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Abstract 

Background:  Tuberculosis (TB) continues to spread in South African prisons in particular, as prisons are over-capac-
itated and have poor ventilation. The awaiting trial detainees are not screened on admission and are at high risk of 
getting infected with TB.

Results:  We propose a compartmental model to describe the population dynamics of TB disease in prisons. Our 
model considers the inflow of susceptible, exposed and TB infectives into the prison population. Removal of individu-
als out of the prison population can be either by death or by being released from prison, as compared to a general 
population in which removal is only by death. We describe conditions, including non-inflow of infectives into the 
prison, which will ensure that TB can be eradicated from the prison population. The model is calibrated for the South 
African prison system, by using data in existing literature. The model can be used to make quantitative projections 
of TB prevalence and to measure the effect of interventions. Illustrative simulations in this regard are presented. The 
model can be used for other prison populations too, if data is available to calculate the model parameters.

Conclusions:  Various simulations generated with our model serve to illustrate how it can be utilized in making future 
projections of the levels of prevalence of TB, and to quantify the effect of interventions such as screening, treatment 
or reduction of transmission parameter values through improved living conditions for inmates. This makes it particu-
larly useful as there are various targets set by the World Health Organization and by governments, for reduction of 
TB prevalence and ultimately its eradication. Towards eradication of TB from a prison system, the theorem on global 
stability of the disease-free state is a useful indicator.
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Background
The World Health Organization (WHO) has recently 
launched the End TB Strategy program with the aim to 
reduce the number of deaths due to tuberculosis (TB) 
and the TB incidence rate by 95% and 90% in 2030, 
respectively. Their focus will be the most vulnerable 
who are infected by TB such as the poor, refugees, HIV-
infected people and prisoners. The three main pillars of 
the program are: integrated patient centered TB care and 
prevention, bold policies and supportive systems and 
intensified research and innovation [20].

Prisons have been recognized internationally as institu-
tions with very high tuberculosis burden as compared to 
a general population [13]. South African prisons are well 
known as being overcrowded. In 2015, 61 of the 90 cen-
tres in South Africa were inspected and it was found that 
their occupancy were more than 100% [14,  p. 52]. The 
National Strategic Plan 2012–2016 [17, 18] of the Depart-
ment of Health is aimed at reduction of TB infection. It 
has prioritized TB screening in prison and mines in view 
of overcrowding in these premises. The pipeline report 
for 2013 [18] points out factors that aggravates TB trans-
mission. The transmission of TB in a prison is driven by 
the amount of air shared between inmates, the number 
of inmates per cell, the length of the lock-up time, how 
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much fresh airflow is used and the presence of infectious 
inmates in the same enclosure with susceptible inmates. 
Awaiting trial inmates are being kept in a very intensely 
crowded environment. So for instance one could have as 
many as 86 inmates in a facility which was designed for 
20, sharing a single toilet [19]. The Department of Cor-
rectional Services admits that overcrowding is a major 
problem in prisons. In Robertson et al. [7] a mathemati-
cal model is developed to explore the incarceration con-
ditions and TB control measures. In this paper we model 
the population dynamics of the TB disease in a prison 
population with special emphasis on the South African 
prison system. The focus in [7] is on the effective contact 
rate, which in the present paper is denoted by c1. In this 
work we quantify the broader effect of c1 on the preva-
lence of the TB infection. In the literature already, the 
paper [10] considers a mathematical model for assessing 
the population dynamics of HIV and HCV co-existence 
within correctional facilities.

The current paper presents a deterministic compart-
mental model ordinary differential equations. A prison 
model must consider the inflow of infected people into 
the system. The removal rate in the case of a prison 
population is completely different from the case of a 
general population. For a prison population, individuals 
are removed not only through death, but also by being 
released. We give detail on the general method of cal-
culating the removal rates from the system. We make 
specific calculations in the South African context, and 
we determine other parameters and input data for the 
model. Our Theorem 1 determines threshold conditions 
that will ensure the eradication of TB disease from the 
prison. Finally, we illustrate the utility of the model and of 
the theorem through simulations.

Methods
The model
We introduce a deterministic compartmental model 
based on the papers [4] of Buonomo and Lacitignola and 
[12] of Ssematimba et al., the latter two papers being on 
tuberculosis in concentration camps. This type of very 
dense population necessarily has a very high contact rate 
between the individuals, in particular healthy suscep-
tible people are in very close and frequent contact with 
people having infectious active TB. Due to the similari-
ties between concentration camps and prisons such as 
overcrowding, the amount of air shared between the 
individuals etc., we consider this model, modified to 
accommodate inflow of infecteds, to be applicable to 
prison populations.

The prison population consists of sentenced prison-
ers together with awaiting trial detainees, and the size 
of the population at time t is denoted by N(t). We divide 

the population into four compartments namely, suscep-
tible individuals S(t), individuals with active TB who are 
not infectious, E(t), individuals infected with active TB 
who are infectious I(t), and the class of individuals under 
treatment T(t) [and often these variables will be written 
without stressing the dependence on the time variable 
(t)]. Due to the classes used, the model is referred to as 
being of SEIT type. We modify the model of Buonomo 
and Lacitignola [4] by allowing for the inflow of exposed 
individuals and infectious individuals into the prison 
population.

It is important to note that in general populations, 
removal of individuals out of the system is only by death. 
In this model, removal is by death or by discharge from 
prison, and the discharge is the dominant factor. This 
rate of removal is denoted by µ. In the classes S, E and 
T the probability of an individual being removed from 
the class is denoted by µ, and will be referred to as the 
removal rate. For the class I, mortality due to TB-disease 
amplifies the removal rate by an additional increment d, 
which will be referred to as the disease-induced mortal-
ity rate. The total inflow into the population is assumed 
to be at a rate A0. We find it useful to express A0 in the 
form A0 = µA for some constant positive number A and 
with µ being the removal rate. The number A will be seen 
to be the upper limit of N(t). We assume that there are 
non-negative numbers fS , fE and fI such that the inflow 
into the classes of (respectively) susceptible, exposed 
and infectious happen at the rates fSµA, fEµA and fIµA , 
respectively.

Susceptible individuals get infected with active TB at a 
rate c1SI, where c1 is the effective contact rate between 
the infectious and susceptible individuals. Individuals 
leave the exposed class E(t) for the infectious class I(t) 
at a rate kE + c3EI, where c3 is the effective contact rate 
between the exposed and infectious individuals. Success-
fully treated individuals who were infectious move to 
exposed class at a rate c2TI. Exposed and infectious indi-
viduals move into treatment class T(t) at a rate r1E and 
r2I respectively.

If fE + fI > 0, then our model system (1) does not have 
a disease free equilibrium due to the fact that there is an 
inflow of infectives into the prison population. Thus it is 
clear that TB in prison cannot be eliminated as long as 
the wider population has individuals with active TB that 
go to prison.

(1)

.
S = fSµA− c1SI − µS,
.
E = fEµA+ c1SI + c2TI − c3EI − (µ+ r1 + k)E,
.
I = fIµA+ kE − (µ+ r2 + d)I + c3EI ,
.
T = r1E + r2I − c2TI − µT .
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We first study the model without the inflow of infec-
tives. If fE = 0 and fI = 0, then the model given by the 
system (1) has a unique feasible disease free equilibrium 
given by

For a specific prison facility in a larger system, the con-
ditions fE = 0 and fI = 0, can be achieved by admit-
ting only susceptible inmates, while those carrying 
active TB are housed in facilities elsewhere. More gen-
erally, the condition is met if the ambient population is 
infection-free.

The basic reproduction number, denoted by R0, of a dis-
ease in a population is defined as the average number of 
secondary infections that are produced when one infec-
tious individual is introduced into a group of susceptible 
individuals. For more information see the books [2] of 
Anderson and May or [1] of Allen. For the model of [4], 
R0 is given by the formula:

The basic reproduction number is a good indicator as to 
whether or not a disease will stay endemic in a popula-
tion. If R0 > 1 then each infectious individual produces, 
on average, more than one new infection, and the dis-
ease will persist in the population. If R0 < 1, then on 
average an infected individual produces less than one 
new infected individual over the course of its infectious 
period, and it is more difficult for the infection to grow. 
In order to ensure that such a disease vanishes from the 
population, it may be necessary to impose conditions 
stronger than R0 < 1. This problem is addressed in Theo-
rem 1 below.

If the disease free equilibrium is globally asymptoti-
cally stable, it means that starting from any given state, in 
the long run the disease will vanish from the population. 
We now investigate for global stability of the disease free 
equilibrium of system (1) (subject to no inflow of infect-
eds) by using the Lyapunov function approach and we 
introduce the following invariant. Let

and let

Theorem 1  In model  (1) let us consider the special case, 
fE = 0 = fI. If R∗ < 1, then the disease free equilibrium P0 
is globally asymptotically stable.

P0 = (S0,E0, I0,T0) = (A, 0, 0, 0).

R0 =
kc1A

µ1µ2

, with µ1 = µ+ r1 + k and µ2 = µ+ r2 + d.

c∗ = max
{

c1, c2, c3

(µ1

k
− 1

)}

.

R∗ =
kc∗A

µ1µ2
.

Proof  Starting with the condition R∗ < 1 we can 
choose numbers ǫ1 such that the following conditions are 
satisfied:

and let a3 = k
µ1

+ ǫ1. Now choose a2 > 0 such as to sat-
isfy the following two inequalities:

Next we choose a1 sufficiently small such that

We now define a function V(S, E, I, T) as follows,

Then it can routinely be shown that the function 
V(S, E,  I, T) is Lyapunov at the disease-free equilibrium 
point P0, and therefore P0 is globally asymptotically sta-
ble.�  �

Thus, if the system does not satisfy the condition 
R∗ < 1 for global stability, then as far as possible the 
authorities must intervene and make changes that will 
alter the values of the parameters so as to achieve this 
condition.

Calibrating the model
As can be seen from the disease-free equilibrium, the 
number A turns out to be the maximum value of the var-
ying population size N(t). For the case of the South Afri-
can prison system, from the report [14] we deduce the 
value

In a disease model on general populations, the removal 
rate is calculated as the inverse of the life expectancy [3, 
5, 9]. In 2015, life expectancy in South Africa was given 
as 67 years (y) [11], so the mortality rate for the general 
population would be 1

67 year
−1. In a prison model how-

ever, removal of individuals from the prison popula-
tion entails both removal through death and removal by 
release from prison (assuming that the rate of escaping 
from prison is negligible). We proceed with determining 
this parameter. Henceforth, we assume time to be meas-
ured in years, y.

Numerical values for the removal rates
The removal rate µ and the additional removal rate d due 
to TB are calculated as below. Firstly we note that since 

(2)
(

k

µ1
+ ǫ1

)

c∗A− µ2 < 0,

(3)a3c∗A− µ2 + a2r2 < 0 and a2r1 − ǫ1µ1 < 0.

a1c1A+ a3c∗A− µ2 + a2r2 < 0.

(4)V = a1(A− S)+ a2T + a3E + I .

A = 160, 000.
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we are working with probabilities, we can express µ as 
follows.

where µp is the rate of release from prison and µm is the 
mortality rate in the prison, excluding death specifically 
as a result of TB. Deaths due to TB constitute a separate 
parameter.

Release from prison For calculating µp we used data 
from the public health paper [8]. The time served by pris-
oners is given in a frequency table which is convenient 
for calculating the average time served by inmates. We 
consider the awaiting trial detainees to stay for a nominal 
average period of 6 weeks, and the sentenced prisoners to 
serve on average 75% of their sentence time. The value µp 
calculated in this way is

Mortality In the classes S, E and T the probability of an 
individual being removed from the class due to death 
(except death as a result of TB) is denoted by µm. For the 
class I, mortality due to TB-disease amplifies the removal 
rate by an additional increment d, which will be referred 
to as the disease-induced mortality rate. An estimate 
of µm can be obtained as follows. Consider a period of 
length τ, over which the average value of the sum of the 
class sizes S, E, and T is denoted by Q. If the total number 
of deaths in these three classes during this period is D, 
then a value for µm can be estimated by the formula

The constant d can be estimated as follows. Consider a 
period of length τ1. If the total number of mortalities in 
the I-class during this period is D1, then we estimate a 
value for d by the formula

For the years 2012–2015 the mortality rate is estimated 
using results from:

i.	 [14, Figure 7 on p. 42] for the numbers of inmates in 
total in SA prisons,

ii.	 [14, Figure 16 on p. 85] for the number of unnatural 
deaths,

iii.	[14, Figure  20 on p. 91] for the number of natural 
deaths, and

iv.	 [21], the latter being particularly helpful in establish-
ing an upper limit (20% of A) for the value of S(t).

The report [14] does not give the details of deaths in 
prison due to TB. In [14, Table 22 p. 71] TB comes up as 

µ = µp + µm − µmµp,

µp = 0.1789391 (year−1).

µm =
D

τQ
.

µm + d =
D1

τ1I
, i.e., d =

D1

τ1I
− µm .

the most prominent cause of natural death in prisons. Let 
us denote the rate of deaths due to TB by µTB. According 
to the report in [15] we can take µTB = 11

80µm so that we 
can calculate d = µTB(1− µ).

Our calculations yield the following values:

Now note that d is the additional rate of removal due to 
TB. Thus

The parameters ci
The formula [4], formula (17)] in the paper of Buonomo 
and Lacitignola stresses the fact that the force of infec-
tion is proportional to the population density. This means 
that when moving from a free population to a concentra-
tion camp, the force of infection will multiply by a signifi-
cant factor, and in a prison population it will be another 
factor higher.

Using 2015 data obtained from [21] and life expectancy 
as from [11], a simple calculation shows that a lower 
bound for the effective contact rate (let us denote it by 
c0 ) for TB in South Africa (the entire population) yields (a 
lower bound)

When applying this to a subpopulation, this parameter 
should be scaled up, inversely to the change in popula-
tion size. Furthermore, in the prison system we expect a 
value a few factors higher. In order not to present a situ-
ation worse than reality, for the prison system we use a 
figure c1 = 1.5 c0 ×

P
A where P is the 2015 population size 

of South Africa. Thus we obtain a value

For the coefficient c3 in comparison with the coefficient k 
(valuated in “Other parameters” section), since c3 is mul-
tiplied by E we allow a nominal value

The treatment time is usually 6 months, see [6] for 
instance. This means that the rate of departure from the 
T-class per year is 2T. In the model the flow out of the 
T-class into the E-class is assumed to be proportional to 
TI. For this reason we choose a value of c2 at

such that when I reaches a reasonably high value such as 
around I = 0.1A, then the average time spent in class T is 
approximately 6 months.

µm = 0.003628, µTB = 0.02292,

and µ = 0.18192 (year−1).

d = µTB(1− µ) = 0.01876 (year−1).

c0 =
(55− 44)million

67× 390, 000× (44 million)
= 1.5308× 10−7year−1.

c1 = 0.00007893 year−1.

c3 = k/(2A).

c2 = 2(10/A),
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Other parameters
The progression rate from the exposed and infectious 
classes to treatment class are, r1 = 0.30 and r2 = 0.5 
respectively [4]. Using 2015 data obtained from [21], for the 
transfer rate k in South Africa (the entire population) from 
E to I we obtain a value 450, 000/[0.8 (55million)]. The 
value used in [4] (i.e., 0.1) is a factor 10 times higher than 
this rough calculation. For our purposes we use the value

In a prison system where high quality screening is per-
formed, the parameters fS , fE , and fI can be determined 
fairly accurately. In the absence of such facilities, the best 
estimates for these parameters are to derive them from the 
proportions, in the bigger population, of susceptible, latent 
and infectious. Thus we have the following:

Initial conditions for simulation
We require initial conditions in order to run simula-
tions that can be useful for projection of numbers in the 
future. According to the annual report of the Depart-
ment of Correctional Services [16] we know the num-
bers of infectious TB patients and those under treatment. 
Thus we know I(t15) andT (t15), t15 denoting the time 31 
March 2015. We also have a value for N (t15) = 159, 563. 
In order to find a reasonable split of the number

between S(t15) and E(t15), since S + E + I + T = N , we 
recall from [21] that approximately only 20% of the South 
African population are susceptible, i.e., has never been 
infected with the TB bacterium. These observations lead 
to the following initial condition:

Simulations
Through simulations we utilize the model to investigate 
the effect of interventions, by making future projections 
of the levels of TB prevalence in a prison system. We test 
the various scenarios, including the case of no inflow of 
infecteds. Model system (1) has been evaluated for global 
stability in Theorem  1, which has assured us that if the 
condition of the theorem is satisfied, then starting from 
any point in our model system (1), the disease will ulti-
mately vanish from the prison population. We will also 
illustrate this result by means of simulation.

Results and discussion
We presented and motivated a model for the population 
dynamics of TB in a prison or prison system. Parameter 
values for the South African prison population have been 

k = 0.05.

fS = 0.2, fE = 0.74, and fI = 0.06.

N (t15)− [I(t15)+ T (t15)]

S(t15) = 32, 000, E(t15) = 107, 000,

I(t15) = 3500, T (t15) = 17, 100.

calculated from data in the open literature and these are 
summarized in Tables  1 and 2. We proved a theorem, 
Theorem 1, describing conditions that will guarantee the 
ultimate eradication of TB for a prison system. Sample 
simulations have been run, to be discussed below.

No inflow of infectives
We first provide an analysis of our model system without 
the inflow of the infectives, i.e., when fE = 0 and fI = 0. 
In this case we use the parameters from Table  1, while 
varying the values of the parameters ci not listed in 
Table  1. The reason for varying these parameters is 
to be able to obtain different values of R∗ to illustrate 
Theorem 1.

Figure 1 (Case 1) shows the trend of all classes over 15 
years with c1 = 0.00008 and we compute R∗ = 1.72. The 
graphs indicate that the disease will persist in the prison 
population.

Figure  2 (Case 2) shows variation of susceptible, 
exposed, infected and treated classes over 15 years, with 
c1 = 0.00004 and in this case we obtain R∗ = 0.86. Under 
these conditions the theorem assures us that the TB dis-
ease will vanish.

In Fig. 3, we show the infectious classes I of both Case 1 
and Case 2 for comparison, and we stretch the time hori-
zon to 60 years. For Case 2 the graph gives an indication 
of how fast the infectious class falls to zero. In order to 
make it vanish faster, further intervention is necessary to 
reduce the value of R∗.

Table 1  Model parameters and initial conditions

Parameter Numerical value Sources

µ 0.18192 [8, 14]

d 0.01876 [14, 15]

r1 0.30 [4]

r2 0.50 [4]

k 0.05 [4, 21]

A 1,600,000 [14]

St15 32,000 [14]

Et15 107,000 [14]

It15 3500 [14]

St15 17,100 [14]

Table 2  Inflow and contact rates

Parameter Numerical value Sources

c1 0.00007893 [21]

c2 20/A [6]

c3 k/(2A) Estimated

fS , fE , fI 0.2, 0.74, 0.06, respectively [14]
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General case
In this section, we will consider the general case, i.e., the 
model with the inflow of the infective into the prison 
population. We use the paremeters from Tables 1 and 2. 
We consider two inflow scenarios for comparison. We 
first consider the case (call it Case A) with fE = 0.64 
and fI = 0.06. The curves are depicted in Fig.  4. In 
Fig. 5 (Case B) we use the inflow parameters at the val-
ues fE = 0.77 and fI = 0.03. The comparison shows the 
effect of reduction of inflow of infectious individuals. In 
order to better compare visually, the I-classes of Case 
A and Case B are drawn on the same system of axes in 
Fig. 6. We see a remarkable drop in the I numbers when 
the inflow of infecteds is halved. 
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Fig. 1  Prison population in different classes without the inflow of 
infectives and R∗ = 1.72
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Fig. 2  The prison population in different classes without the inflow 
of infectives and R∗ = 0.86
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Fig. 4  The different classes with the inflow of infectives at fE = 0.74 
and fI = 0.06 (Case A)
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fE = 0.77, fI = 0.03 (Case B)
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These graphs demonstrate the extent to which this 
model can be utilized when planning to roll out an inter-
vention strategy.

Conclusions
We started with an existing population model of TB that 
was applied to a specific crowded environment (concen-
tration camps). This model was adjusted to apply to pris-
ons or prison systems. In this compartmental model we 
allowed for inflow of infectives into classes other than 
just the susceptible class. In fact, such inflow has to be 
accommodated in the model if there is TB infection in 
the ambient population. On the removal side it is impor-
tant to note that release from prison is the main compo-
nent, complemented by removal through death. We have 
described conditions (for mathematical stability of the 
disease free state of the system) that will cause the TB 
infection to vanish from the prison population. It was 
observed that if at a specific prison site or system there 
is no inflow of infected individuals, then the disease will 
vanish from the prison provided that the numerical value 
of the invariant R∗ is below unity.

For the case of the South African prison system, most 
of the crucial parameters of the model were calculated 
using data from public domain prison data. Other param-
eters, including initial conditions for computations, 
were obtained from data in various published literature, 
together with interpolation methods. As illustrated in 
the previous section, the model can be utilized in making 
future projections of the levels of prevalence of TB, and 
to quantify the effect of interventions such as screening, 
treatment or reduction of transmission parameter values 
through improved living conditions for the inmates.
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