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Abstract 

Background:  Uganda just like any other Sub-Saharan African country, has a high under-five child mortality rate. To 
inform policy on intervention strategies, sound statistical methods are required to critically identify factors strongly 
associated with under-five child mortality rates. The Cox proportional hazards model has been a common choice in 
analysing data to understand factors strongly associated with high child mortality rates taking age as the time-to-
event variable. However, due to its restrictive proportional hazards (PH) assumption, some covariates of interest which 
do not satisfy the assumption are often excluded in the analysis to avoid mis-specifying the model. Otherwise using 
covariates that clearly violate the assumption would mean invalid results.

Methods:  Survival trees and random survival forests are increasingly becoming popular in analysing survival data 
particularly in the case of large survey data and could be attractive alternatives to models with the restrictive PH 
assumption. In this article, we adopt random survival forests which have never been used in understanding factors 
affecting under-five child mortality rates in Uganda using Demographic and Health Survey data. Thus the first part of 
the analysis is based on the use of the classical Cox PH model and the second part of the analysis is based on the use 
of random survival forests in the presence of covariates that do not necessarily satisfy the PH assumption.

Results:  Random survival forests and the Cox proportional hazards model agree that the sex of the household head, 
sex of the child, number of births in the past 1 year are strongly associated to under-five child mortality in Uganda 
given all the three covariates satisfy the PH assumption. Random survival forests further demonstrated that covari-
ates that were originally excluded from the earlier analysis due to violation of the PH assumption were important in 
explaining under-five child mortality rates. These covariates include the number of children under the age of five in a 
household, number of births in the past 5 years, wealth index, total number of children ever born and the child’s birth 
order. The results further indicated that the predictive performance for random survival forests built using covari-
ates including those that violate the PH assumption was higher than that for random survival forests built using only 
covariates that satisfy the PH assumption.
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Background
The third sustainable development goal states that ensur-
ing healthy lives and promoting the well-being for all at 
all ages is essential to sustainable development [1, 2]. 
Critical among these age groups are the children under 
the age of five. In 2015, the United Nations recorded that 
a total of 17,000 fewer children died each day than was 
the case in 1990. However, more than six million chil-
dren still die before their fifth birthday each year. Most 
of these deaths occur in Sub-Saharan Africa. Uganda in 
particular recorded an under-five mortality rate of 71.28 
per 1000 live births in the period of 2005–2011 [3]. This 
rate is approximately 3 times the third sustainable devel-
opment goal target of at least as low as 25 per 1000 live 
births [4].

Identifying factors strongly associated with under-
five child mortality rates is a topic of increased research 
interest for most of the countries in Sub-Saharan Africa, 
Uganda included. Several statistical methods have been 
used in studies aimed at identifying factors that are 
strongly associated with under-five child mortality rates 
[5–7]. Most studies have employed standard survival 
methodologies like the Cox-proportional hazards model 
[8–11]. However, the model has constantly been criti-
cized for its restrictive assumption commonly referred to 
as the proportional hazards (PH) assumption [12–14].

Extensions for this model to deal with survival data 
in  situations where the PH assumption is violated have 
been suggested such as the extended Cox model [15–
17]. The extended Cox model is more flexible and most 
importantly relaxes the standard assumptions of the 
original Cox model, this however, comes at a cost of 
a more complicated model. For example, employing a 
smooth spline helps one to explicitly specify the func-
tions for the Cox regression relationship but it requires 
one to specify correct degrees of freedom, number and 
placement of the knot points and order of the regression 
spline model (which could be quadratic, cubic, quartic, 
some combination of different orders, among others). In 
addition, polynomial spline models must be constrained 
by goodness-of-fit characteristics based on the actual 
data, resulting in penalty functions and other such crite-
ria that cannot be universally applied to varying datasets 
[18–20]. This implies therefore that the hazard estimates 
of the extended Cox model are dependent on the param-
eter and model specification considered. Estimates of 

both nonlinearity and time-dependence vary depend-
ing upon the degrees of freedom and other parameters. 
Furthermore, models that fit the data equally well can 
have different shapes for the hazard function and result 
in different hazard estimates. Relying heavily on hazard 
estimates based on these models may require a more 
skilled user methodologically because there is no stand-
ardized method for determining which parameters are 
most appropriate [20]. However, it should be noted that 
when all the covariates being considered satisfy the PH 
assumption then the Cox PH model is preferred.

Survival trees and random survival forests formally 
implemented in R [21, 22], are simple but robust methods 
that have been considered to be an attractive alternative 
model choice for survival data. These methods are exten-
sions of classification and regression trees (CART) and 
random forests [23, 24]. The methods are fully non para-
metric, have fewer assumptions and can easily deal with 
high dimensional data [25]. Random survival forests do 
not impose a restrictive structure on how the variables 
should be combined. If the relationship between the pre-
dictor variables and the response variable is complex with 
non linear patterns and interactions then random survival 
forests are capable of incorporating this automatically [26, 
27]. Most often researchers who use the Cox PH model for 
time-to-event data go ahead and use it even when covari-
ates in the model do not satisfy the PH assumption and 
make interpretations as if the PH assumption holds for 
each covariate in the model. Random survival forests do 
not rely on this assumption for their validity thus this can 
protect a user who is not familiar with model enhance-
ments such as the extended Cox model to deal with covari-
ates that do not satisfy the restrictive PH assumption.

In a study to identify factors strongly associated to 
under-five child mortality rates in Uganda [3], many of 
the covariates were excluded from the Cox PH model 
analysis due to their violation of the PH assumption. 
Random survival forests were recommended as alterna-
tive methods for the study [3]. These methods have been 
found appropriate to use in the presence of covariates 
that do not satisfy the PH assumption or in  situations 
where the relationship between the response and the 
covariates may be complicated [26, 27]. In this study, we 
re-analyse the dataset used in the study by [3] using both 
the Cox PH model and random survival forests where 
the former is used to emphasize the difference between 

Conclusions:  Random survival forests are appealing methods in analysing public health data to understand fac-
tors strongly associated with under-five child mortality rates especially in the presence of covariates that violate the 
proportional hazards assumption.

Keywords:  Cox proportional hazards model, proportional hazards assumption, Survival trees, Random survival forests
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them. We also investigate the predictive performance of 
the two random survival forest models used in this study 
in the presence of covariates that violate the PH assump-
tion and compared these results with the predictive 
performance of the models used in the presence of only 
those covariates that satisfied the PH assumption.

Objective of the study
We implement random survival forests on Uganda 
Demographic Health Survey data for 2011 to determine 
factors strongly associated to under-five child mortality 
rates. First we compare the results from random survival 
forests with those of the Cox PH model in the presence 
of covariates that satisfy the PH assumption. We also fit 
random survival forests on our dataset including covari-
ates that violate the PH assumption which were excluded 
in the first analysis [3]. We further discuss our findings 
on predictive performance for random survival forests in 
the presence of covariates that violate and those that do 
not violate the PH assumption.

The article is structured as follows: in the “Meth-
ods” section, we discuss the data and the methods used. 
The “Results” section presents results from the methods 
used. In the “Predictive performance” section, we present 
the results on predictive performance of the methods 
used. We state the general discussion and conclusions 
from this study in the “Discussion” and “Conclusions” 
section, respectively. Appendices 1 and 2 are provided 
as additional materials to describe the models and the 
methods used to evaluate the models, respectively.

Methods
Data
To understand factors affecting under-five child mortality 
rates in Uganda, the 2011 Uganda Demographic Health 
Survey (UDHS) data was used [3]. This dataset was col-
lected from May 2011 through to December 2011. This 
was the fifth comprehensive survey conducted in Uganda 
as part of the worldwide Demographic and Health Sur-
veys [28]. A representative sample of 10,086 house-
holds was selected during the 2011 UDHS. The sample 
was selected in two stages. A total of 404 enumeration 
areas (EAs) were selected from among a list of clusters 
sampled for the 2009/10 Uganda National Household 
Survey (2010 UNHS). In the second stage of sampling, 
households in each cluster were selected from a com-
plete listing of households. Eligible women for the inter-
view were aged between 15 and 49 years of age who were 
either usual residents or visitors present in the selected 
household on the night before the survey. Out of 9247 
eligible women, 8674 were successively interviewed with 
a response rate of 94% (91% in urban and 95% in rural 
areas). The study population for this analysis includes 

infants born between exactly one and 5 years preceding 
the 2011 UDHS.

Exploratory data analysis
Covariates
In this study, 19 covariates are considered as candidates 
for analysis and their choice was based on related litera-
ture [29–31]. To some extent, other limitations like high 
level of missingness in the dataset influenced our covari-
ate choice. The covariates include; mother’s age group 
(<20, 20–29, 30–39, 40+ years); type of residence (urban, 
rural); mother’s level of education (illiterate, primary, sec-
ondary and higher); partner’s level of education (illiterate, 
primary, secondary and higher); birth status (singleton 
birth, multiple births); sex of the child (male, female); 
wealth index (poorest, poorer, middle, richer, richest); 
children ever born (one child, two children, three chil-
dren, four and more); birth order (first child, second to 
third child, 4th–6th child); religion (Catholic, Muslim, 
other Christians, others); types of toilet facility (flush 
toilet, pit latrine, no facility); mother’s occupation (not-
working, sales and service, agriculture); current working 
status (working, not working); births in the past 1 year 
(no births, 1-birth, 2-births); births in the past 5 years 
(1-birth, 2-births, 3-births, 4-births); children under the 
age of five in the household (no child, one child, two chil-
dren, three children, four children); sex of the household 
head (male, female); source of drinking water (piped 
water, borehole, well, surface/rain/pond/lake, others); 
mother’s age at first birth (less than 20, 20–29, 30–39 
years). Note that all covariates are categorical. The cat-
egories of covariates that were not originally categorical, 
were created based on other similar studies in literature 
[31].

Table  1 shows the distribution of deaths for children 
under the age of five across all covariates considered 
in the study. The percentages of deaths for each of the 
covariate categories is stated in the second column of 
Table  1. For example, 7.7% of children born to moth-
ers with no education died before celebrating their fifth 
birthday. This is the highest percentage compared to 
those children born of mothers with primary education 
which is 6.4% and secondary or higher education which 
is 4.2%. Covariates with categories that have the highest 
percentage of deaths include number of children in the 
household under the age of five, number of births in the 
past 5 years, number of births in the past 1 year, birth sta-
tus and lastly age of the mother at first birth.

Dependent variable
Under-five child mortality rate is defined as the mortal-
ity rate from the age of 1 month to the age of 59 months. 
Thus the dependent variable used in our analysis is the 
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time-to-event which in our case is the age of a child 
reported at the time of the interview (survey) for those 
still alive or the age of the child when he/she died. Thus 
children under the age of five that were still alive at 
the date of the interview were considered to be right 
censored.

Analysis methods
The Cox proportional hazards model and random sur-
vival forests are both used in this analysis to identify fac-
tors that affect under-five child survival in Uganda. Two 
random survival forest implementations are used. The 
first forest is constructed on survival trees that are built 

Table 1  The distribution of  births and  deaths by  survival 
determinants

Characteristics Dead N (%) Alive N (%) Total

Mother’s education level

 Illiterate Mothers 344 (7.7) 4149 (92.3) 4493

 Mother completed primary 119 (6.4) 1749 (93.6) 1868

 Secondary and higher 14 (4.2) 317 (95.8) 331

Partner’s level of education

 Illiterate Father 266 (7.7) 3180 (92.3) 3446

 Father completed primary 170 (6.9) 2287 (93.1) 2457

 Secondary and higher 41 (5.2) 748 (94.8) 789

Birth status

 Singleton births 431 (6.7) 6048 (93.3) 6479

 Multiple births (twins) 46 (21.5) 167 (78.5) 213

Sex of the child

 Males 258 (7.8) 3067 (92.2) 3325

 Females 212 (6.3) 3155 (93.7) 3367

Type of place of residence

 Urban 81 (5.8) 1308 (94.2) 1389

 Rural 396 (7.5) 4907 (92.5) 5303

Wealth index

 Poorest 131 (7.5) 1623 (92.5) 1754

 Poorer 112 (8.5) 1205 (91.5) 1317

 Middle 86 (7.2) 1109 (92.8) 1195

 Richer 72 (6.9) 969 (93.1) 1041

 Richest 76 (5.5) 1309 (94.5) 1385

Children ever born

 One child 20 (3.3) 581 (96.7) 601

 Two children 81 (7.1) 1065 (92.9) 1146

 Three children 67 (6.6) 953 (93.4) 1020

 Four and more 309 (7.9) 3616 (92.1) 3925

Birth order number

 First child 95 (7.6) 1154 (92.4) 1249

 Second to third child 117 (5.6) 1974 (94.4) 2091

 4th–6th child 149 (7.1) 1949 (92.9) 2098

 6th+ child 116 (9.2) 1138 (90.8) 1254

Religion

 Catholics 217 (7.4) 2722 (92.6) 2939

 Muslims 69 (7.5) 852 (92.5) 921

 Other Christians 187 (6.8) 2571 (93.2) 2758

 Others 4 (5.4) 70 (94.6) 74

Type of toilet facility

 Flush toilet 5 (4.1) 116 (95.9) 121

 Pitlatrine 376 (6.9) 5031 (93.1) 5407

 No-facility 96 (8.2) 1068 (91.8) 1164

Mother’s occupation

 Not-working 93 (6.9) 1260 (93.1) 1353

 Sales and services 110 (6.5) 1589 (93.5) 1699

 Agriculture 274 (7.5) 3366 (92.5) 3640

Births in past 5 years

 1-Birth 93 (4.5) 1982 (95.5) 2075

  2-Birth 227 (6.5) 3288 (93.5) 3515

Table 1  continued

Characteristics Dead N (%) Alive N (%) Total

 3-Births 140 (13.6) 887 (86.4) 1027

 4-Births 17 (22.7) 58 (77.3) 75

Births in past 1 year

 No-births 309 (6.8) 4212 (93.2) 4521

 1-Birth 163 (7.6) 1971 (92.4) 2134

 2-Births 5 (13.5) 32 (86.5) 37

Children under 5 in household

 No-child 101 (34.9) 188 (65.1) 289

 1-Child 178 (10.5) 1511 (89.5) 1689

 2-Children 146 (4.9) 2831 (95.1) 2977

 3-Children 35 (2.5) 1349 (97.5) 1384

 4-Children 17 (4.8) 336 (95.2) 353

Mother’s age group

 Less than 20 years 29 (8.9) 296 (91.1) 325

 20–29 years 235 (6.5) 3376 (93.5) 3611

 30–39 years 164 (7.4) 2054 (92.6) 2218

 40 years+ 49 (7.9) 489 (90.1) 538

Birth order number

 First child 95 (7.6) 1154 (92.4) 1249

 Second to third child 117 (5.6) 1974 (94.4) 2091

 4th–6th child 149 (7.1) 1949 (92.9) 2098

 6th+ child 116 (9.3) 1138 (90.7) 1254

Sex of household head

 Male 341 (6.7) 4771 (93.3) 5112

 Female 136 (8.6) 1444 (91.4) 1580

Source of drinking water

 Piped water 76 (5.9) 1204 (94.1) 1280

 Borehole 216 (7.3) 2731 (92.7) 2947

 Well 93 (6.9) 1261 (93.1) 1354

 Surface/rain/pond/lake/tank 70 (8.5) 756 (91.5) 826

 Other 22 (7.7) 263 (92.3) 285

Age at first birth

 Less than 20 years 347 (7.5) 4291 (92.5) 4638

 20–29 years 127 (6.3) 1899 (93.7) 2026

 30–39 years 3 (12.0) 22 (88.0) 25
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using the log-rank split-rule. The second forest is con-
structed on survival trees built using the log-rank score 
split-rule. Note that the split-rule based on the log-rank 
score is desirable in the presence of tied event times. To 
evaluate the predictive performance for the models used, 
cross-validated integrated brier scores are used. The Cox 
PH model and the two random survival forest implemen-
tations are described in detail in Additional file 1: Appen-
dix 1. To evaluate the predictive performance for the 
models used, cross-validated integrated brier scores are 
used and these are described in detail in Additional file 1: 
Appendix 2. Note that Appendices 1 and 2 are given as 
additional material in Addition file 1: Appendices 1 and 
2.

Results
Proportional hazards analysis
Cox proportional hazards model
To use the Cox PH model, it is important to establish 
which covariates in the dataset satisfy the PH assump-
tion. We used the Schoenfeld residual test [32–34] in R 
an open source software [35] using the command cox.
zph. Under this test, it is assumed that regression param-
eters are constant over time, hence the corresponding 
hazard ratios are constant over time. All those regres-
sion parameters (covariate effects) that changed with 
time, do not satisfy the PH assumption and therefore 
do not qualify to be entered in the final Cox PH model. 
Note that as our first step, we fitted a Cox PH model on 
all covariates considered in the study and then obtained 
Schoenfeld residuals. Results from this analysis are 
presented in Table  2. Covariates that violated the PH 
assumption include: mother’s education level, total num-
ber of children ever born, type of residence, wealth index, 
birth order, number of births in the past 5 years, moth-
er’s occupation and type of birth. These covariates were, 
therefore, not included in the final Cox PH analysis.

It is important to note that graphical methods can also 
be used to identify covariates that may potentially violate 
the PH assumption but are not statistical tests except for 
an initial exploratory assessment before a formal statisti-
cal test. Covariates with categories whose survival curves 
intersect or diverge disproportionately from each other 
over time are known to violate the PH assumption.

Figures  1 and 2 illustrate a graphical method men-
tioned above for assessing PH assumption using two 
covariates that have been identified as those that violate 
the PH assumption. Both figures give supporting evi-
dence to violate the PH assumption by the two covariates 
considered. We fitted a univariate and a multivariate Cox 
PH model on all covariates that did not violate the PH 
assumption. The results from this analysis are presented 
in Table  3. Sex of the child, sex of the household head 

Table 2  Testing the proportional hazard assumption using 
scaled Schoenfeld residuals

Covariates χ2 (df) p-value

Mother’s education

 Illiterate 1

 Primary 4.83 0.03

 Secondary and higher 7.52 <0.01

 GLOBAL 11.25 < 0.01

Father’s education

 Illiterate 1

 Primary 0.51 0.48

 Secondary and higher 0.86 0.35

 GLOBAL 1.12 0.57

Sex of the child

 Male 1

 Female 1.99 0.16

Total number of children ever born

 1 child 1

 2 child 5.39 0.02

 3 child 0.44 0.51

 4+ child 0.26 0.61

 GLOBAL 14.61 <0.01

Type of place of residence

 Rural 1

 Urban 8.43 <0.01

Wealth index

 Poorest 1

 Poorer 0.17 0.7

 Middle 0.00 0.98

 Richer 6.94 <0.01

 Richest 2.26 0.13

 GLOBAL 9.29 0.05

Birth order

 1st 1

 2nd 0.28 0.59

 3rd 6.69 <0.01

 4th+ 2.64 0.10

 GLOBAL 8.46 0.04

Age at first birth

 <20 1

 20–29 0.10 0.75

 30+ 0.41 0.52

 GLOBAL 0.54 0.76

Previous birth interval (years) 1

 <2 Ref

 2 1.83 0.18

 3 0.97 0.32

 4+ 2.53 0.11

 GLOBAL 8.69 0.03

Number of births in the past 1 year

 No birth 1

 1 birth 0.7 0.40
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and number of births in the past 1 year are the factors 
strongly associated with under-five child mortality rate 
in Uganda. The results suggest that a girl child has a 17% 
lower hazard of death compared to the boy child. Chil-
dren born in households headed by females have a 30% 
higher hazard of death than those born in households 
headed by males. The results further suggest that moth-
ers who had more than one birth in a year put their chil-
dren at a higher hazard of death than those with no birth. 
The hazard of death for children born of mothers who 

had 2 births in the past 1 year was 2.34-fold higher than 
those born of mothers with no birth in the past 1 year. 
Lastly, children whose fathers had secondary and higher 
education were at a lower hazard of death compared to 
those born of illiterate fathers.

Using the Akaike information criteria (AIC) [36], the 
best fitting Cox PH model had four covariates namely: 
father’s education, sex of the child, mother’s age group 
and sex of the household head.

Results presented in Table  4 confirm that sex of the 
child, sex of the household head and number of births in 
the last 1 year were strongly associated with under-five 
child mortality rates in Uganda. Children whose father’s 
education level is secondary and higher had a lower haz-
ard of death compared to children whose fathers were 
illiterate. There was no significant difference in the haz-
ard of death for children whose fathers were illiterate or 
had primary education. Mother’s age group was not sig-
nificant but the age groups considered gave some inter-
esting results. Children born of mothers below 20 years 
of age had a higher hazard of death than those born of 
mothers aged between 20 and 29 years of age. There was 
no significant difference between the hazard of death for 
children under the age of five born of mothers below 20 
years and those who were 40+ years of age. This indicates 
that women who give birth before 20 years of age and 
those who give birth after 40 years of age, put their chil-
dren at an equally higher hazard of death before celebrat-
ing their fifth birthday.

We graphically illustrate the results for two of the 
covariates considered to be strongly associated to under-
five child mortality rates in Uganda using survival curves.

Figures  3 and 4 illustrate survival curves for the two 
selected covariates. The survival curve for girls is above 
that of boys and hence indicates a better survival rate for 
girls. Female headed households were also associated 
with a higher hazard of death for children under the age 
of five compared to male headed households.

Random survival forests built using covariates that satisfy 
the PH property
We fitted two random survival forest models on the data-
set, that is, the one based on survival trees built using the 
log-rank and the log-rank score split-rules, respectively. 
Note that these two models were built using only covari-
ates that were identified as satisfying the PH assumption. 
Characteristics of the two forests are presented in Table 5 
below.

To identify the most important covariates in explain-
ing survival of children under the age of five in Uganda, 
permutation importance was used as the measure of 
variable importance [22, 26, 37]. Results from fitting a 
random survival forest of 1000 survival trees built using 

Table 2  continued

Covariates χ2 (df) p-value

 2 1.24 0.27

 GLOBAL 1.81 0.40

Number of births in the last 5 years

 1 births 1

 2 births 0.11 0.75

 3 births 0.03 0.86

 4+ 5.00 0.03

 GLOBAL 5.85 0.12

Mother’s age (years)

 <20 1

 20–29 0.16 0.69

 30–39 0.63 0.43

 40+ 0.08 0.78

 GLOBAL 5.58 0.13

Sex of household head

 Male 1

 Female 0.07 0.79

Source of drinking water

 Piped water 1

 Borehole 0.17 0.68

 Well water 0.12 0.73

Surface/pond/lake/rain/etc 2.58 0.11

 Others 1.82 0.18

 GLOBAL 6.55 0.16

Mother’s occupation

 Not working 1

 Sales and Services 0.202 0.65

 Agriculture 6.88 <0.01

 GLOBAL 14.41 <0.01

Type of birth

 Single birth 1

 Multiple births 13 <0.01

Religion

 Catholic 1

 Muslim 0.009 0.92

 Other Christians 0.73 0.39

 Others 1.59 0.21

 GLOBAL 2.21 0.53
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the log-rank split-rule are summarised in Fig.   5. They 
indicate that sex of the household head (SHH), religion 
(RELI), father’s education (FE), source of drinking water 

(SDW), number of births in the past 1 year (BP1Y) and 
sex of the child (SC) are the most important covari-
ates strongly associated to under-five child mortality 
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Fig. 1  Survival curves for children under the age of five by wealth index
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rates in Uganda. These results are in agreement with 
the results obtained from fitting a multivariate Cox PH 
model presented in Table 3 as far as significant effects are 

concerned but it is interesting to note that the random 
survival forest model did pick other covariates as impor-
tant, namely, religion and source of drinking water. The 
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Fig. 2  Survival curves for children under the age of five by Births in the past 5 years. Some of the survival curves diverge disproportionately from 
each other over time and some cross each other confirming a violation of the PH assumption (see Figs. 1 and 2)



Page 9 of 18Nasejje and Mwambi ﻿BMC Res Notes  (2017) 10:459 

error rate for any new prediction and in this case the out-
of-bag prediction error rate was 47.32%.

For comparison, we also fitted a random survival forest 
model with survival trees built using the log-rank score 
split-rule.

The results on variable importance presented in Fig. 5 
are similar to the results in Fig. 6. The figures further indi-
cate that the two survival forest models have an approxi-
mately equal error rate which confirms or is in agreement 

with a study by [38] where the two models were found to 
have a similar predictive performance.

Random survival forests built using covariates with or 
without the PH property
Survival trees and random survival forests divide the 
covariate space into subgroups of good and poor sur-
vival experience predictors. They are therefore promis-
ing methods in analysing survival data in the presence 
of non-proportional hazards [27]. We fitted random sur-
vival forest models under the two split rules (log-rank 
and log-rank score, respectively) on the 2011 Uganda 
Demographic Health Survey dataset. We considered all 
covariates in the analysis including those that violated the 
PH assumption. The characteristics of these two forests 
are presented in Table 6 below.

The error rates from the out-of-bag sample for the for-
ests built with survival trees based on the log-rank and 
the log-rank score split-rules are 17.29 and 19.69, respec-
tively. These two error rates are much lower compared 
to the error rates for survival forests built based on only 
covariates that satisfy the PH assumption. This result 
confirms the improved performance of random survival 
forests in the presence of non-proportional hazards 
covariates [27]. However, making this conclusion based 
on the out-of-bag error rate may not be sufficient. It is 
also important to note that it is expected of the error rate 
to decrease with addition of more covariates. However, 
the key point in the above analysis is that the importance 

Table 3  The adjusted and  unadjusted hazard ratios 
from  fitting the Cox-proportional hazard model for  only 
those covariates that  satisfy the proportionality hazard 
assumption

Variable Unadjusted HR 
[95% CI]

Adjusted HR 
[95% CI]

p-values

Father’s education

 Illiterate 1 1

 Primary 0.89 [0.74, 1.08] 0.92 [0.76, 1.12] 0.43

 Secondary and 
higher

0.67 [0.48, 0.92] 0.72 [0.51, 1.01] 0.06

Sex of the child

 Male 1

 Female 0.83 [0.69, 0.99] 0.83 [0.69, 0.99] 0.04

Age at first birth

 <20 1 1

 20–29 0.84 [0.68, 1.02] 0.86 [0.69, 1.06] 0.16

 30+ 1.52 [0.49, 4.73] 1.59 [0.51, 5.02] 0.42

Sex of household head

 Male 1 1

 Female 1.30 [1.07, 1.59] 1.33 [1.09, 1.63] 0.01

Number of births in the past 1 year

 No birth 1 1

 1 birth 1.18 [0.98, 1.43] 1.22 [1.01, 1.48] 0.04

 2 births 2.34 [0.97, 5.67] 2.57 [1.06, 6.25] 0.04

Mother’s age (years)

 <20 1 1

 20–29 0.66 [0.45, 0.98] 0.71 [0.48, 1.05] 0.08

 30–39 0.74 [0.50, 1.10] 0.79 [0.53, 1.19] 0.27

 40+ 0.90 [0.57, 1.43] 0.99 [0.62, 1.59] 0.98

Source of drinking water

 Piped water 1 1

 Borehole 1.24 [0.96, 1.62] 1.12 [0.86, 1.48] 0.39

 Well water 1.17 [0.86, 1.58] 1.06 [0.78, 1.45] 0.69

Surface/pond/lake/
rain/etc

1.44 [1.04, 1.98] 1.28 [0.91, 1.79] 0.15

 Others 1.32 [0.82, 2.13] 1.21 [0.75, 1.94] 0.44

Religion

 Catholic 1 1

 Muslim 1.01 [0.77, 1.33] 1.02 [0.77, 1.34] 0.91

 Other Christians 0.91 [0.75, 1.11] 0.94 [0.77, 1.14] 0.51

 Others 0.717 [0.27, 1.93] 0.67 [0.25, 1.81] 0.43

Table 4  The best fitting Cox proportional hazards model

Variable β (s.e) HR [95% CI] p values

Father’s education

 Illiterate 1

 Primary −0.09 (0.09) 0.90 [0.75, 1.09] 0.31

 Secondary and higher −0.41 (0.17) 0.66 [0.47, 0.92] 0.014

Sex of the child

 Male 1

 Female −0.18 (0.09) 0.83 [0.69, 0.99] 0.04

Number of births in the past 1 year

 No birth 1

 1 birth 0.20 (0.09) 1.22 [1.01, 1.48] 0.04

 2 births 0.922( 0.45) 2.51 [1.04, 6.09] 0.04

Household head

 Male 1

 Female 0.28 (0.10) 1.33 [1.09, 1.62] 0.01

Mother’s age group

 Less than 20 years 1

 20–29 −0.38 (0.19) 0.68 [0.46, 1.01] 0.05

 30–39 −0.27 (0.20) 0.77 [0.51, 1.14] 0.17

 40+ −0.05 (0.24) 0.95 [0.59, 1.51] 0.83
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of covariates that satisfied and those that violated the PH 
assumption were evaluated.

The results on factors associated with under-five mor-
tality rate, together with the prediction error rate curves 

for the two random survival forest models, are presented 
in Figs. 7 and 8.

Results from both forests indicate that the number of chil-
dren under the age of five in the household (CUF) highly 
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Fig. 3  Survival curves for children under the age of five by sex of the child
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influences under-five child mortality rate in Uganda. Other 
covariates that are strongly associated to under-five child 
mortality in Uganda as ranked by the forest according to 
their importance include: the number of births in the past 

5 years (BP5Y), birth order (BORD), wealth index (WI) and 
the total number of children ever born (CEB). Note that the 
number of children under the age of five in the household 
had the highest percentage of death as seen in Table 1.
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Fig. 4  Survival curves for children under the age of five by sex of the household head
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Table 5  Characteristics of the two fitted forests

First forest

 Number of deaths 477

 Minimum terminal node size 3

  Average no. of terminal nodes 514.902

 No. of variables tried at each split 3

 Total no. of variables 8

 Splitting rule Log-rank

 Error rate 47.32

Second forest

 Number of deaths 477

 Minimum terminal node size 3

 Average no. of terminal nodes 607.567

 No. of variables tried at each split 3

 Total no. of variables 8

 Splitting rule Log-rank score

 Error rate 47.36
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Fig. 5  The prediction error rate (left panel) for random survival forest 
of 1000 trees together with the rank of covariates (right panel) based 
on how they influence under-five child mortality while considering 
covariates that satisfy the PH assumption. The trees in this forest are 
built using the log-rank split-rule
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Fig. 6  The prediction error rate (left panel) for random survival forest 
of 1000 trees together with the rank of covariates (right panel) based 
on how they influence under-five child mortality while considering 
covariates that satisfy the PH assumption. Survival trees in this forest 
are built using the log-rank score split-rule

Table 6  Characteristics of the two fitted forests

First forest

 Number of deaths 477

 Minimum terminal node size 3

Average no. of terminal nodes 480.167

 No. of variables tried at each split 5

 Total no. of variables 19

 Splitting rule Log-rank

 Error rate 17.29

Second forest

 Number of deaths 477

 Minimum terminal node size 3

 Average no. of terminal nodes 910.187

 No. of variables tried at each split 5

 Total no. of variables 19

 Splitting rule Log-rank score

 Error rate 19.69
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Covariates that were strongly associated to under-five 
child mortality rates in Uganda in the presence of pro-
portional hazards show up among other covariates but 
do not appear to be highly ranked. This result indicates 
that excluding covariates in the analysis of survival data 
due to violation of the PH assumption leads to loss of 
information. We see this as a very important property for 
random survival forests demonstrated in these two analy-
ses namely, the choice of covariates in the model do not 
need a priori to rely on the too restrictive PH assumption. 
This is a demonstration of flexibility on the part of ran-
dom survival forests as an additional attractive property 
compared to models that rely on the strict PH assump-
tion. We can, therefore, conclude that random survival 
forests are good alternative models to use while identify-
ing factors affecting under-five mortality rates especially 
in the presence of non-proportional hazards covariates. 
To verify this results, we used integrated brier scores [39] 
as a measure of predictive performance as presented in 
the next section.

Predictive performance
The predictive performance for the models used was 
evaluated using the integrated brier scores [39], pre-
sented in Additional file 1: Appendix 2. We used the pec 
package [40] in R [35] for this analysis. Prediction error 
rates of 50% or higher are useless because they are no bet-
ter than tossing a coin [26, 41].

The results in Fig. 9 show that models used in this anal-
ysis have a good predictive performance. In the presence 
of non-proportional hazards covariates, random survival 
forest models under the two split rules (log-rank and 
log-rank score, respectively) show a much better predic-
tive performance. Their predictive performance exhib-
ited is better than that of models based strictly on the 
PH assumption. In the presence of proportional hazards, 
however, the Cox model shows a better predictive per-
formance compared to the two random survival forests 
models. This strengthens the recommendation that if all 
covariates satisfy the PH assumption, the Cox PH model 
is preferable.
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The good predictive performance for random sur-
vival forests in the presence of non-proportional hazards 
covariates is an appealing result in the analysis of survival 

data especially that from public health. This is because 
covariates with non-proportional hazards have often been 
excluded in the analysis of survival data especially when 
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Fig. 9  Predictive performance for random survival forests with both covariates that satisfy and violate the PH assumption, the Cox PH model and 
random survival forests with only covariates that satisfy the PH assumption
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the standard Cox proportional hazards model  was being 
used for analysis. In some cases, other models like the 
extended Cox model have been used but they are known 
to have some restrictive formulation complexities. Using 
a stratified Cox PH model is another alternative to deal-
ing with covariates that do not satisfy the PH assump-
tion. However, the downside of this approach is that if a 
covariate is used as a stratifying variable its effect on the 
outcome cannot be estimated yet a researcher(s) might be 
interested in its effect. Random survival forests are flexible 
and have fewer assumptions. They are, therefore, plausible 
alternative models in analysing survival data to understand 
factors affecting under-five mortality rates in the presence 
of proportional and non-proportional hazards. However, 
further research is required on the merits and demerits of 
the methods.

Discussion
Survival trees and random survival forests are increas-
ingly becoming popular alternative models for the anal-
ysis of time-to-event outcomes [42]. They have been 
identified as suitable models in analysing survival data 
in  situations where the proportional hazards assump-
tion is violated [27, 43]. However, not much literature 
is available to confirm the assertion. In this study, we 
have therefore compared the predictive performance 
of the Cox proportional hazards model to the random 
survival forests by re-analysing a dataset that was first 
analysed by [3]. The study further compares the perfor-
mance of random survival forests on the same dataset 
in the presence of covariates that violate the propor-
tional hazards assumption to that when these covari-
ates are excluded. Under the PH assumption, the three 
models show that sex of the household head, sex of the 
child and the number of births in the past 1 year are 
strongly associated to under-five child mortality rate in 
Uganda.

Other covariates such as source of drinking water, 
Father’s education and religion show up as important 
in explaining under-five child mortality rates in Uganda 
with random survival forest models. However, these 
covariates did not appear to be very strongly associated 
to under-five child mortality rate in the Cox proportional 
model. It is interesting to note that random survival for-
est models give additional information in regard to vari-
able importance.

Results from the two forest models in the presence of 
non-proportional hazards show that the number of chil-
dren under the age of five in a household, greatly influ-
ences under-five child mortality rates. This ranks top in 
the two random survival forest models. Other factors 
ranked as important in understanding under-five child 
mortality rates by random survival forests in the presence 

of non-proportional hazards covariates are: births in the 
past 5 years, wealth index, birth order and total number 
of children ever born. Similar factors have emerged to be 
strongly associated to under-five child mortality rates in 
other studies [3, 29, 44, 45].

To compare the predictive performance of these three 
models on the scenarios considered, we used integrated 
brier scores via cross-validation. The Cox proportional 
hazards model had a better predictive performance in the 
presence of only those covariates that satisfy the propor-
tional hazards assumption compared to the two random 
survival forest models. This result may not be seen as a 
surprise because the Cox PH model works best under this 
assumption from which its original formulation by [8] is 
based. The result is further confirmed because the two 
random survival models had a high out-of-bag error rate 
of 47.36 and 47.32%, respectively. The out-of-bag error 
rate for the two random survival forest models (RSFLR, 
RSFLRS) in the presence of proportional hazards are 
higher compared to those of random survival forest 
models (RSFLRNON, RSFLRSNON) in the presence of 
non-proportional hazards covariates. This implies that 
excluding covariates that have non-proportional hazards 
in the analysis gives less informative results. The results 
further confirm that random survival forests are robust 
in approximating complex survival functions, includ-
ing functions based on covariates with non-proportional 
hazards, while maintaining low prediction error rates [27, 
46–48].

However, since most aspects of these models are under 
development, it is recommended that one uses them 
hand in hand with the standard methods like the Cox 
proportional hazards model. The same recommendation 
was made in other studies related to random forests [42, 
47, 49, 50]. It has also been established that random sur-
vival forests are useful in  situations where the relation-
ship between the response and the predictors may be 
complicated [26]. However, there are concerns that sur-
vival trees are built using the log-rank split-rule whose 
power to discriminate between two groups is highest 
when the proportionality hazards assumption holds. 
This may have an impact on the predictive performance 
of the survival forest model. This is important espe-
cially when the survival (or hazard) functions cross each 
other in the two groups being compared [51]. However, 
more research is needed to fully ascertain this fact espe-
cially in the presence of non-proportional hazards. More 
research will also guide scholars to the best split-rule that 
may help in such circumstances. A recent study [51] has 
recommended the use of the integrated absolute differ-
ence between the two daughter nodes’ survival functions 
as the splitting rule in circumstances where the hazard 
function cross. They have concluded that forests built 
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with this rule produce very good results in general, and 
that they are often better compared to forests built with 
the log-rank splitting rule.

Conclusions
The study confirms that random survival forests have a 
good predictive performance in the presence of non-
proportional hazards [27]. It is, therefore, clear that these 
methods are promising alternatives to models that rely 
heavily on the proportional hazards assumption where 
the presence of covariates that violate the proportional 
hazards assumption is inevitable.

This study has demonstrated that the Cox PH model 
and random survival forests could cleverly be used in 
a complementary manner to fully model and analyse 
survival data in the presence of proportional and non-
proportional hazards. The good predictive performance 
shown by the two random survival forest models in the 
presence of non-proportional hazards covariates for this 
dataset implies that these models could be alternative 
models in analysing survival datasets especially when 
the assumption is violated. Our conclusions on the use 
of random survival forests to analyse survival data are 
in agreement with the recommendations by [26, 50]. 
Obvious extensions that came to light when dealing 
with large survey data is when there are outcomes and 
covariates with missing data. We propose combining 
random survival forests with multiple imputation meth-
ods to reduce the loss of information. The combined 
approach will be to apply random survival forests after 
multiple imputation. A limitations to this study is that 
we have used random survival forest models that have 
been identified to favour to covariates with many split 
points in survival tree building [52–55]. Given the fact 
that most of our covariates were categorical with more 
than two categorises, biased results on estimates such as 
variable importance are inevitable [53, 55]. Our recent 
study[56] has therefore recommended the use of con-
ditional inference forests suggested by [57] in the pres-
ence of covariates with many split points.
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