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Abstract 

Objective:  We report a method using functional-molecular databases and network modelling to identify hypotheti-
cal mRNA–miRNA interaction networks regulating intestinal epithelial barrier function. The model forms a data-anal-
ysis component of our cell culture experiments, which produce RNA expression data from Nanostring Technologies 
nCounter® system. The epithelial tight-junction (TJ) and actin cytoskeleton interact as molecular components of the 
intestinal epithelial barrier. Upstream regulation of TJ-cytoskeleton interaction is effected by the Rac/Rock/Rho signal-
ing pathway and other associated pathways which may be activated or suppressed by extracellular signaling from 
growth factors, hormones, and immune receptors. Pathway activations affect epithelial homeostasis, contributing to 
degradation of the epithelial barrier associated with osmotic dysregulation, inflammation, and tumor development. 
The complexity underlying miRNA–mRNA interaction networks represents a roadblock for prediction and validation 
of competing-endogenous RNA network function.

Results:  We developed a network model to identify hypothetical co-regulatory motifs in a miRNA–mRNA interaction 
network related to epithelial function. A mRNA–miRNA interaction list was generated using KEGG and miRWalk2.0 
databases. R-code was developed to quantify and visualize inherent network structures. We identified a sub-network 
with a high number of shared, targeting miRNAs, of genes associated with cellular proliferation and cancer, including 
c-MYC and Cyclin D.

Keywords:  MicroRNA, Competing endogenous RNA, Intestinal epithelial cells, Epithelial barrier function, Bipartite 
affiliation network, KEGG pathway database, Tight junction, Adherens junction, Regulation of actin cytoskeleton, Rac–
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Introduction
Increased intestinal permeability is associated with a 
variety of gastrointestinal disorders resulting from per-
turbation of intestinal epithelial homeostasis [1, 2], these 
include inflammation, chronic diarrhea [3] and Irritable 
Bowel Syndrome (IBS) [4, 5]. Epithelial barrier function 

is mediated by the tight-junction (TJ) complex, which 
maintains a barrier against paracellular translocation of 
macromolecules [6, 7] (Fig. 1a–c). TJs interacts with the 
epithelial actin-cytoskeleton; interactions are altered 
during actin cytoskeleton dynamic activity via influence 
from upstream activation from the Rac–Rock–Rho path-
way [8–10]. Activation affects epithelial permeability and 
overlaps epithelial–mesenchymal transition (EMT) path-
ways [11, 12] (Fig. 1d). TJ-cytoskeleton pathways are also 
integrated with Wnt and Notch signaling and are associ-
ated with colorectal tumorigenesis [13].
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Another layer of regulatory complexity consists of 
post-transcriptional regulation involving microRNA 
(miRNA)–messenger RNA (mRNA) target interactions. 
In addition to specific miRNAs associated with intestinal 
homeostasis and permeability [14–17], miRNA–mRNA 
interactions result in competing-endogenous RNA 
(ceRNA) function. miRNAs may target multiple RNA 
transcripts, while an mRNA transcript may be targeted 
by multiple miRNAs (Fig.  2a), resulting in thousands 
of individual regulatory interactions with network-like 
effects on translation of co-targeted mRNAs. The ceRNA 
hypothesis was developed to describe such effects, how-
ever the full functionality and nuance of ceRNA is not 
fully understood [16–19]. Few bioinformatic methods 
have been developed to specifically address the func-
tional complexity of such networks, and none have 
specifically investigated ceRNA networks of intestinal 
epithelial homeostasis pathways, which is our primary 
focus.

Published reports often compare transcriptional data 
with results of target-prediction algorithms to validate a 
subset of interactions as biologically active vs. inactive, 
and are usually specific to cell lines or tumor types [31, 
32]. Our goal is to describe a ceRNA model based on 
fundamentals of graph theory. We adapted the method 
to improve reproducibility and interpretability of a net-
work input by incorporating the network into a graph, 
a mathematical data structure representing networks as 
nodes and edges (links between nodes) [33]. The math-
ematically-defined nature of the graph object provides 
portability and scalability for any dataset, input being a 
simple list of associations. Modelling a miRNA–mRNA 
interaction network as a graph object allows patterns and 
associations within the graph to be described and quanti-
fied in a standardized manner. Application of functional 
transformations such as the single-mode projection of 
a bipartite graph, provides reproducible solutions and 
improves visual interpretation [33]. The R programming 

Fig. 1  Rac–Rock–Rho pathway regulation of Cell–Cell junctions and actin cytoskeleton dynamics affect intestinal epithelial permeability. a Sche-
matic of epithelial cell–cell junctions. b Detailed view of protein–protein interactions between the tight junction and actin cytoskeleton. c Degrada-
tion of intestinal epithelial barrier function allows solutes and macromolecules across the intestinal barrier. d Pathway structure of Rac–Rock–Rho 
activity affecting the actin cytoskeleton and cell–cell junctions
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language provides open-source packages with easy func-
tionality for handling graph objects [26].

Main text
Methods
Selection of a subset of key pathway mRNAs using KEGG 
pathway database
We selected approximately 200 protein-coding genes of 
interest to use in downstream expression profiling on 
the Nanostring® platform. Protein-coding genes with 
overlapping membership in canonical KEGG pathways 
of interest were selected [20]. These included hsa04810 
(Regulation of actin cytoskeleton), hsa04530 (tight junc-
tion), and hsa05210 (colorectal cancer). The gene list was 
referenced against the Human Protein Atlas [21] to elimi-
nate mRNAs poorly expressed in gastrointestinal tissues. 
The list was further narrowed to select for genes present 
in two or more pathways of interest. Additional pathways 
include Adherens Junction (hsa04520), Focal Adhesion 
(hsa04510), Wnt (hsa04310) and Notch (hsa04330). A 
final list of 196 gene transcripts was used in subsequent 
analyses (Additional file 1: Table S1).

Selection of a comprehensive subset of microRNAs based 
on Nanostring Technologies® human miRNA expression 
panel
miRNAs were selected based on membership in the 
Nanostring Technologies® human miRNA v3 miRNA 
expression assay, with 800 human microRNAs chosen for 

known expression, disease association, biological relevance, 
and phylogenetic conservation between mammalian taxa 
[22]. miRNAs without database hits for experimentally 
validated miRNA–mRNA interactions were excluded from 
further analysis (see “Identification of miRNA–mRNA 
interactions using MiRWalk 2.0 database” below). 657 miR-
NAs were chosen (Additional file 1: Table S1).

Identification of miRNA–mRNA interactions using MiRWalk 
2.0 database
We used the MiRWalk 2.0 database, which aggregates 
data from miRTarBase, PhenomiR, miR2Disease and 
HMDD databases, to obtain a list of experimentally 
validated gene-miRNA interactions [23]. We removed 
interactions for miRNAs not found in our selected list of 
657 human miRNAs, removed genes without validated 
miRNA-target interactions, and removed redundan-
cies for multiple experimental validations for a single 
miRNA–mRNA pair. The final output contained 3414 
individual miRNA–mRNA interactions, which was used 
as an adjacency list for subsequent network analysis. 
(Additional file 1: Table S1).

Developing R code to create a network/graph plot 
for analysis and visualization of miRNA–mRNA interaction. 
(See Additional file 2: Network_Code.R file; Additional file 5: 
R‑input, adjacency list)
Distributions for mRNA–miRNA target density were 
obtained from the adjacency list to identify genes by # of 

Fig. 2  miRNA–mRNA targeting interactions form complex networks. a Individual microRNAs may target multiple mRNAs; an individual mRNA may 
be targeted by multiple miRNAs. b, c Frequency distributions for (b) mRNA target genes per miRNA (bin size = 2) and (c) Unique targeting miRNAs 
per mRNA (bin size = 5), according to the experimentally validated miRNA–mRNA interaction database miRWalk2.0
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targeting miRNAs and miRNAs by # of genes they target 
(Additional file 3: Figure S1). Resulting graphical readout 
is too large for print purposes, so frequency distributions 
were created (Fig. 2b, c) to summarize the distribution of 
the number of miRNA targets per gene, and gene targets 
per miRNA. Frequency distributions represent a dimen-
sionally ‘flattened’ version of the network object, and pro-
vide a basis for future comparison of different input lists.

We developed R code to use the miRNA–mRNA tar-
get interaction list (adjacency list) as a bipartite affilia-
tion network, which is appropriate because of the network 
structure where mRNAs interact with miRNAs, miRNAs 
interact with mRNAs, but individual mRNAs and miRNAs 
do not interact with each other. R code was originally taken 
from open-source code for social network analysis and 
modified. We treated coding genes as ‘individuals’, and tar-
geting miRNAs as ‘groups’ [24, 25]. R packages ‘Matrix’ and 
‘igraph’ were used to convert the adjacency list into an adja-
cency matrix, and create a single-mode projection where 
the ‘mRNAs’ became nodes and edges represent shared, 
targeting ‘miRNAs’ [26] (Fig. 3b, Additional file 2: R code). 
Edge weights were defined values representing the number 
of shared miRNA–mRNA target interactions. The R matrix 
package performs the cross-products calculations where 
the number of shared, targeting miRNAs are converted into 
an edge-weight value between target mRNA nodes [27]. For 
example, in Fig. 3b a single ‘X-node’ (i.e., miR-1) interact-
ing with two ‘Y-nodes’ (i.e., mRNA1 and mRNA2) in the bi-
modal projection becomes a single edge between miRNA1 
and miRNA2 in the single-mode projection, and adds value 
‘1’ to the edge weight between miRNA1 and miRNA2. 
When two ‘Y-nodes’ share multiple interacting ‘X-nodes’, 
the single-mode edge weight becomes the number of 
shared, interacting ‘X-nodes’, which are removed from the 
single-mode projection. Edge-weight value becomes inte-
grated into the mathematical graph object [26], igraph 
package and can be assigned to the plotted graph as edge-
width and/or transparency values.

For the graph plot, edge width and transparency 
was assigned from edge-weight values. Vertex size was 
assigned from values for betweenness-centrality, a meas-
ure of shortest-path distance for nodes in a network [28]. 
Edge width and transparency, and vertex size, were modi-
fied to reduce the ‘hairball’: edge weight was transformed 
by a factor of .03 to obtain edge width, though the spe-
cific factor will vary between input networks to obtain 
the best resolution for visual interpretation.

Results
The network contains 196 nodes representing genes from 
our pathways of interest (Fig. 3a). There are 7510 edges rep-
resenting 20,807 shared miRNA-gene target interactions. 
The most well-connected sub-network consists of the genes 

Cyclin D1 (CCND1), Cyclin D2 (CCND2), Insulin-like 
growth factor 1 receptor (IGF1R), CRK proto-oncogene, 
adapter protein (CRK), and the transcription factor c-MYC 
(MYC). Edges between these nodes contain the highest 
numbers of shared, targeting miRNAs within the network, 
and forming a highly interconnected motif (Fig. 3c, Table 1). 
Interestingly, these are also the top-five most targeted genes 
in our network (Additional file 3: Figure S1).

Vertex (node) size was coded to correspond with the 
value for ‘betweenness centrality’ of that gene in the 
graph plot. Betweenness centrality is a measure of the 
shortest path distance within the overall network, essen-
tially the nodes with the highest overall connectedness in 
the network [31]. These include gamma-actin (ACTG1), 
MAGUK p55 subfamily member 5 (MPP5), Actin-beta 
(ACTB), RAC-alpha serine/threonine-protein kinase 
(AKT1), beta-Catenin (CTNNB1), and vav guanine 
nucleotide exchange factor 3 (VAV3) (Fig. 3d, Table 1).

Discussion
In the ceRNA hypothesis, co-regulatory effects occur 
when multiple genes are targeted by the same miRNA. 
Given steady state miRNA expression, increased expres-
sion of a one-target transcript creates additional miRNA 
target sites, acting as a ‘sponge’ for available miRNAs, 
resulting in decreased regulation across all targets of 
that individual miRNA [16, 17]. Manipulation of ceRNA 
networks is proposed route for novel therapeutics [29]. 
Many reports of ceRNA functionality are found in the lit-
erature, although the generality and context-dependence 
of ceRNA function is debated [18, 19, 30].

Our model makes specific use of the single-mode pro-
jection of a bipartite graph. A bipartite network has two 
sets of nodes, where nodes interact only with nodes of 
the opposite set. The basis of our model is that mRNAs 
and miRNAs form two sets of a bi-partite network. The 
complete network projection can be plotted so that 
nodes represent both sets of the bipartite network, and 
this is the most common ceRNA-network representa-
tion [31, 32]. The single-mode projection of a bipartite 
network facilitates easier visual interpretation, and gives 
quantitative readouts of graph properties (centrality, edge 
weight) [27, 33].

Using both the visualization, and distribution data 
derived from R output, we observed potential sub-net-
work graphs of interest. The highly-interconnected rela-
tionships of the CCND1-CCND2-IGF1R-CRK-MYC 
sub-network predicts that these could participate in 
ceRNA-functional co-regulation, which would inte-
grate insulin hormone signaling (IGF1R) with key cel-
lular proliferation components (MYC, Cyclins D1 and 
D2, CRK), well-known for their association with cellu-
lar proliferation and cancer (Fig.  3c). Under the ceRNA 
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hypothesis, differential overexpression of any indi-
vidual gene is predicted to result in decreased miRNA 
regulation of in-network genes. For example, increased 
expression of CyclinD2 hypothetically lowers miRNA 
regulation across the sub-network. Assuming this results 
in increased CyclinD1, D2 (promoting G1-S phase tran-
sition), c-Myc (transcription factor regulating prolifera-
tion-associated genes), and IGF1R (increased sensitivity 
and activation of insulin-like growth factor pathway sign-
aling) protein, increased proliferation may result. The 
genes are known to behave similarly in ER-positive 

breast tumors [34]. Altered expression resulting from the 
ceRNA mechanism is subject to feedback from regula-
tory pathways which may mitigate (or enhance) ceRNA 
effects, for example MYC overexpression appears to 
inhibit CCND1 and increase apoptotic potential in pan-
creatic cancer cells [35].

These genes are the most highly-targeted genes in the 
network (Additional file 3: Figure S1). This may represent 
a generalizable feature of ceRNA-networks, and it will 
be interesting to test if the most highly targeted genes 
in any given network always have the highest number of 

Fig. 3  Network plot for visualization of high edge-weight sub-network interactions and centrality. a Network graph plot produced using miRNA–
mRNA target list as an adjacency list, using the Additional file 2: R code provided in the supplement. Node size represents network Betweenness 
Centrality, and edge width and transparency represents edge weight as the number of shared, targeting miRNAs. b Bipartite affiliation networks 
such as miRNA–mRNA interaction networks can be projected as a single-mode with edge weights representing shared affiliations, as the network 
in a. c The 5 genes with highest number of shared, targeting miRNAs were subset and re-run in the R script with modified vertex and edge scaling 
(see additional comments in Additional file 2: Network_Code.R). The sub-network depicts a hypothetical ceRNA-functionality between these five 
genes, with edge-associated numbers equal to shared, targeting miRNAs between two genes, or nodes (See Additional file 6: Subset adjacency list). 
d. Genes with highest network centrality values (from the main network depicted in Fig. 3a graph where node size is scaled to network centrality), 
represent the most ‘central’ members of the overall miRNA–mRNA interaction network. Network centrality is a network-specific value: re-running 
this five-gene subnetwork in the R-script does not provide additional informative centrality information
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shared, targeting miRNAs. The high network centrality 
of genes such as ACTG1, ACTB, AKT1, and CTNNB1 
is also interesting in that they are not the most highly 
targeted genes. They include the two primary forms of 
actin, b-actin (ACTB) and g-actin (ACTG1) (Fig.  3d). 
AKT1 (beta-catenin) is a key member in Wnt signaling 
and adherens junction pathways, and AKT1 is an impor-
tant kinase in focal adhesion, colorectal cancer, and many 
other pathways. It is unknown if such high network cen-
trality has a biological or functional significance.

Limitations
1.	 Experimental validation is necessary to determine 

if the network exhibits ceRNA-function as pre-
dicted. Experimentally-validated miRNA–mRNA 
target interactions were used as input, however our 
model did not incorporate stoichiometric functions 
where target transcripts. Many transcripts includ-
ing lncRNAs have multiple target sites for an indi-
vidual miRNA gene. Further development will seek 
to incorporate and experimentally validate effects of 
multiple target sites. A preliminary model for such 
effects is provided. (Additional file 4: A Brief Model 
for ceRNA Effects Resulting from Differential Target-
Site Availability.)

2.	 Expression levels of miRNA and mRNA transcripts 
have a significant effect on ceRNA function on the 
size of the co-regulatory effect on other transcripts. 
For example, if co-targeted transcripts are expressed 
at low levels, even relatively high fold-changes will 
not provide a significant co-regulatory ceRNA 
effects, and the opposite for highly-expressed tran-
scripts. Additional weight factors will be adapted to 
model effects of relative transcript abundance.

3.	 ceRNA function is dependent upon additional regu-
latory contexts such as differential splicing affecting 
miRNA target sites, RISC functional modifications, 
and transcriptional regulation, ceRNA function could 
be overpowered or mitigated by regulatory inputs 
unaccounted for in this model.

4.	 Focus on specific pathways of interest introduces bias 
into the gene-set selected for this analysis. Our focus 
on intestinal epithelial permeability genes produces a 
bias toward related pathways. Other input bias may 
include over-representation of experimental results 
in the database. Further comparative, quantitative 
testing of input miRNA-target interaction sets and 
use of reference sets will be an important factor for 
describing and controlling for input-bias effects in 
the future.

Additional files

Additional file 1: Table S1. Citation data for miRWalk2.0-derived experi-
mentally validated miRNA-mRNA interactions.

Additional file 2. R-code. An R-programming language script with func-
tional code to perform all analyses described in this article.

Additional file 3: Figure S1. High-resolution histograms showing gene 
and miRNA names associated with their respective target numbers. The 
reader may use this to identify genes with highest and lowest numbers 
of targeting miRNAs, and miRNAs targeting the most and least number 
of genes.

Additional file 4. Additional Model—Multiple Target Sites. A Brief Model 
for ceRNA Effects Resulting from Differential Target-Site Availability.

Additional file 5. R-input, adjacency list. A comma-delimited adjacency 
list of gene-miRNA interactions, used as input for the R-code.

Additional file 6. R-input, Fig3c subset adjacency list. A subset of the 
MiRWalk_Trimmed.csv adjacency list, used to derive the graph plot 
displayed in Fig. 3c.

Table 1  Pathway membership for selected network genes

Gene symbol KEGG pathway membership

Shared targeting miRNAs Actin cytoskeleton Tight junction Colorectal cancer Focal adhesion Adherens junction Wnt

CCND1 0 0 1 1 0 1

CCND2 0 0 0 1 0 1

CRK 1 0 0 1 0 0

IGF1R 0 0 0 1 1 0

MYC 0 0 1 0 0 1

Network centrality

 AKT1 0 1 1 1 0 0

 ACTB 1 1 0 1 1 0

 ACTG1 1 1 0 1 1 0

 CTNNB1 0 1 1 1 1 1

 MPP5 0 1 0 0 0 0

 VAV3 1 0 0 1 0 0

https://doi.org/10.1186/s13104-018-3126-y
https://doi.org/10.1186/s13104-018-3126-y
https://doi.org/10.1186/s13104-018-3126-y
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