
ψ_11 in TSSEM when k = 5, n̄ = 50 for study samples of 
the same size). Relative biases were attenuated slightly 
towards zero when n̄ were increased.

Figure  3 compares the relative percentage biases of 
the standard errors (SE) of γ11 as one of the param-
eters of interest under different combination of sam-
ple sizes (Fig.  3a–c). Additional file  2 presents the rest 
of the parameter estimates in more detail. Using 10% 
as a good estimation of the relative biases, three SE of 
γ11, γ21 andψ11 had relative biases larger than 10% for 
UMs, especially in small n̄. The bias values for these 
parameters ranged from 13 to 29%. In almost all situa-
tions, there were positive biases for a larger number of 
parameters (three path coefficients and the factor corre-
lation were positively biased). Moreover, the same pattern 
was observed for the bias values when the average sample 
sizes or the number of studies were increased. However, 
unlike the UMs, the results were different for MMs which 
were unbiased in almost all parameters, except one (e.g., 
γ12, with the highest value being about 25% for TSSEM 
method). The relative percentage bias for these param-
eters ranged from 0 to 10.7%, 0 to 11.6%, and 0 to 14% in 
study sample sizes that were equal, moderately unequal, 
and highly unequal, respectively. These results showed 
that MGLS and TSSEM techniques had a similar per-
formance. In these approaches, the relative percentage 
biases almost had a decreasing pattern when n̄ increased. 

Table 4  Chi square statistics and their standard deviations of stage 2

Values enclosed in parentheses represent standard deviations (SD). Expected means and SDs of Chi squares are 1 and 1.41, respectively
a  p < 0.05; b p < 0.01

n̄ Types k = 5 k = 10 k = 1

UNIr UNIz MGLS TSSEM UNIr UNIz MGLS TSSEM UNIr UNIz MGLS TSSEM

50 E 2.3 (3.9)b 2.4 (4.0)b 1.0 (1.6) 1.1 (1.6) 2.5 (3.3)b 2.6 (3.4)b 1.1 (1.6) 1.1 (1.7)a 2.7 (3.7)b 2.8 (3.7)b 1.1 (1.7) 1.2 (1.8)b

M 2.1 (2.8)b 2.2 (2.9)b 1.0 (1.4) 1.1 (1.5) 2.3 (3.2)b 2.3 (3.3)b 1.0 (1.4) 1.1 (1.4) 2.7 (3.7)b 2.7 (3.7)b 1.0 (1.4) 1.0 (1.4)

H 2.3 (3.26)b 2.3 (3.4)b 1.0 (1.5) 1.0 (1.6) 2.4 (3.3)b 2.5 (3.4)b 1.0 (1.4) 1.0 (1.4) 2.5 (3.5)b 2.5 (3.6)b 1.0 (1.4) 1.0 (1.5)

100 E 2.3 (3.1)b 2.3 (3.1)b 1.0 (1.5) 1.0 (1.5) 2.9 (3.8)b 2.9 (3.9)b 1.1 (1.6) 1.1 (1.6) 3.4 (4.4)b 3.4 (4.4)b 1.1 (1.5) 1.1 (1.5)a

M 2.4 (3.6)b 2.4 (3.6)b 1.0 (1.5) 1.0 (1.5) 2.8 (3.7)b 2.8 (3.7)b 1.0 (1.4) 1.0 (1.4) 3.4 (4.2)b 3.3 (4.2)b 1.0 (1.5) 1.0 (1.5)

H 2.4 (3.2)b 2.4 (3.3)b 1.0 (1.5) 1.0 (1.5) 2.8 (3.7)b 2.8 (3.6)b 1.0 (1.4) 1.0 (1.4) 3.2 (4.0)b 3.2 (4.0)b 1.0 (1.4) 1.0 (1.4)

200 E 2.8 (3.7)b 2.8 (3.7)b 1.0 (1.3) 1.0 (1.3) 3.9 (4.6)b 3.9 (4.6)b 1.1 (1.44) 1.1 (14) 5.1 (5.9)b 5.1 (5.9)b 1.1 (1.6) 1.1 (1.6)

M 2.7 (3.6)b 2.7 (3.7)b 1.0 (1.6) 1.1 (1.6) 3.6 (4.3)b 3.6 (4.3)b 1.0 (1.3) 0.9 (1.3) 4.8 (5.3)b 4.7 (5.3)b 1.1 (1.5) 1.1 (1.5)

H 2.8 (3.6)b 2.9 (3.6)b 1.1 (1.6)a 1.1 (1.6)a 3.7 (4.6)b 3.7 (4.6)b 1.0 (1.4) 1.0 (1.4) 5.0 (5.55)b 4.9 (5.5)b 1.0 (1.4) 1.0 (1.4)

500 E 4.1 (4.9)b 4.1 (4.9)b 1.0 (1.4) 1.0 (1.4) 6.4 (6.2)b 6.4 (6.2)b 0.9 (1.3) 1.0 (1.3) 9.2 (7.79)b 9.1 (7.8)b 1.0 (1.5) 1.0 (1.5)

M 4.1 (4.9)b 4.1 (4.9)b 1.0 (1.3) 1.0 (1.3) 6.8 (6.5)b 6.7 (6.5)b 0.9 (1.3)a 0.9 (1.3)a 9.8 (8.1)b 9.7 (8.0)b 1.0 (1.4) 1.0 (1.4)

H 4.2 (4.9)b 4.2 (4.9)b 1.0 (1.5) 1.0 (1.5) 6.8 (6.4)b 6.7 (6.4)b 0.9 (1.3) 1.0 (1.3) 9.2 (7.8)b 9.1 (7.8)b 1.0 (1.4) 1.0 (1.4)

1000 E 7.0 (6.8)b 7.0 (6.8)b 1.1 (1.5) 1.1 (1.5) 11.7 (9.0)b 11.7 (9.0)b 1.0 (1.4) 1.0 (1.4) 15.9 (10.5)b 15.8 (10.5)b 1.0 (1.4) 1.0 (1.4)

M 6.9 (6.4)b 6.9 (6.4)b 1.0 (1.4) 1.0 (1.4) 11.4 (8.7)b 11.3 (8.7)b 0.9 (1.3) 0.9 (1.3)a 15.9 (10.6)b 15.9 (10.6)b 1.1 (1.6) 1.1 (1.6)

H 6.6 (6.5)b 6.6 (6.5)b 0.9 (1.3) 1.0 (1.3) 11.7 (9.0)b 11.7 (9.0)b 1.0 (1.4) 1.0 (1.4) 16.4 (10.8)b 16.3 (10.8)b 1.0 (1.4) 1.0 (1.4)
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Slight negative biases were observed for three path coeffi-
cients (γ11, β21 and γ21), two error variance, ψ11 and ψ22 
and the covariance of observed X, ϕ12. Generally, MMs 
outperformed the UMs in producing unbiased results 
for the parameters and their SE estimates. The relatively 
similar results were observed for all sample sizes designs.

Discussion
This study examined the effect of unbalanced sample 
sizes designs in different primary studies on synthesizing 
MA methods in the first and second stages of MASEM. 
For a number of reasons, unequal sample sizes in differ-
ent studies in MA and the centers in multicenter clinical 
trials commonly occur [30]. That is an issue, which has 
not yet been investigated, in the most previous simula-
tion studies.

The present findings demonstrated that UM methods 
performed well in controlling Type I error rate for a com-
bination of sample sizes and the number of MA except 
for a limited number of conditions. When the average 
sample sizes were lower than 200, MM methods, espe-
cially TSSEM, with moderately and highly unbalanced 
samples performed worse than UMs in the incorrect 

rejection of a true null hypothesis. However, when the 
average sample sizes were 200 or more, both UM and 
MM methods were closed to their nominal Type I error 
rates. These findings were in line with those generally 
reported by the researchers [13, 14] and Zhang for MM 
approaches [17]. These results imply that it is permissible 
to use any of the methods to estimate pooled correlation 
matrices in the first stage when there are relatively large 
sample sizes in the MA.

As compared with equal sample sizes designs, there was 
a decrease in the power of the UM and MM approaches 
for detecting heterogeneous studies when the same total 
sample size was assigned unequally. It is worth men-
tioning that as compared with moderately unequal sam-
ple sizes, studies with high inequality had more adverse 
effects on the power of homogeneity tests. Although the 
TSSEM approach provided a good balance between Type 
I error control and the statistical power in equal sample 
sizes design in this study and other published studies [13, 
17], the present findings showed the relatively poor per-
formance of this method for unequal sample sizes, espe-
cially in the n̄ lower than 200, with highly unequal sample 
sizes. The results of this study showed that TSSEM had 
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Fig. 2  Relative percentage biases of parameters estimate in stage 2 for γ11. RPB relative percentage biases, n average sample sizes, k number of 
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the highest power of rejecting the incorrect null hypothe-
sis only when there was high heterogeneity in correlation 
matrices and the inequality of the sample sizes was neg-
ligible. Moreover, these results did not reveal the supe-
riority of TSSEM method compared to other methods 
because there were inflation of the Type I error rates at 
the same points. However, the MGLS method had a high 
power for detecting heterogeneous correlation matrices 
regardless of the sample sizes and inequality used in the 
simulations. The obtained result is in agreement with the 
previous studies which had reported the good perfor-
mance of MGLS approach [15, 17, 31].

Whether small studies are more heterogeneous than 
larger ones [32], the heterogeneity of correlation matrices 
were allocated to the small simulation studies. In addi-
tion, also, some other studies were considered as hetero-
geneous cases. Based on the present findings, MGLS and 
UNIr have more stability than UNIz and TSSEM meth-
ods even if the larger studies are selected as heterogene-
ous. In general, of the four tests of heterogeneity, MGLS 
and UNIr approaches have a higher statistical power 
in detecting heterogeneous studies than the two other 

methods. These findings are inconsistent with those of 
Cheung, who reported the superiority of TSSEM and 
unmodified-GLS procedures than the UM approaches 
[13].

The performance of UNIr and UNIz methods in Chi 
square test statistics to fit SEM was poor compared to 
MGLS and TSSEM approaches at the second stage. As 
shown by previous studies [11, 13], this test statistic had 
no good performance for UM approaches because it 
was affected by many factors, such as sample size [13]. 
In addition, when the number of studies increased, the 
Type I error rate related with the model fit exceeds the 
nominal level; therefore, the rate of such error increases. 
Generally, final decisions in SEM analyses cannot be 
achieved solely based on Chi square test, and many 
researchers have recommended utilizing a range of other 
goodness-of-fit indices to assess model fit [33]. Bollen 
demonstrated that the means of sampling distributions 
of Tucker-Lewis (TLI) and incremental fit (IFI) indices 
had relatively been unaffected by the sample size [34]. 
In the current study, the performance of some fit indices 
such as TLI and IFI were also assessed; but details of the 
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results are not presented here. The results indicated good 
fit with negligible differences between the MM and UM 
methods. Further studies are required to assess the per-
formance of combining correlation matrices approaches 
in more complex models, in fitting SEM at the second 
stage.

Based on the relative percentage bias of the param-
eter estimates and their SEs in the second stage, the 
present findings showed that MM approaches outper-
formed the UM approaches in almost all conditions. 
MMs produced fewer biased estimates of parameters 
and the SEs than UMs. These findings are consistent 
with those of Cheung and Chan [13] and Furlow et al. 
[11], in which they reported good performance of MM 
approaches in estimating the parameters and their SEs. 
It should be pointed out that the number of studies (k) 
included in the MA did not affect the estimation of the 
pooled correlation matrix in the first stage [35] or the 
biases of the parameters and the SE estimates in the 
second stage [11, 13, 15]. This is also true when consid-
ering the impact of unequal sample sizes in MA stud-
ies. However, when the total sample sizes increased, the 
biases of the parameter estimates decreased and also 
there was a reduction in the magnitude of the SEs but 
with a fluctuated pattern.

In the second stage of UM approaches, research-
ers choose different sample sizes, including arithmetic, 
weighted or total sample sizes. In the current study, 
based on the rule presented by Bollen, the total sample 
size was used to reduce the adverse effect of the sam-
ple sizes on SE of the parameter [36]. Nevertheless, UM 
approaches failed to yield satisfactory results. In gen-
eral, using MM approaches for fitting SEM model in the 
second stage avoided the problems encountered using 
UM approaches, such as over-rejection of Chi square 
test, the goodness of fit indices, the power of homoge-
neity tests, and the relative biases of standard error of 
parameters [13]. Moreover, since it was difficult to con-
sider the appropriate sample size in this stage for UM 
approaches; it seemed that MM approaches would be 
better choices for the analysis of MASEM in the second 
stage. However, owing to the popularity and ease of use 
for the users, many researchers still use UM approaches 
for the analysis of synthesized correlation matrices. UM 
approaches have good performance in controlling Type 
I error rates. Moreover, the relative percentage bias of 
the pooled correlation matrices is very good in the first 
stage, even under small or substantial unequal sample 
sizes. So it seems that, based on the current and other 
studies [13, 16, 23], there is no difficulty for applied 
researchers to use UMs in estimating pooled correlation 
matrices.

The present study had two main limitations which 
should be noted. First, comparison of the MA approaches 
with unbalanced sample sizes was performed under the 
fixed-effects model. In this model, the effect sizes of all 
studies in the MA are limited to one population effect 
size and the generalization of the results to main popula-
tion is not possible [21]. However, many applied research-
ers use fixed-effects models in the MASEM studies [11]. 
Secondly, the estimation of the pooled correlation matrix 
was based on the full observation with no missing vari-
able in this simulation study. Cheung and Chan pointed 
out that when the more studies are included in MASEM, 
it will be more likely to have missing variables and heter-
ogeneous correlation matrices in the MA studies [13]. In 
the present study, the value of 15 was considered as the 
largest number of studies in this simulation with no miss-
ing variable. It is suggested that further studies are nec-
essary to assess the larger number of MA studies using 
random-effects models with missing correlations in the 
first and second stages of MASEM.

Conclusion
In summary, MGLS was the most appealing approach in 
terms of Type I error rate, detecting heterogeneous stud-
ies and precision of parameter estimates under equal and 
unequal sample size designs. For large and balance sam-
ple sizes, the TSSEM can be applied not only in combin-
ing the correlation matrices, but also in estimating the 
parameters in the second stage. However, it is recom-
mended that the UNIr and UNIz methods are only used 
for synthesizing the correlation matrices in the first stage.
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