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d‑β‑Hydroxybutyrate and melatonin 
for treatment of porcine hemorrhagic shock 
and injury: a melatonin dose‑ranging study
Andrea Wolf*  , Kristine E. Mulier, Sydne L. Muratore and Gregory J. Beilman

Abstract 

Objective:  Treatment with a combination of d-β-hydroxybutyrate (BHB) and melatonin (M) improves survival in 
hemorrhagic shock models. Our objective was to find the most effective melatonin concentration in combination 
with 4 molar BHB (4 M BHB). Survival and markers of organ injury were analyzed in pigs exposed to pulmonary contu-
sion, liver crush injury, and hemorrhagic shock and treated with lactated Ringer’s solution; 4 M BHB/43 mM M; 4 M 
BHB/20 mM M; 4 M BHB/10 mM M; 4 M BHB/4.3 mM M; or 4 M BHB/0.43 mM M. This work is an extension of a previ-
ously published research study.

Results:  Survival was highest in pigs receiving 4 M BHB/43 mM M (13/14), followed by lactated Ringer’s solution 
(11/16) and BHB/M with decreased melatonin concentrations (4 M BHB/20 mM M 3/6, 4 M BHB/10 mM M 2/6, 4 M 
BHB/4.3 mM M 3/6, 4 M BHB/0.43 mM M 1/6, p = 0.011). High mortality was associated with increases in serum 
lactate, higher liver and muscle injury markers and decreases in PaO2:FiO2 ratios. Our study indicates that treatment 
with 4 M BHB and melatonin concentrations below 43 mM lack the survival benefit observed from 4 M BHB/43 mM 
melatonin in pigs experiencing hemorrhagic shock and polytrauma.
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Introduction
Hemorrhagic shock, the state induced by severe blood 
loss, is the second leading cause of injury-related death 
[1]. Many deaths occur during the first hour after injury, 
often before bleeding is adequately controlled [2, 3]. In 
addition to bleeding control, patients receive resuscita-
tion fluids to restore intravascular volume and tissue 
perfusion, however, the optimal resuscitation fluid and 
protocol has not been identified [4, 5]. It has been rec-
ognized that currently used resuscitation fluids can have 
adverse effects themselves [6, 7]. Hence, there is sig-
nificant need for novel treatments for the early phase of 
hemorrhagic shock. Infusion of a combination of 4  M 
d-β-hydroxybutyrate/43 mM melatonin (BHB/M) during 
early hemorrhagic shock significantly decreased mortal-
ity in preclinical rat and pig models [8, 9]. The treatment 

was developed after the observation that levels of d-β-
hydroxybutyrate (BHB), a ketone body, and melatonin 
(M), an antioxidant, increase in hibernators during tor-
por and arousal, respectively [10–13].

The goal of this study was to establish the melatonin 
concentration that in combination with 4  M BHB most 
effectively improves post-shock survival. We tested the 
effects of decreased melatonin concentrations in BHB/M 
in our established porcine hemorrhagic shock, trauma 
and resuscitation model [14]. We focused on melatonin, 
as preceding experiments showed that in rat hemorrhagic 
shock, the concentration of melatonin, but not BHB in 
the treatment could be decreased without loss of effi-
cacy [15]. We hypothesized that solutions containing 4 M 
BHB and a melatonin concentration of 43 mM would be 
equally as effective at improving post-hemorrhagic shock 
survival as solutions with 4 M BHB in combination with 
20, 10, 4.3, or 0.43 mM melatonin.
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Main text
Methods
Shock, treatment and resuscitation
All procedures were approved by the University of Min-
nesota Institutional Animal Care and Use Committee 
(Protocol # 1306-30703A) and in accordance with the 
National Institutes of Health guidelines for ethical animal 
research. Fifty-four (28 male, 26 female) Yorkshire-Lan-
drace pigs (15–25 kg, Manthei Hog Farm, LLC, Elk River, 
Minnesota) were exposed to our established shock and 
injury protocol (Fig.  1). Induction of anesthesia, instru-
mentation, shock and injury, treatment infusion, limited 
resuscitation (R) and full resuscitation (FR), hemody-
namic measurements, and analysis of blood gases, organ 
function markers and drug serum levels have been previ-
ously described in detail [14].

Surviving animals were extubated and recovered 
for 24 h, 48 h or 14 days. Pigs received ceftiofur (5 mg/
kg intravenous daily), analgesia was administered dur-
ing anesthesia [buprenorphine (0.03  mg/kg subcutane-
ous every 4  h)] and after arousal [ketoprofen (2  mg/kg 
daily), buprenorphine (0.03  mg/kg twice daily)]. Animal 
care staff performed postoperative checks on wellness, 
body temperature, respiration and pulse at least twice 
daily. Pigs experiencing unrelieved pain or stress during 
recovery were sacrificed. Euthanasia was performed with 
beuthanasia solution (0.22 ml/kg intravenous).

8‑Isoprostane ELISA
For 8-isoprostane analysis, urine samples were centri-
fuged (1000  RpM, 5  min), the supernatant was mixed 
1:1 with 1 M acetate buffer (pH 4), extracted using C-18 
columns and quantified with ELISA (Cayman Chemical, 
Ann Arbor, MI) according to manufacturer’s instructions. 
8-Isoprostane levels were normalized to urine output per 
body weight per hour [16]. Samples collected at FR 7  h 
were used when material from FR 8 h was not available.

Statistical analysis
The presented work is an extension of earlier experi-
ments, and 24 of the pigs analyzed here were part of a 
previously published study (12 in the lactated Ringer’s 
(LR), 12 in the 4 M BHB/43 mM melatonin group) [14]. 
To increase the power of the original study, we increased 

both original groups. However, to save BHB, a signifi-
cant cost factor in our study, we opted to add fewer pigs 
to the 4 M BHB/43 mM M than the LR group. Survival 
was analyzed via Kaplan–Meier analysis with generalized 
Wilcoxon test. AUCt was calculated using PKSolver from 
Baseline over five sampling time points (AUC0-FR20) using 
the trapezoidal rule [17]. Non-longitudinal data were 
analyzed via Kruskal–Wallis test with Dunn–Bonferroni 
corrections and are reported as medians with interquar-
tile ranges (IQR). Longitudinal parameters were analyzed 
via Proc Mixed procedure in SAS Version 9.4 (SAS Insti-
tute, Inc., Cary, NC) and are depicted at key time points 
as least-squared means with 95% confidence intervals 
(CI). Group (G), Time (T) and group  *  time interaction 
(G * T) were modeled as fixed effects. The models used 
compound symmetry, autoregressive or no covariance 
structure and the between-within method for degrees 
of freedom. For parameters with significant interaction 
effects, differences at individual time points were ana-
lyzed by pairwise comparisons with Tukey adjustments.

Results
Shock induction and resuscitation
There were no significant differences in the amount of 
blood withdrawn, blood returned or total fluids admin-
istered. Pigs treated with 4  M BHB/10  mM melatonin 
received significantly less LR than those receiving 4  M 
BHB/0.43  mM melatonin (95% CIs [750, 2206], [2344, 
4908] ml/kg, p = 0.029), which is likely due to the high 
early mortality in this group (Fig. 2).

Survival
Twenty-four hours after extubation there was a sig-
nificant difference in overall survival (p = 0.017, Fig. 2), 
with the highest rate observed in the 4 M BHB/43 mM 
melatonin group (13/14), followed by LR pigs (10/16) 
and those receiving lower doses of melatonin (4  M 
BHB/20  mM M 3/6, 4  M BHB/10  mM M 2/6, 4  M 
BHB/4.3 mM M 3/6, 4 M BHB/0.43 mM M 1/6). Survival 
between 4 M BHB/43 mM M and LR-treated pigs did not 
differ significantly (p = 0.094). There were significant dif-
ferences between the 43 mM and the 20, 10 and 0.43 mM 
melatonin groups (p < 0.05), and between the LR and the 
4 M BHB/10 mM melatonin group (p = 0.028).

(See figure on nex t page.) 
Fig. 1  Shock, injury and resuscitation protocol. Pulmonary contusion was followed by blood withdrawal and creation of liver crush injuries with a 
Holcomb clamp [35]. Fifteen minutes after contusion, treatment solutions were administered as a 1 ml/kg bolus, immediately followed by 0.66 ml/
kg/h continuous infusion over 4 h (3.64 ml total). Pigs received limited resuscitation, throughout which they were evaluated every 10 min and, if 
necessary, received boluses of lactated Ringer’s solution (LR). An hour later, full resuscitation was initiated, throughout pigs received intravenous LR 
and shed blood. BHB d-β-hydroxybutyrate, DMSO dimethyl sulfoxide, Hgb hemoglobin, IV intravenous, LR lactated Ringer’s solution, M melatonin, 
SBP systolic blood pressure, UO urine output (Modified from [14])
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Drug serum levels
BHB/M-treated pigs experienced dose-dependent 
increases in melatonin and BHB serum concentrations, 
which peaked at the end of shock and returned to control 
levels by the end of resuscitation (Additional file 1: Fig-
ure S1). Melatonin concentrations in 4 M BHB/43 mM 
melatonin pigs were significantly higher than in all other 
groups after shock and during early resuscitation. Dif-
ferences were significant between pigs infused with 4 M 
BHB/20 mM melatonin versus those receiving LR, 4 M 
BHB/4.3  mM melatonin or 4  M BHB/0.43  mM mela-
tonin at the end of shock. At the end of shock, BHB 
concentrations were higher in all BHB/M groups than 
in controls. We observed some variability in BHB levels 
which resulted in significant group differences, however, 
there was no obvious effect of melatonin dose on BHB 
serum concentrations. Total drug exposure over time 
followed the patterns observed for drug serum levels.

Hemodynamic physiologic parameters
Key hemodynamic and physiologic parameters are 
depicted in (Additional file  2: Table S1). Hemorrhage 
caused a drop in mean arterial pressure and cardiac out-
put along with increases in heart rate in all groups, which 
recovered during resuscitation. Urine output did not differ 

significantly between groups at individual time points. 
BHB/M treatment increased sodium and decreased 
potassium levels during early resuscitation, a previously 
described effect that was independent of treatment mel-
atonin concentration [9]. We observed shock-induced 
decreases in pH which returned towards baseline levels 
during resuscitation. There were no obvious BHB/M-
treatment or melatonin dose-dependent effects on 
hemoglobin or serum levels of blood urea nitrogen and 
lactate dehydrogenase. There were no obvious treatment-
dependent effects on body temperature, mean pulmonary 
artery pressure, pulmonary artery occlusion pressure, 
bladder pressure, mixed venous oxygen saturation, oxygen 
consumption, serum levels of alanine aminotransferase, 
albumin, total protein, bilirubin and alkaline phosphatase 
(not shown).

Lactate levels peaked during limited resuscitation but 
returned to baseline levels by the end of the experiment 
(Fig.  3a). BHB/M-treated pigs receiving low melatonin 
concentrations experienced dose-dependent decreases 
in PaO2:FiO2 ratios during early resuscitation (Fig.  3b). 
Pigs treated with BHB/M experienced increases in serum 
concentrations of aspartate aminotransferase (AST) and 
creatine kinase (CK) (Fig. 3b, c). The shock-induced dis-
turbances were most prominent in groups with high early 
mortality rates, namely in pigs receiving 4 M BHB with 
20, 10 and 0.43 mM melatonin.

8-Isoprostane urine levels were analyzed as markers of 
trauma-induced oxidative stress [18]. There was an insig-
nificant trend towards lower 8-isoprostane levels in the 
groups treated with BHB/M during resuscitation (Addi-
tional file  3: Figure S2). This effect was independent of 
the melatonin concentration in the treatment.

Discussion
4  M BHB/43  mM M significantly improves survival in 
preclinical hemorrhagic shock models [8, 9]. Here, we 
describe experiments to optimize the melatonin concen-
tration in the treatment. Earlier experiments showed that 
in pigs exposed to hemorrhagic shock and injury, dou-
bling the dose of 4 M BHB/43 mM M resulted in increased 
mortality (unpublished data). In rats, lowering the BHB 
concentration in combination with 43 mM M resulted in 
a trend towards decreased survival, while survival times 
were retained when melatonin levels were lowered [15]. 
Based on these results, we used our porcine hemorrhage, 
injury and resuscitation model to evaluate treatment solu-
tions containing 4  M BHB in combination with 0.43–
43  mM melatonin. We hypothesized that the melatonin 
concentration could be decreased without loss of efficacy.

Mortality in pigs receiving BHB/M containing below-
standard melatonin concentrations exceeded that in the 
control group. This was surprising, as previous studies 

Fig. 2  Survival in pigs experiencing hemorrhagic shock and injury. 
Mean survival in hours [95% CI]: LR 33.1 [24.5, 41.6], 4 M BHB/43 mM 
M 42.6 [36.5, 48.6], 4 M BHB/20 mM M 24.1 [6.8, 41.4], 4 M BHB/10 mM 
M 16.3 [0, 33.0], 4 M BHB/4.3 mM M 27.4 [11.7, 43.2], 4 M BHB/0.43 mM 
M 16.6 [3.5, 29.7]. BHB d-β-hydroxybutyrate, LR lactated Ringer’s solu-
tion, M melatonin
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suggest a beneficial effect of BHB in hemorrhagic shock 
in both rats and pigs, acting synergistically with mela-
tonin. In rats experiencing hemorrhagic shock, 4 M BHB 

alone significantly improved survival, and lowering the 
BHB concentration in BHB/M was associated with a 
trend towards increased mortality [8, 15].
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Fig. 3  a Lactate levels, b PaO2:FiO2 ratios, c AST levels and d creatine kinase concentrations throughout the experiment. Data presented as least-
squares means with 95% confidence intervals. +p < 0.05 for LR vs 4 M BHB/10mM M; ▲p < 0.05 for LR vs 4 M BHB/20 mM M and 4 M BHB/10 mM 
M and 4 M BHB/0.43 mM M, 4 M BHB/0.43 mM M vs 4 M BHB/43 mM M and 4 M BHB/4.3 mM M. *p < 0.05 for LR vs 4 M BHB/20 mM M; # for 4 M 
BHB/10 mM M versus 4 M BHB/4.3 mM M and 4 M BHB/43 mM M; $ for 4 M BHB/10 mM M vs LR and 4 M BHB/43 mM M and 4 M BHB/20 mM M 
and 4 M BHB/4.3 mM M. AST aspartate aminotransferase, BHB d-β-hydroxybutyrate, CK total creatine kinase, FiO2 inspired fraction of oxygen, FR full 
resuscitation, G group effect, G * T group * time interaction effect, LR lactated Ringer’s solution, M melatonin, PaO2 partial arterial pressure of oxygen, 
R limited resuscitation, S 45 min end of shock period, T time effect
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Our data suggests that treatment with BHB/M contain-
ing decreased melatonin levels increased shock-induced 
lung and organ injury. These animals experienced 
increased lactate levels and elevated serum concentra-
tions of AST and CK, markers of liver and muscle injury. 
Pulmonary contusion and hemorrhagic shock induce pul-
monary inflammation, which can lead to hypoxemia and 
acute respiratory distress syndrome [19, 20]. We observed 
melatonin dose-dependent decreases in PaO2:FiO2 ratios 
during early resuscitation, indicating increased lung 
injury. This was unexpected, as both melatonin and BHB 
exhibit anti-inflammatory effects and BHB decreases 
inflammation and apoptosis in rats and pigs exposed to 
severe blood loss [21–30]. However, melatonin effects in 
hemorrhagic shock can be dose-dependent, while ketone 
bodies may be pro-inflammatory at high doses [31–34]. 
With systemic melatonin levels insufficient to counteract 
the effects of shock and injury, the high BHB dose may 
have exacerbated trauma-induced inflammation. This 
was not associated with increased oxidative stress, as we 
observed a trend towards decreased 8-isoprostane levels 
in BHB/M treated pigs, which was independent of the 
melatonin concentration in the treatment.

Conclusions
Hemorrhagic shock is the leading cause of preventable 
death after injury, with many of these deaths occurring 
in the prehospital phase. 4  M BHB/43  mM M is a low-
volume resuscitation fluid that significantly improves 
survival when administered during early hemorrhage in 
preclinical models of hemorrhagic shock and injury [8, 9, 
15]. Optimization of treatment dose is an important step 
towards translation from preclinical to clinical use. Here, 
we tested the efficacy of 4 M BHB in combination with 
0.43–43  mM melatonin in porcine hemorrhagic shock, 
injury and resuscitation. Treatment with below-stand-
ard melatonin concentrations resulted in mortality rates 
exceeding that in the control group. Lowered melatonin 
treatment concentrations resulted in increased markers 
of lung, liver and kidney injury, suggesting that decreased 
melatonin serum levels were insufficient to counteract 
BHB-induced increases in inflammation. Our research 
underlines the importance of reaching adequate systemic 
BHB and melatonin levels, while illustrating the nar-
row therapeutic window of the treatment in its current 
formulation.

Limitations
This study has several limitations. As the melatonin 
dose-ranging experiments were an extension of our pre-
viously published study, we expanded the original 4  M 
BHB/43 mM M and LR groups and added treatments to 
our original experiment [14]. Consequently, group sizes 

were uneven and animals were not completely rand-
omized, rendering a risk for model variation over time. 
However, BHB/M at the standard dose exerted a robust 
beneficial effect and consistently outperformed LR in our 
model (2/2 additional BHB/M pigs survived, while only 
1/4 of LR pigs survived).

As we did not include dimethyl sulfoxide (DMSO)-
treated control groups in our experiments, it is unclear 
whether changes in DMSO concentrations affected 
efficacy in the low-dose melatonin groups. Previously, 
BHB/M- treatment was significantly more effective at 
increasing post-shock survival than treatment with isos-
motic solutions containing equal DMSO concentrations 
[9]. As we concluded that it was unlikely that changes in 
DMSO concentration affected survival, we opted for LR 
as control to represent the standard of care.

Survival differences between 4  M BHB/43  mM M 
and the control group were not significant in this study 
(Fig.  2), which is likely due to the limited sample size 
used. As our experiments clearly showed that decreasing 
melatonin concentrations was detrimental, we limited 
our sample size to save animals and resources.
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