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typing and sexing of sooty terns Onychoprion 
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Abstract 

Objectives: Seabirds have suffered dramatic population declines in recent decades with one such species being the 
sooty tern Onychoprion fuscatus. An urgent call to re-assess their conservation status has been made given that some 
populations, such as the one on Ascension Island, South Atlantic, have declined by over 80% in three generations. 
Little is known about their population genetics, which would aid conservation management through understanding 
ecological processes and vulnerability to environmental change. We developed a multiplex microsatellite marker set 
for sooty terns including sex-typing markers to assist population genetics studies.

Results: Fifty microsatellite loci were isolated and tested in 23 individuals from Ascension Island. Thirty-one were 
polymorphic and displayed between 4 and 20 alleles. Three loci were Z-linked and two autosomal loci deviated from 
Hardy–Weinberg equilibrium. The remaining 26 autosomal loci together with three sex-typing makers were optimised 
in seven polymerase chain reaction plexes. These 26 highly polymorphic markers will be useful for understanding 
genetic structure of the Ascension Island population and the species as a whole. Combining these with recently 
developed microsatellite markers isolated from Indian Ocean birds will allow for assessment of global population 
structure and genetic diversity.

Keywords: Ascension island, Colonial seabird, Conservation, Microsatellite loci, PCR, Population genetics, 
Relatedness, Sex-typing
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Introduction
Sooty terns Onychoprion fuscatus are long-lived pelagic 
seabirds distributed throughout the tropical oceans 
where their range covers in excess of 20,000 km2 [1]. They 
are obligate colonial breeders nesting in large numbers, 
with birds breeding on Ascension Island in the South 
Atlantic Ocean constituting 40% of the Atlantic popula-
tion. The long-term study of demographics and life his-
tory [2, 3], make it an ideal study population in which to 
investigate genetic structure and diversity. Genetic diver-
sity is fundamental for populations to adapt to environ-
mental change [4]. Declining and small populations often 

suffer from inbreeding depression and reduced genetic 
diversity making them vulnerable to extinction [4].

The sooty tern population on Ascension Island 
declined by 84% between 1942 and 2005 [3]. A recent 
study of long-term population trends on Ascension 
Island prompted an urgent call for reclassification of their 
IUCN (International Union for Conservation of Nature) 
status from ‘Least Concern’ to ‘Critically Endangered’ 
[3]. This decline mirrors that of seabirds globally with 
pelagic seabirds being the most threatened [5]. A number 
of issues are thought to exert pressure on seabird popula-
tions including declining fish stocks, climate change, pol-
lution and introduced predators at breeding grounds [6].

Since 2000 the breeding population on Ascension 
Island has occupied two main areas at Mars Bay and 
Waterside that are approx. 3  km apart (Fig.  1). Fine-
scale DNA analyses would enable assessment of within-
population genetic structuring and highlight potential 
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barriers to gene flow. Microsatellite markers are an ideal 
tool with which to study demographic processes such as 
relatedness, inbreeding and genetic mixing mechanisms. 
Despite their widespread distribution, such processes 
have not been investigated in detail in this species. Six-
teen microsatellite loci, were recently isolated from the 
Indian Ocean population [7], and given genetic differ-
ences have been documented between oceanic basins, 
combining these with markers derived from Atlantic 
Ocean birds would aid global-scale assessment of popu-
lation structure. This would assist conservation man-
agement through understanding population ecology, 
evolutionary processes and vulnerability to environmen-
tal change.

Main text
Methods and Results
Genomic DNA was extracted from blood samples using 
an ammonium acetate precipitation method [8, 9]. 
Microsatellite sequences were isolated from a single adult 
sooty tern (BTO ring number DE97026) from a blood 
sample collected on Ascension Island in May 2014 at 
Mars Bay (Fig. 1). Sooty terns are sexually monomorphic 
[10], but genetic sex-typing of this individual using three 
sex-typing markers revealed it was a male (sex markers: 
Z002A, Z002D, [11] and Z43B, [12]). DNA concentra-
tion was quantified using a fluorimeter (FluostarOptima, 
BMG LABTECH Ltd., Aylesbury, UK) and its quality 
assessed by electrophoresis. The library was created by 

Fig. 1 Relative locations of Ascension Island in the South Atlantic and of the study colonies of sooty terns Onychoprion fuscatus on the island. Dark 
grey areas represent the cumulative extent of peak breeding occupancy by birds between 1996 and 2016 (inclusive). Ascension Island base map 
source: Ascension Island Government Conservation and Fisheries Department (AIGCFD)
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digesting the DNA with the restriction enzyme MboI 
and enriching the MboI fragments for the dinucleo-
tide microsatellite motifs (CA)n, (GA)n, (TC)n,(TG)n 
using magnetic beads in the hybridisation [13, 14]. An 
Illumina paired-end library was created using 1  µg of 
the repeat-enriched genomic DNA. The NEBNext Ultra 
DNA Library Prep Kit for Illumina (New England Biolabs 
Ltd. Hitchin, UK) protocol was followed and sequencing 
conducted using a MiSeq Benchtop Sequencer (Illumina 
Inc., San Diego, CA, USA). Sequencing was undertaken 
as two × 250  bp paired-end reads generating 1,292,242 
sequences. These were trimmed for quality and Illu-
mina adapters removed  using Trimmomatic [15] and 
paired reads aligned using FLASH [16]. SAULA/B-linker 
sequences [13] were removed and consensus sequences 
created with QDD [17]. Finally suitable microsatellites 
were identified using MISA [18]. A total of 423 unique 
sequences were selected for potential primer design, 
based on a minimum of five tandem repeats and a flank 
of 20  bp on either side of the repeat region. These dis-
played five to 29 uninterrupted pure repeats (di, tri, 
tetra, pent and hex nucleotides) or possessed com-
pound repeat regions (37 sequences). The lengths of the 
sequences obtained ranged from 196 to 457 bp in length. 
From the 423 sequences, those with at least eight tan-
dem repeats were selected for primer design; primer sets 
were designed using PRIMER3 v 0.4.0 [19, 20]. Specifica-
tions for primer selection were set at a length of 16 to 36 
base pairs (optimum 20  bp), an optimal primer melting 
temperature of 59–61  °C (optimum 60  °C), a maximum 
poly-X of three tandemly repeating nucleotides e.g. AAA, 
presence of a G/C clamp and the default settings for all 
other parameters. Fifty primer sets were designed. The 
5′ end of the forward primers was fluorescently labelled 
initially with HEX or 6-FAM. Uniqueness of each set of 
sequence primers was verified using BLAST software 
[21].

Genotyping was carried out using DNA extracted from 
blood samples from 23 breeding birds from Mars Bay and 
Waterside (12 and 11 individuals, respectively) on Ascen-
sion Island (Fig. 1) during the December 2015 breeding 
period. Initially, each locus was amplified separately (sin-
gleplexed) in all individuals. All loci were PCR amplified 
using fluorescently labelled forward primers using either 
6-FAM or HEX initially (Additional file  1: Table S1). 
QIAGEN’s Multiplex PCR kit (QIAGEN, Manchester, 
UK) was used to perform PCRs following the manufac-
turer’s protocol, but using a 2 µl reaction volume added 
to 1 µl of air-dried DNA (following [22]). The same PCR 
profile was used to amplify each locus as follows: 95  °C 
for 15 min, followed by 44 cycles of 94 °C for 30 s, 56 °C 
for 90 s, 72 °C for 90 s and a final step of 72 °C for 30 min. 

Three sex-typing markers (Z002A, Z002D [11] and Z43B 
[12]), were included to assign sex as little sexual dimor-
phism exists in sooty tern plumage [10, 23]. For geno-
typing, 1 μl of PCR product was diluted to a ratio of 1:80 
 H2O and 1 μl of this solution was added to 9 μl forma-
mide and 0.2 μl of 500-ROX size standard (Applied Bio-
systems, Warrington, UK). An ABI 3730 DNA Analyser 
was used to separate PCR products and alleles were 
scored using GENEMAPPER v 3.7 (Applied Biosystems, 
Foster City, CA, USA). Of the 50 primer sets tested, 14 
either did not amplify or produced a non-specific prod-
uct, five loci were monomorphic and three were Z-linked 
(the 13 males were heterozygous or homozygous but all 
10 females were homozygotes with sexes identified using 
genetic sex-typing markers; see Additional file  1: Table 
S1). Multiplexing was undertaken using the same QIA-
GEN Multiplex PCR Kit and profile as previously out-
lined (see Table 1).

To ensure allele frequencies were not biased by over-
representation of genotypes through inclusion of related 
individuals [24], pairwise relatedness was estimated using 
ML-Relate [25], and confirmed individuals were unre-
lated with r < 0.16 (Mean ± SD = 0.01 ± 0.03). Observed 
and expected heterozygosities and predicted null allele 
frequencies were calculated in CERVUS v3.0.7 [26]. 
Departures from Hardy–Weinberg equilibrium and link-
age disequilibrium were estimated using GENEPOP v 4.2 
[27]. To correct for multiple tests a false discovery rate 
control [28] was applied to linkage disequilibrium p val-
ues. The probability of identity, which estimates the like-
lihood that two unrelated individuals selected at random 
from the same population will have the same genotypes, 
was calculated using GENALEX v 6.5 [29, 30]. Two auto-
somal loci (Ofu28 and Ofu42) deviated from Hardy–
Weinberg equilibrium (Additional file  1: Table S1). 
They also showed high predicted null allele frequencies 
(> 10%) and, as a consequence, were not included in the 
final multiplex. All three Z-linked loci (Ofu27, Ofu37 and 
Ofu43) were polymorphic (Additional file  1: Table S1) 
and did not deviate from Hardy-Weinberg equilibrium 
when assessed only in males. Although not included in 
the final multiplex, the three z-linked loci may be of util-
ity for other studies. There was no evidence of significant 
linkage disequilibria between pairwise combinations 
of loci (p  >  0.05). The 26 autosomal microsatellite loci, 
together with the three sex-typing markers, were com-
bined into seven plexes by inclusion of the fluorescent 
dye NED (giving three dyes in total), to create a multi-
plex marker set using Multiplex Manager 1.2 [31] and 
validated (Table  1). The number of alleles per locus of 
the multiplexed autosomal loci ranged from four to 20 
(Table  1), with an average of 10 ±  5.6 (SD) loci. Mean 
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(± SD) observed (HO) and expected heterozygosities (HE) 
were 0.82 ± 0.12 and 0.82 ± 0.09, respectively. The prob-
ability of identity for the 26 loci was 4.1 × 10−33.

Conclusions
This multiplex set containing a large number of novel 
microsatellite loci together with the three sex-typing 
markers will be of great utility for fine- and large-scale 
population genetic structure analyses. More specifically, 
this multiplex set offers an effective and economical 
approach for investigating parentage assignment, relat-
edness and assisting conservation management plans for 
this colonial seabird. Combining this multiplex set with 
16 microsatellite markers recently developed for sooty 
terns in the Indian Ocean [7] would allow for robust 
global population genetic analysis of this species, given 
differences in genetic variance have been documented 
between Atlantic and Indo-Pacific populations [32]. This 
is poignant given the recent urgent call for the reassess-
ment of conservation status of this species [3]. An assess-
ment of population and global scale genetic structure and 
diversity would highlight vulnerability to environmental 
change and persistent population declines. Where evi-
dence for genetic mixing occurs, conservation manage-
ment which focuses on larger populations in isolation 
may be detrimental to the long-term resilience of the 
species as a whole.

Limitations
The present study was carried out independently of the 
study by Danckwerts et  al. [7] but ongoing discussions 
might result in collaborative testing of multiplex sets of 
primers on each research group’s study populations from 
the Atlantic and Indian Oceans. We did not have DNA 
available from allied species of seabirds from Ascension 
Island and the utility of our multiplex set for species such 
as brown noddies (Anous stolidus) and black noddies (A. 
minutus) still needs to be assessed.
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