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Abstract 

Objective:  The aim of the present study is to optimize the PCR conditions required to amplify the promoter 
sequence of an amino acid transporter having an AT-rich base composition with a high number of tandem repeats.

Result:  Results show that successful amplification can be achieved by performing a 2-step PCR at a lower extension 
temperature of 65 °C for an increased extension period of 1.5 min/kb, with MgCl2 concentration ranging from 2.5 
to 3.0 mM. The results also suggest that the DNA concentration of about 25–30 ng/µl was essential to achieve this 
amplification.
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Introduction
PCR is one of the indispensable techniques in molecular 
biology for in  vitro amplification of a specific segment 
of DNA [1]. It is highly reliable because of its sensitiv-
ity, accuracy, and speed [2, 3]. However, under specific 
requirements such as to amplify templates, which are AT- 
or GC-rich, or have a high number of tandem repeats the 
PCR conditions need to be optimized. Plant promoter 
regions are generally difficult to amplify by PCR as they 
are highly AT-rich and sometimes contain tandem repet-
itive DNA sequences [4, 5]. Tandem repeats represent 
two or more copies of short segments of DNA occurring 
repeatedly from head-to-tail within the coding and regu-
latory regions [6]. The problem with these templates is 
that they need lower annealing and extension tempera-
tures which can result in the amplification of undesired 
products [7, 8]. The aim of this work is to amplify a pro-
moter sequence (1781  bp) of an amino acid transporter 

(AT2G40420) from Arabidopsis thaliana, which is highly 
AT-rich and has a high number of tandem repeats.

The in silico analysis of the promoter sequence reveals 
that it possesses many important cis-acting regulatory 
elements such as light-responsive, auxin-responsive, 
salicylic acid-responsive, and abscisic acid-responsive 
elements along with 16 copies of an ACGT motif [9]. 
Studies suggest that the cis-elements with ACGT core 
sequence responds to light, anaerobiosis, phytohormones 
like abscisic acid, jasmonic acid, salicylic acid and auxin 
[10, 11]. Furthermore, Zou et al. [12] conducted a study 
where they concluded that around 19.6% of the total 
pCREs (putative cis-regulatory elements) identified in the 
promoter regions of abiotic stress responsive genes have 
ACGT as a core sequence. Therefore, tapping this pro-
moter sequence for its response to abiotic stress condi-
tions can potentially bring forth important characteristics 
that can further find wide application for generation of 
transgenic plants with high stress tolerance. As, a suitable 
promoter is needed to achieve desired expression levels 
of a transgene [13]. In the study, the promoter sequence 
(AT2G40420, 1781  bp) was amplified from Arabidopsis 
thaliana genome. However, the sequence is 65.2% AT-
rich and has 15.5 copies of 28 base long tandem repeat 
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[14], which makes it difficult to amplify by PCR (Fig. 1). 
These tandem repeat sequences have a binding site for 
bZIP (basic leucine zipper) transcription factors (TFs). 
Reports suggest that tandem repeats possessing binding 
sites for transcription factors in the promoter regions can 
affect the transcriptional rate of a gene [15]. To check the 
effect of all these TF binding sites localized in tandem 
repeats on the downstream gene expression, isolation 
of the promoter sequence with all the copies of tandem 
repeats was highly desirable.

Main text
Methods
Plant material and growth conditions
Arabidopsis thaliana, ecotype Columbia (Col-0) was 
used in this study. Arabidopsis seeds were procured from 
LEHLE SEEDS Company (Catalog number: WT-02), 
Texas, USA. Seeds were vernalized at 4  °C in the dark 
for 3  days before sowing in 5.08  cm plastic pots filled 
with soilrite. Thereafter, the pots were transferred into 
a growth chamber (Daihan Labtech, LGC-5101, India) 
maintaining a 16-h light/8-h dark photoperiod, 22  °C 
temperature, 75% relative humidity. After 3  weeks, 
rosette leaves were harvested to extract the genomic 
DNA.

Genomic DNA isolation
Genomic DNA was isolated from the leaves of Arabidop-
sis thaliana (ecotype Col-0) using the DNeasy Plant Mini 
Kit (Qiagen, Cat No./ID: 69104) according to the manu-
facturer’s recommendations. The DNA integrity was 
confirmed by running 0.8% agarose gel electrophoresis at 
80 V for 30 min.

Primer design
Primers were designed to amplify a 1781  bp promoter 
sequence of the amino acid transporter (AT2G40420) 

(Table 1) using the Primer3 program [16]. Their specificity 
was ensured by performing primer-BLAST (https://www.
ncbi.nlm.nih.gov/tools/primer-blast/) with the Arabidop-
sis genome. Further, the OligoAnalyzer tool supported 
by Integrated DNA Technologies (https://www.idtdna.
com/SciTools/SciTools.aspx.) was used to check for the 
presence of any secondary structure or primer–dimer 
formation.

PCR conditions
Each 20  µl PCR contained 2  μl of genomic DNA 
( ~ 50 ng), 4 µl of 5X Phusion HF buffer, 0.4 µl of 10 mM 
dNTPs, 0.8 µl of each 10 µM forward and reverse primer, 
0.2 µl of Phusion DNA polymerase (2U/µl), and varying 
concentrations of MgCl2 ranging from 1.5 to 3.5  mM. 
All the reagents were procured from Thermo Fisher 
SCIENTIFIC (Catalog number: F530S, Waltham, MA, 
USA) and MB grade nuclease-free water from Himedia 
(Catalog number: ML024). A 2-step PCR was carried 
out using the Applied Biosystems® Veriti® 96-Well Ther-
mal Cycler (Catalog number: 4375786, Foster City, CA, 
USA) with conditions as follows: Initial denaturation at 
98 °C for 1.5 min; followed by 35 cycles of denaturation at 
98 °C for 30 s, extension at 60/65/68/72 °C for 3 min and 
final extension at 60/65/68/72 °C for 7 min. PCR for each 
extension temperature with varying MgCl2 concentra-
tions were performed separately and in triplicates. PCR 
products were checked by electrophoresis in 1% (w/v) 
agarose gel, at 80 V for 30 min.

ATG-400-600-800-1000-1200-1400-1418 +283+200

-942 -503

AAAAACGTAAACCCGTGATTTTCCCGCC

+1

1781 bp

Fig. 1  Amino acid transporter (AT2G40420) promoter region (1781 bp). The sequence and position of 28 bp long tandem repeat, occurring 15.5 
times in the promoter region from − 503 to − 942 and the translation start site ATG, are depicted in the figure

Table 1  Forward and  reverse primer specifications 
for AT2G40420 promoter sequence

Primer Primer sequence (5′→3′) Tm °C GC% Product 
size

AT2G40420F CCTACTAGTTCGTGATACTG 52.05 45.00 1781 bp

AT2G40420R CGAACGATTCCTTCATCACG 57.02 50.00

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.idtdna.com/SciTools/SciTools.aspx
https://www.idtdna.com/SciTools/SciTools.aspx
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Amplicon sequence analyses
The QIAquick Gel Extraction Kit (Qiagen, Catalog num-
ber: 28704) was used to purify the PCR products. The 
purified PCR product along with the primers used for 
amplification, was then directed for sequencing to ver-
ify the specificity of the amplified product. The ampli-
con specificity was confirmed by analysing the obtained 
sequencing results with the reference sequence deposited 
in the TAIR database (https://www.arabidopsis.org) of 
the amino acid transporter promoter region [17].

Results and discussion
Concentration of magnesium ions
The magnesium ion concentration greatly influences 
the PCR as DNA polymerase requires Mg2+ ions for its 
proper functioning [18, 19]. Therefore, to achieve maxi-
mal PCR yield the MgCl2 concentration needs to be opti-
mized. As, a high Mg2+ ion concentration can hinder the 
reaction by preventing proper melting of template DNA 
and can also promote non-specific binding of primers. 
Even a low Mg2+ ion concentration can adversely affect 
the product yield. With this aim, varying concentrations 
of MgCl2 such as 1.5, 2.0, 2.5, 3.0, 3.5 mM were tried. The 
desired amplicon yield was obtained at a 3.0 mM MgCl2 
concentration (Fig. 2).

Extension temperature
For successful amplification, the extension time 
and temperature need to be carefully optimized. 
Xin-Zhuan Su et  al. [20] reported that to amplify an 
AT-rich DNA, reduced extension temperatures are 
needed. In the present study, a two-step PCR (denatur-
ation and amplification) was performed at four differ-
ent extension temperatures 60, 65, 68 and 72  °C with 
increased extension time from the usual 1 to 1.5 min/
kb. Successful amplification was achieved at an exten-
sion temperature of 65 °C with 2.5 mM MgCl2 yielding 
a faint band while an intense band was observed with 
3  mM MgCl2 concentration (Fig.  2). No results were 
obtained at other extension temperatures (60, 68, and 
72  °C) at any of the five MgCl2 concentrations tested 
(data not shown).

Conclusions
The promoter region of the amino acid transporter was 
difficult to amplify by PCR owing to its high AT content 
and a high number of tandem repeats. Successful ampli-
fication can be achieved, after optimization of MgCl2 
concentration and extension temperature with the DNA 
template of desired concentration.

Limitations
• • The DNA template should be pure, homogeneous 

and concentration should be around 50–60  ng for 
setting up a 20 µl PCR reaction.

• • Efficient for AT-rich DNA templates.

Abbreviations
dNTP: deoxyribonucleotide triphosphate; PCR: polymerase chain reaction; 
TRs: tandem repeats; TFs: transcription factors; pCREs: putative cis-regulatory 
elements.
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Fig. 2  Effects of MgCl2 concentration on PCR amplification at an 
extension temperature of 65 °C. Lane M: 10 kb DNA ladder; lane 1: 
1.5 mM MgCl2; lane 2: 2 mM MgCl2; lane 3: 2.5 mM MgCl2; lane 5: 
3 mM MgCl2; lane 6: 3.5 mM MgCl2; lane 7: no-template negative 
control

https://www.arabidopsis.org
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