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Abstract 

Objective:  The underlying model of the genetic determinant of a trait is generally not known with certainty a priori. 
Hence, in genetic association studies, a dominant model might be erroneously modelled as additive, an error inves-
tigated previously. We explored this question, for candidate gene studies, by evaluating the sample size required to 
compensate for the misspecification and improve inference at the analysis stage. Power calculations were carried 
out with (1) the true dominant model and (2) the incorrect additive model. Empirical power, sample size and effect 
size were compared between scenarios (1) and (2). In each of the scenarios the estimates were evaluated for a rare 
(minor allele frequency < 0.01), low frequency (0.01 ≤ minor allele frequency < 0.05) and common (minor allele fre-
quency ≥ 0.05) single nucleotide polymorphism.

Results:  The results confirm the detrimental effect of the misspecification error on power and effect size for any 
minor allele frequency. The implications of the error are not negligible; therefore, candidate gene studies should con-
sider the more conservative sample size to compensate for the effect of error. When it is not possible to extend the 
sample size, methods that help mitigate the impact of the error should be systematically used.
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Introduction
In genetic association studies the underlying genetic 
model of inheritance of the genetic determinant of a trait 
is not always known with certainty [1–3]. It is however 
known that in general when mathematically correct, and 
for similar minor allele frequency (MAF) and effect size, 
additive genetic models provide more power than domi-
nant ones [4]; we are talking here about complete domi-
nance where one copy of the dominant allele is sufficient 
to reach the full effect. For the remainder of this docu-
ment we refer to such dominant model as ‘binary’ model 
and name the variant under this model a binary variant 
to convey the idea that, under complete dominance, there 
are only two genotype groups.

In genetic association studies, it is common practice to 
assume an additive model when the model of the genetic 
determinant of interest is unknown [1]. It is, hence, 

plausible that in some studies a binary genetic variant is 
incorrectly modelled as additive. This represents a mis-
specification of the true underlying genetic model, an 
error which could have an adverse effect on the statistical 
power of an association [5, 6] and on the effect size. The 
genotype of an individual at a locus is the combination of 
the alleles on each of the two homologous chromosomes. 
If the two alleles are combined incorrectly the individ-
ual might be assigned an incorrect genotype. This can 
lead to genotypes misclassification but the mechanism 
we describe is not in itself genotype misclassification as 
described by Hossain et al. [7]; what we are referring to 
is the fact that alleles are not combined using the true 
genetic model.

This issue has been previously studied and some solu-
tions proposed [1, 6, 8–17]. Therefore, rather than pro-
posing a new method it is probably more important 
to explore this question from a less technical angle to 
incite a change in the practice (i.e. researchers to con-
sider other possible models, if feasible). We explored 
the effects of genetic model misspecification on statisti-
cal power, sample size and effect size in candidate gene 

Open Access

BMC Research Notes

*Correspondence:  amadou.gaye@nih.gov 
Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, 
Social Epidemiology Research Unit, National Institutes of Health, National 
Human Genome Research Institute, Bethesda, USA

http://orcid.org/0000-0002-1180-2792
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-017-2911-3&domain=pdf


Page 2 of 6Gaye and Davis ﻿BMC Res Notes  (2017) 10:569 

association studies with the aim of evaluating the impact 
of the error in a hypothetical study where the outcome is 
either a binary or a continuous trait. We are interested 
in estimating the sample size required to compensate for 
the misspecification and improve inference at the analy-
sis stage.

We considered a bi-allelic single nucleotide polymor-
phism (SNP) and focused on an underlying model where 
the allele that confers the risk is in complete dominance 
(Fig. 1).

Main text
Methods
Power and sample size calculations were carried out 
using the ESPRESSO calculator developed from our ear-
lier work [18]. This tool has been already used by Gaye 
et  al. [19] to analyse the impact of pre-analytical varia-
tion on power in the UK Biobank. We used ESPRESSO 

because unlike closed form solutions proposed by con-
ventional calculators, it allows for the flexibility required 
to include uncertainties around outcome and covariates 
in power calculations.

Brief apercu of an ESPRESSO simulation process
An ESPRESSO process involves repeatedly simulat-
ing a dataset with key characteristics and evaluating in 
what proportion of the simulations the effect of interest 
can be detected by an appropriate method of statistical 
inference at a given level of statistical significance. The 
purpose of this section is to explain succinctly how the 
exposure and outcome data are generated and the asso-
ciation evaluated.

The exposure/genotype data are generated by first 
simulating the two alleles, a wild allele denoted 0 and the 
allele that confers the risk (referred to by ‘risk allele’ from 
now on) denoted 1.

Fig. 1  This illustration assumes a bi-allelic SNP. If a binary model is analysed as additive the risk is underestimated for heterozygous individuals 
whose risk is half the actual true risk
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n  =  number of observations, MAF  =  minor allele 
frequency

The genotypes are obtained by combining the alleles 
based on the underlying genetic model. If the underly-
ing model is binary there are only two genotypes: 0 and 
1 (since heterozygous, 0/1, and homozygous, 1/1, indi-
viduals are at the same risk level). And if the underlying 
genetic model is additive the genotypes of homozygous, 
heterozygous and homozygous 1/1 individuals are coded 
respectively as 0 (0 + 0), 1 (0 + 1) and 2 (1 + 1).

The binary outcome data is generated by first obtain-
ing a linear predictor (LP) and then using the expit trans-
formation of the LP to compute the probability of disease 
(mu). The binary outcome (OUTBINARY) is hence a bino-
mially distributed random variable with a probability mu.

LP  =  β0  +  β1G1  +  s.effect where 

β0 = log
(

diseaseprevalence
1−diseaseprevalence

)

 and G1 is the exposure data 

and β1 is the odds-ratio associated with the exposure

For the binary outcome, there is an additional term, the 
subject effect (s.effect), which reflects the heterogeneity in 
disease risk arising from determinants not measured or 
not included in the model. This effect is computed from 
the baseline OR parameter. When we set the baseline OR 
to 10 as in our simulation, we are essentially saying that 
given all the un-measured parameters an individual at 
high risk (one in the top 95% of population risk) has, all 
else being equal, odds of developing the disease that are 
10 times that of a person considered to be at low risk (one 
in the bottom 5% of population risk). The variance in 
baseline risk σ 2

baseline.OR for an individual on the 95th vs. 
5th population percentile, is assumed to follow a normal 
distribution on the logistic scale. It hence must be con-
verted into the corresponding variance, for a normally 
distributed effect σ 2

subject.effect; the conversion is carried 
out using the below equation where z0.95 is the z-score 
associated with 95 percentile.

The subject effect for an individual is drawn from a 
normal distribution with a mean of zero and a variance 
σ 2
subject.effect . The variance in baseline risk is a normally 

distributed error term that is added to the linear predic-
tor. Both this distribution and the specified magnitude 
of the parameter are inevitably arbitrary but a sensitivity 

Allele ∼ B(n,MAF)

mu =
eLP

1+ eLP
OUTBINARY ∼ B(n,mu).

σ 2
subject.effect =

[

σ 2
baseline.OR

2× z0.95

]2

s.effect ∼ N (0, σ 2
subject.effect)

analysis can be undertaken and, in most settings, the 
required sample size is remarkably robust to variation in 
the specified baseline OR.

The continuous outcome (OUTCONTINUOUS) is a nor-
mally distributed random variable with a mean LP and a 
given standard deviation.

The association is assessed by fitting the appropriate 
generalized linear model (GLM) and using a large sam-
ple z-statistic to test the null hypothesis of no genetic 
association.

Estimating sample-size and power in R by exploring 
simulated study outcomes can be used to calculate (A) the 
sample required to achieve a desired power and (B) esti-
mate the power that can be achieved with a given sam-
ple size. In this work both features of the tool were used. 
For each of (A) and (B), the calculations were carried out 
twice, as outlined in section 1 of the Additional file 1.

Results
Impact of the misspecification error across MAFs
The below two sections report graphically the results 
of the sample size and power calculation respectively 
for a binary and a quantitative outcome across rare 
(MAF ≤ 0.01), low frequency (0.01 ≤ MAF < 0.05) and 
common SNPs (MAF ≥ 0.05). The results are presented 
in tabular format in section 2 of the Additional file 1.

The plots in Fig. 2 (A plots), show that the increase in 
sample size required to achieve this power with the mis-
specified model increases with increasing MAF which 
indicates a greater effect of the misspecification as the 
risk allele, and incidentally the disease, becomes more 
prevalent. Under misspecification, power is lower and 
the odds-ratios shrunk more markedly when the incor-
rect model is fitted.

The impact on power, shown in Fig.  2 (B plots), is 
similar to the observations for a binary outcome but 
the loss of power due to the misspecification is less pro-
nounced. The increase in sample size required to achieve 
this power with the misspecified model increases with 
increasing MAF. Under the true model the effect size did 
not shrink but there is a relatively large shrinkage of the 
effect size when the true model is not used.

Impact of the misspecification on effect size
In the results reported above, the misspecification 
error seems to have a relatively lower impact on the 
effect size, for rare SNPs. Therefore, we decided to 
explore the impact of the error across a range of effect 
sizes. We investigated the effect of the error for a rare 
(MAF = 0.008), low frequency (MAF = 0.025) and com-
mon SNP (MAF = 0.1) across eight effect sizes. The plots 

OUTCONTINUOUS ∼ N (LP, σ)
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in Fig.  3 (A plots) show that, for a binary outcome, the 
OR is less affected by the misspecification error when 
the SNP is rare. In Fig. 3 (A plots), the values, for the ‘no 
misspecification’ scenario, are not overlapping with the 
‘expected’ values as one would expect in the absence of 
error, because the heterogeneity in baseline disease risk 
that we already mentioned causes some deviation from 
the true effect size.

Similar observations about the impact of the error, 
reported above, can be made for a continuous outcome 
(Fig. 3, B plots).

Discussion
The analyses show that the misspecification of the true 
underlying genetic model of a SNP affects the statistical 
power and the effect size in genetic association studies. 
The magnitude of the effect of the error, as observed in 
our results, was however not anticipated.

Power is lost if the genetic model of the SNP is not cor-
rectly specified. The loss is relatively small for rare SNPs 
and larger for low frequency and common SNPs. The 
adverse effect of the genetic model misspecification on 
power was more pronounced for an association study 

with a binary outcome than for a study with a continu-
ous outcome. This is not surprising because, all else being 
equal, associations with binary outcomes are known to 
be less powered than those with continuous outcomes 
[4].

Under a true binary genetic model an individual with 
two copies of the risk allele (homozygous 1/1) is at the 
same risk as an individual with only one copy because the 
additional allele does not increase further the risk while 
under an additive model the risk for heterozygous (0/1) 
is half that of homozygous 1/1. Thus, if a binary model is 
incorrectly specified as additive, the risk for heterozygous 
individuals is underestimated and this underestimation 
represents an error that decreases the power of a study. 
The proportion of heterozygous individuals increases 
with increasing MAF and hence the proportion of indi-
viduals whose risk is underestimated becomes larger; it 
follows that the magnitude of the error resulting from 
the genetic model misspecification becomes larger. This 
explains why the loss of power increases with increas-
ing MAF. Furthermore, we previously stated that under 
a binary model the calculator assigns the genotype 1 to 
both homozygous 1/1 and heterozygous individuals so 

Fig. 2  A Plots for a binary outcome and B plots for a continuous outcome. The sample size required to achieve 80% is lower when the true model 
is specified (plot 1). The power achieved is higher when the true model is specified (plot 2). And, the shrinkage of the odds-ratio is relatively smaller 
when the true model is specified (plot 3)



Page 5 of 6Gaye and Davis ﻿BMC Res Notes  (2017) 10:569 

that there are only two genotype classes (0 and 1) but 
when the genetic model is misspecified homozygous 1/1 
individuals are assigned to the genotype class 2 because 
the two alleles add up; hence some genotypes that should 
have been 1 are misclassified and such misclassification is 
also an error that affects the statistical power.

Ensuring the observed effect size is close to the actual 
true effect size (i.e. no shrinkage towards the null) is 
extremely important, especially when the genetic studies 
account for potentially important confounding covari-
ates or gene-environment interactions. If the effect size is 
underestimated there is a risk of overlooking an associa-
tion because the observed effect size is not epidemiologi-
cally and/or clinically relevant. This alone represents, in 
our view, a good motivation to investigate the true under-
lying genetic model before undertaking an association 
study with a ‘promising’ candidate variant rather than 
using the current ‘rule of thumb’ of assuming additivity 
whenever there are no clues about the genetic model of 
a SNP.

It is clear, from this work that assuming an additive 
model when an underlying genetic model is not known 
can lead to an error that affects the power of a study and 
distort some estimates such as the effect size. For candi-
date gene studies at the design stage it is worth consid-
ering the most conservative sample size, i.e. the sample 
size that provides sufficient power even when the genetic 

model is not correctly specified. However, often studies 
do not have the latitude to extend their sample size; in 
such cases if no biological clues are available to ascertain 
the underlying model possible models should be tested to 
identify the one that better fits the data [6, 20] and the 
results adjusted for testing multiple models. Further-
more, available methods that implement association tests 
known to be robust against model misspecification [1, 
14] should be used to reduce the impact of the misspeci-
fication error.

Limitations
The analysis did not include investigations of the case 
assuming a dominant model when the actual model is 
additive. We also did not consider a recessive model 
which might not be well studied with the strategy used in 
this analysis.

Abbreviations
ESPRESSO: estimating sample-size and power in R by exploring simulated 
study outcomes; SNP: single nucleotide polymorphism; MAF: minor allele 
frequency.

Additional file

Additional file 1. Further details about the simulations, parameter set-
tings and results in table format.

Fig. 3  A Plots for a binary outcome and B plots for a continuous outcome. Estimated odds-ratio for a rare (plot 1), low frequency (plot 2) and com-
mon SNP (plot 3). The comparison in plot 4 shows that the odds-ratio is less affected by the misspecification of the underlying genetic model when 
the SNP is rare
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