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Planning a sports training program 
using Adaptive Particle Swarm Optimization 
with emphasis on physiological constraints
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Abstract 

Objective:  An effective training plan is an important factor in sports training to enhance athletic performance. A 
poorly considered training plan may result in injury to the athlete, and overtraining. Good training plans normally 
require expert input, which may have a cost too great for many athletes, particularly amateur athletes. The objectives 
of this research were to create a practical cycling training plan that substantially improves athletic performance while 
satisfying essential physiological constraints. Adaptive Particle Swarm Optimization using ɛ-constraint methods were 
used to formulate such a plan and simulate the likely performance outcomes. The physiological constraints consid-
ered in this study were monotony, chronic training load ramp rate and daily training impulse.

Results:  A comparison of results from our simulations against a training plan from British Cycling, which we used as 
our standard, showed that our training plan outperformed the benchmark in terms of both athletic performance and 
satisfying all physiological constraints.
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Introduction
Sports training is a process intended to improve athletic 
performance by means of developing both the physi-
cal and mental conditions of the athlete. Sports training 
can, however, have an opposite and detrimental effect 
to that intended. A positive result would be an improve-
ment of physical fitness while a negative result would be 
an increase in fatigue. Training-performance interac-
tion models [1, 2] have defined the relationship between 
sports training programs and the intended results. Suc-
cessful athletes utilize a training-performance interac-
tion model to plan wisely in advance of training and 
rest at appropriate intervals to maximize physical fit-
ness improvement while minimizing the chronic fatigue. 
While high performance is the ultimate goal of an athlete, 

detrimental outcomes affecting athletic performance are 
likely when physiological constraints are not considered, 
resulting in the risk of overtraining. These physical con-
straints include training monotony [3], and chronic train-
ing load (CTL) ramp rate [4]. While there are a number 
of apps available [5, 6] their cost is substantial, but there 
is little evidence to suggest that their use enables a sub-
stantial rise of athletic performance. Some research has 
been undertaken on the generation of sports training 
plans simply, quickly and efficiently [7–11]. However, 
while these ‘simple’ training plans have been shown to 
improve athletic performance, the systems are somewhat 
impractical with no mechanisms to handle or manipulate 
necessary constraints.

Most of this related work discusses the search for a 
global optimal solution to scheduling sports training pro-
grams. According to [12], particle swarm optimization 
(PSO) is the most prevalent swarm intelligence-based 
optimization algorithm. This algorithm has significant 
advantages over previous optimization schemes [13] and 
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has been successfully extended to constrained optimiza-
tion [14]. However, there is little previous research to be 
found that applies PSO to the construction of optimal 
training programs.

In [15] a modified form of PSO that applies ɛ con-
straint methods, referred to as adaptive PSO, was used 
to generate an optimal cycling training plan using sim-
ulated athlete data. The result is a cycling training plan 
purposed to enhance athletic performance by taking 
into account physiological constraints such as training 
monotony [3], CTL ramp rate [4] and daily training load. 
The latter physiological constraint was derived from 
the British Cycling’s training plan for inclusion in our 
research.

Main text
Problem formulation
This section defines a training plan for a simulated ath-
lete. An 8-week training plan is considered as appropriate 
preparation for endurance sports [16]. The training plan 
consists of 56 training sessions each of which introduces 
a daily training goal by means of average heart rate (HR) 
in units of beats per minute (bpm) and activity duration 
(D) in minutes (min).

The boundary of the HR data was extracted from the 
simulated athlete, 35 years old male who has 51 bpm at 
resting state, 165  bpm as FTHR and 189  bpm as maxi-
mum HR. The lower bound is resting HR and the upper 
bound is the maximum HR. For ease of use, the train-
ing plan should be personalized to the individual athlete. 
Functional Threshold Heart Rate (FTHR) is considered 
as a factor that reflects the current level of the athlete’s 
physical fitness. The Coggan’s training zone [17] cor-
responding to the simulated athlete’s FTHR is adopted. 
The boundary of training duration was observed from 
the training behavior of national athletes which ranged 
between 30 min and 5 h. The classified heart rate train-
ing zones and duration of training zones are illustrated in 
Table 1.

Particles encoding
The PSO technique begins by randomly initiating the 
number of potential training plans as a collection of 
particles or a swarm. Each particle is encoded into a 
112-dimension array from a given training plan of 56 ses-
sions. Each training session has HR and duration data. 
Thus, at iteration r, the ith solution that includes M train-
ing sessions can be expressed as

A full codification of a particle can then be written as
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Objective function
All potential solutions represented by particles are evalu-
ated by Banister’s model which can be stated as Eq. 1.

When athletes train over a certain period of time, 
they both gain fitness and become fatigued as the posi-
tive and negative outcomes. Athletic performance (pt) 
is the summation of basic athletic performance p0, the 
fitness 

(
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)

 gained and the fatigue 
(
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)

 ‘accumulated’ from training for 
t days. However, the amplitude of fatigue gain (k2) and 
the fatigue decay rate (r2) is higher than fitness gain (k1) 
and fitness decay rate (r1). In this study, all model param-
eters were defined by the results of the model fitting from 
Busso et al. [1].

The training load wi for the ith training session can be 
obtained by Banister’s Training IMPulse (TRIMP) model 
which can be formulated as Eq. 2.

di is the duration in minutes of a training session on the 
ith day, y is the model constant (1.92 for males and 1.67 
for females [2]), hri is the average heart rate throughout 
a training session on the ith day, and normHR() is the nor-
malized hri throughout a training session on the ith day, 
which is determined by Eq. 3

where hri is the average heart rate during a training ses-
sion the ith day. restingHR is the athlete heart rate at resting 
state, and maxHR is the athlete maximum heart rate.
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Table 1  Heart rate zone and duration zone

HR zone HR 
(bpm)

HR (% 
of FTHR)

Duration 
zone

Duration (min)

0 51–81 30.91–49.09 0 30

1 82–112 49.7–67.88 1 60

2 113–124 68.48–75.15 2 90

3 137–146 75.76–82.42 3 120

4 137–146 83.03–88.48 4 150

5 147–155 89.09–93.94 5 180

6 156–165 94.55–100.00 6 210

7 166–173 100.61–104.85 7 240

8 174–181 105.45–109.70 8 270

9 182–189 110.30–114.55 9 300
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Physiological constraints
Due to minimizing the risk of overtraining and injuries, 
the sports training plan need to be satisfied by related 
physiological constraints. In this paper, 3 physiological 
constraints of cycling training domain are determined 
as follow: training monotony, CTL ramp rate and daily 
TRIMP.

Training monotony is a factor of training with a monot-
onous pattern may consequence becoming overtrained, 
which described in [3]. The CTL ramp rate [4] was used 
as the progressive increase restriction of training load so 
that athletes can avoid being overtrained. The last intro-
duced constraint is the daily training load limitation. This 
constraint aims to eliminate excessive training sessions. 
From investigating on the standard training plan from 
British Cycling [18], this study determined 450 of TRIMP 
as the maximum daily training load.

All of these constraints can be considered as inequal-
ity constraints, and when applied indicate a training 
monotony value in a training plan should not be over 
1.5, The CTL ramp rate score should be under 5 for 
<  4  weeks, and the daily TRIMP should be kept lower 
than 450. Equality constraints are not presented in this 
study.

Constrained optimization
The Adaptive PSO algorithm, using the ɛ-constrained 
method [15] separately uses the particle objective and 
constraint violation values to determine which particle 
is the better. We adopted the methods in [15] that limit 
the particle maximum velocity adaptively to decrease 
the possibility of flying over a feasible region as a 
pseudocode shows this in more detail (see Additional 
file 1).

Procedure
We modified the source code of Pyswarm [19] and repre-
sent the new algorithm as pseudocode shown above. The 
parameters for the ɛ constrained method were defined 
by the constraint violation being given by the square 
sum of all constraints (p = 2). The ɛ-level is assigned to 
0 which means that the problems are solved in lexico-
graphic order where the constraint violations precede 
the objective function. The number of groups Ng =  4, 
the number of particles in a group ng = 25, the weight of 
the number of the currently feasible particle is Fλ = 0.2, 
the threshold of updating Fθ  =  0.05. The parameters 
for PSO are defined as follows: the number of particles 
N = 100 (= 5 × 25), w0 = 0.9, wT = 0.4, the initial veloc-
ity is 0, and the maximum velocity VMAXj is adaptively 
controlled. The maximum number of iterations is 5000 
(50,000 fitness evaluations). Independent runs were per-
formed 30 times.

Discussion
We select and analyze the run with the best athletic per-
formance. The discussion of our results is discussed in 
terms of training patterns, athletic performance, and 
constraints handling.

Training patterns
The comparison of the PSO training plan against our 
standard training plan, British Cycling’s training plan, 
is illustrated in Fig. 1d. The training load for each train-
ing sessions in such plans represented as a bar chart. The 
solid bars located at left-hand side belong to PSO result 
while the striped bar at right-hand side belonging our 
standard training load. As shown in Fig. 1d, both train-
ing plans share the same training pattern of alterna-
tion between high and low-intensity training. Thus, the 
dynamic time warping (DTW) analysis was done as a 
similarity analysis. We bound the measured Euclidean 
distance between two similar agents in the two training 
plans at the same position to 1 and the 2 training plans 
that furthest apart to 0, PSO distance from standard 
training plan at 0.804. Once it close to 1, it can be inter-
preted that PSO training plan is closely similar to our 
standard training plan in term of training patterns.

The athletic performance by training days in each 
training plans is represented as line chart in Fig. 1a. The 
dashed line with the cross marked belong to athletic per-
formance by days in PSO training plan while the solid 
line with the dot marked belong to athletic performance 
by days in our standard’s training plan. Even though our 
results are closely related to the simulated standard train-
ing plan outcomes, the generated training plan outper-
formed the standard by raising athletic performance to a 
higher level of achievement. As shown in Fig. 1a, the PSO 
training plan performance is 13.436 while our stand-
ard training plan performance is 7.38. The PSO training 
plan was demonstrated to be a high-performance train-
ing plan which also satisfied all physiological constraints 
included.

Constrained optimization
The performance of constrained optimization in this 
paper is illustrated in Fig.  1b which represented by line 
chart of sum constraints violation value of each con-
straint by iterations. The solid line, dashed-line and a 
dashed-dotted line are belonging to the monotony con-
straint, CTL ramp rate constraint and daily training load 
constraint respectively. The proposed technique also out-
performs the GA-based technique [20] in terms of fast 
convergence and high quality solution, as illustrated in 
Fig. 1c. In addition, the performance of constrained opti-
mization is analyzed in term of the sum of constraints 
violation by different iterations. In Table  2, we present 
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Fig. 1  Summary of the PSO result. a The athletic performance by each training days corresponding to PSO’s training plans and British Cycling’s 
training plans (the training plan with higher athletic performance is preferred); b the convergence of each constraints violation value by algorithm 
iterations (the lower value of constraint violation is preferred); c the convergence of athletic performance value by algorithm iterations (the higher 
value of performance is preferred); d the comparison of daily training effort between PSO training plan and British Cycling’s training plan which 
presented by daily TRIMP value (higher TRIMP mean high training effort)

Table 2  All constraint violations in particular evaluation times (FEs)

FEs Monotony constraint CTL ramp rate constraint Daily training load constraint

Best Worst Average SD Best Worst Average SD Best Worst Average SD

50 1.452 2.908 1.531 0.183 0 9 0.227 1.220 0 24 0.307 1.966

500 1.507 2.531 1.522 0.106 0 10 0.163 1.153 0 19 0.22 1.739

50,000 1.507 2.953 1.522 0.134 0 10 0.093 0.843 0 20 0.186 1.681
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statistic of the sum constraints violation including the 
best, the worse, an average and a standard deviation.

Variation of a particle’s velocity by the algorithm’s itera-
tions is fast in the early iterations (as shown in Fig.  1b) 
with a brief scanning of their nearby area. The particle’s 
velocity then slows down later as more detailed and fine 
searching occurs, seeking the best potential solution 
nearby their current position. The purpose of the adap-
tive maximum limit of the particle’s velocity is to avoid 
flying over better solutions. Table 2 illustrates the capa-
bility of this approach in each of iteration. Particles are 
able to find feasible solutions and attract others to move 
toward their positions. The best particles satisfying 
all constraints include monotony, CTL ramp rate and 
daily TRIMP restriction. This means that the adaptive 
PSO generated training plan is considered as a practical 
sports training plan that minimizes the risk of becoming 
overstrained.

Conclusion
The adaptive PSO techniques for generating a sports 
training plan is presented. Since the problem domain in 
this paper is a cycling training plan, the training-perfor-
mance model and cycling physiological constraints were 
adopted. This work included several processes including 
problem formulation, particle encoding, athletics perfor-
mance model implementation as the objective function, 
physiological constraints adoption and implementation 
of an adaptive PSO with the ɛ-constraint method as the 
main optimization technique. Our simulations demon-
strated that the PSO-generated training plan significantly 
outperformed the standard plan based on a training 
plan from British Cycling while satisfying all physiologi-
cal constraints. We have demonstrated that the Adap-
tive Particle Swarm Optimization method of driving 
a training plan and considering certain physiological 
constraints, produces a safe, high-performance training 
plan. However, this training plan is needed some further 
tests and analyses with human participation to ensure its 
safety in practice.

Limitations
For the best training result, parameters of training-per-
formance interaction model need to be adjusted regard-
ing particular athlete’s physical adaptation on particular 
sports.

Further, unplanned overtime jobs, family issues and 
illness may intervene in the athlete’s training plan. Reor-
ganization of the training plan may be needed to cover 
these unpredictable issues to maintain or raise athlete’s 
performance as much as possible in the remaining time 
until the race day.
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