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Use of DAVID algorithms for clustering 
custom annotated gene lists in a non‑model 
organism, rainbow trout
Hao Ma*  , Guangtu Gao and Gregory M. Weber

Abstract 

Objective:  The DAVID gene functional classification tool requires adaptations for use in non-model species and there 
is little available information to guide selection of a kappa score. Our objective was to develop an R-script that allows 
custom gene identifiers and novel annotation information to be incorporated into analyses, then use such data to 
evaluate the number of differentially expressed genes (DEGs) in a comparison based on kappa score selection.

Results:  Using an R-script we developed and multiple data sets ranging from 555 to 3340 annotated DEGs from a 
study in rainbow trout, we found the percentage of DEGs harbored within a module and the number of genes shared 
among multiple modules decreased with increasing kappa score regardless of the number of DEGs in the compari-
son. The number of genes in enriched modules peaked at a kappa score of 0.5 for the comparisons with 3340 and 
1313 DEGs and 0.3 for 555 DEGs. The number of genes harbored within enriched modules generally decreased with 
increasing kappa score; however, this was affected by whether the largest modules were significantly enriched. Large 
non-enriched modules can be reanalyzed using a higher kappa score resulting in some of the genes clustering in 
smaller enriched modules.
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Introduction
Data analysis software program packages designed to 
conduct cluster analysis of genes derived from sequenc-
ing or microarray data is an essential step to identify 
functional modules and reveal biological insights [1]. 
Soft clustering that can assign one gene to multiple clus-
ters has been extensively used in gene analysis [2]. Soft 
clustering can use gene expression values [3] as well as 
gene ontology (GO) and other gene or protein annota-
tion sources [4, 5]. This approach takes advantage of the 
assumption that genes with similar annotation profiles 
have similar functions [5–7]. Challenges exist with the 
publicly available programs to conduct soft clustering 
when atypical annotation sources are required. Many 
programs are web based and the input format and data 
resources cannot be changed by users [4, 5, 8–12]. This is 

a particular problem when the annotation resources used 
in the program are not updated in a timely manner [13]. 
Many programs were designed for specific model organ-
isms [5, 8, 14] and don’t provide the flexibility to ana-
lyze data derived from non-model organisms. Lastly, the 
selection of parameters and statistical tests are limited 
for some software [12, 14, 15].

The web based software DAVID has become one of 
the most frequently cited tools for gene functional anal-
ysis [13, 16]. This tool was initially designed for human, 
mouse, rat, and fruit fly genomes and has been adopted 
for use in other species [17, 18]; however, it cannot be 
used for minor species when custom gene identifiers and 
their novel transcription information need to be incorpo-
rated into the analysis [19]. Furthermore, there have been 
reports of the gene annotation databases at times being 
outdated [5, 13, 20]. When using the DAVID gene func-
tional classification tool, the selection of the kappa score 
greatly affects how genes are clustered. Kappa statistics, 
which measures inter-rater agreement, has been shown 
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to be a reliable measurement of the functional gene–gene 
relationships in DAVID’s algorithm when an appropri-
ate kappa value is utilized [5]. The optimal kappa score 
for generation of modules with biologically significant 
relationships is dependent on the nature of the data set. 
Thus, selecting an appropriate kappa score for a specific 
data set is a critical step in the data analysis.

The present paper describes the implementation of the 
agglomeration algorithm behind the DAVID functional 
gene classification tool with use of custom gene identifi-
ers and their novel transcription information for cluster 
analysis of differentially expressed genes (DEGs) from a 
study on rainbow trout. We wrote an R-script to allow a 
standalone version of the functional gene classification 
program with which one can directly apply the algo-
rithm to any species using the latest updated resources, 
and without a limit on input gene identifiers. Using this 
program, we explore the impact of kappa statistics on 
clustering rainbow trout gene expression data for three 
comparisons with widely different numbers of DEGs.

Main text
Methods
The rainbow trout used in the study were about 2-years-
old and from stocks maintained at the USDA National 
Center for Cool and Cold Water Aquaculture (NCC-
CWA, Kearneysville, WV). Fish were reared indoors 
under artificial ambient photoperiod, in continuous-
flow treated spring water, at 13 ± 1 °C. Follicle enclosed 
oocytes from rainbow trout competent to undergo the 
resumption of meiosis in response to the maturation 
inducing hormone (MIH), 17α-20β-dihydroxy-4 preg-
nen-3-one, were incubated in vitro for 24 h with or with-
out either MIH or salmon pituitary homogenate (SPH). 
Sample total RNA was isolated from follicles freshly col-
lected from the fish (Fresh), follicles cultured without 
hormone treatment (Control), and follicles cultured with 
MIH or SPH treatment using Trizol reagent (Invitrogen, 
Carlsbad, CA) followed by lithium chloride precipitation. 
Libraries from twelve RNA samples, three replications 
per treatment, were constructed with TruSeq mRNA 
Preparation for GAIIx/HiSeq, and then sequenced in 6 
lanes using the Illumina HiSeq 2000 platform. Bowtie2 
was used with default settings to align raw sequencing 
reads to a rainbow trout transcriptome database [21] 
supplemented with an additional 72 gene sequences of 
interest selected from Gene Bank [22]. At the false dis-
covery rate (FDR)  <  0.05, both DESeq2 [23] and edgeR 
[24] identified 4239 DEGs for control vs MIH treatment 
(Control_MIH), 1691 DEGs for control vs freshly excised 
tissue (Control_Fresh), and 691 DEGs for control vs SPH 
treatment (Control_SPH) comparisons. Those DEGs 
were analyzed by Blast2GO software [25, 26], and 3340, 

1313, and 555 DEGs were annotated for the three com-
parisons accordingly.

The DEGs with mapped GO terms were input into an 
R-script with the DAVID gene functional classification 
algorithms [5] for grouping the genes into function-
ally related clusters. The script first calculates the kappa 
score to measure the degree of annotated gene pair co-
occurrence, then searches for seeding genes, and then 
conducts functional clustering (Fig. 1). The R-script was 
tested with DAVID’s sample data and is available in Addi-
tional file 1: R_script for clustering.

Module enrichment scores were generated by calcu-
lating the geometric mean of the P-values which were 
derived from hypergeometric test on the input gene sets 
followed by negative log transformation of the geometric 
mean. The described rainbow trout transcriptome served 
as the reference genes used for the hypergeometric test. 
Pearson’s correlation coefficients were calculated using 
the R program.

Results
Number of modules and harbored genes
Cluster numbers were dynamically changed under dif-
ferent kappa scores for all comparisons (Fig.  2a). The 
number of modules for Control_MIH and Control_SPH 
increased as increasing kappa scores subdivided mod-
ules, but then decreased as fewer gene pairs met the 

Calculate kappa score
Select seeding gene

Fuzzy heuristic partition

Gene 
annotation 
software

Gene 
annotation 
resources 

Gene Annotation
Gene1 GO:0004519
Gene2 GO:0005525
Gene3 GO:0005840
Gene2 GO:0050435
Gene2 ATP synthase

: :

Seed_gene Gene1 Gene2 Gene3 .. Cluster
Gene66 Gene1 0 Gene3 .. 1
Gene86 0 Gene2 Gene3 .. 2

: : : : : :

Fig. 1  Flowchart of gene functional classification with DAVID’s 
algorithms in non-model organisms. Steps executed through R-script 
are in blue
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increasing stringency. As would be expected, the peak 
number of modules was observed at a greater kappa 
score for Control_MIH with 3340 DEGs, than Control_
SPH with 555 DEGs. The percentage of DEGs harbored 
in all modules decreased with increased kappa score and 
decreased at a greater rate as the number of DEGs in the 
comparison decreased (Fig. 2b).

Genes shared by different modules
As an individual gene may be involved in multiple bio-
logical functions, it is reasonable that these multi-func-
tion genes are shared by multiple modules with each 
module composed of genes associated with a disparate 
function. In our data sets, the number of genes harbored 
in multiple modules decreased as kappa score increased 
(Table  1). The percent of genes clustered in multiple 
modules also decreased with increasing kappa score as 

the number of DEGs in the comparison decreased. Less 
than 10% of the genes clustered to multiple modules 
when the kappa score exceeded 0.5 for Control_MIH, 0.4 
for Control_Fresh, and 0.3 for Control_SPH.

Number of enriched modules
Another important factor in gene functional classifica-
tion is the enrichment score of modules, which helps to 
identify the most biologically relevant gene clusters. Nev-
ertheless, some modules with an enrichment score of less 
than 1.3 (P < 0.05) could be potentially interesting [15]. 
The number of enriched modules combining all three 
GO categories peaked at a kappa score of about 0.5 for 
Control_MIH and Control_Fresh, but peaked earlier at 
0.3 for Control_SPH which had the least number of DEGs 
(Fig.  2c). However, the total number of genes harbored 
among enriched modules generally decreased drastically 
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Fig. 2  Changes in the number of modules (a), percentage of DEGs harbored in all modules (b), the number of gene set enriched modules (c), per-
centage of genes harbored in significantly enriched modules (d), and the percentage of differentially expressed genes harbored within the largest 
module (e) with kappa score
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with increasing kappa score (Fig. 2d). The Pearson’s cor-
relations between the kappa scores and number of genes 
harbored in the enriched modules were − 0.947, − 0.983, 
and −  0.914 for Control_MIH, Control_Fresh, and 
Control_SPH respectively, and were highly significant 
(P < 0.001).

Cluster size
Implementing the fuzzy heuristic multiple-linkage parti-
tion in DAVID often resulted in one extremely large cluster 
of DEGs when low kappa scores were applied (Additional 
file 2: Table S1, module 1). The percentages of the DEGs in 
the largest module decreased dramatically with increased 
kappa score, and decreased more rapidly as the number of 
DEGs in the comparisons decreased (Fig. 2e). When using 
the data for all three GO categories, the enrichment scores 
of the largest modules were significant for all compari-
sons for all kappa scores except kappa scores below 0.4 
for Control_MIH (Additional file 2: Table S2). Enrichment 
scores for the largest module increased consistently with 
kappa score for Control_MIH, but peaked at mid kappa 
scores for Control_Fresh and Control_SPH. This pattern 
held for Control_MIH when looking at data for the GO 
categories individually, but the patterns were less consist-
ent among GO categories for Control_Fresh and Control_
SPH (Additional file 2: Table S3).

When the number of DEGs harbored in the largest 
module is high and the DEGs in the module is not sig-
nificantly enriched, such as in the combined GO category 

data for Control_MIH kappa scores 0.1–0.35, with 3279–
1684 genes, respectively (Additional file 2: Table S2); the 
total number of genes harbored among enriched modules 
can be reduced relative to higher kappa scores (Fig. 2d). 
Thus, the ability to identify interactions of those genes 
which are not found in enriched modules with our other 
DEGs, is reduced in the analysis. One strategy to generate 
significantly enriched gene clusters for genes within these 
large modules is to break down the large module into 
smaller sub-modules by using a higher kappa score. We 
tested this at kappa score of 0.35 for Control_MIH. Using 
kappa score 0.35 for the complete data set (3340 DEGs), 
the largest module contains 1684 DEGs (see Additional 
file  2: Table S2), among which 449 DEGs are not found 
in other modules that were significantly enriched. How-
ever, at kappa score 0.6, this large module yielded 74 sub-
modules of which 18 contained a total of 250 of the genes 
that were not previously incorporated into any enriched 
module. Seventeen of these 18 sub-modules were sig-
nificantly enriched and contained 246 of the DEGs not 
incorporated into enriched modules in the initial analysis 
using kappa 0.35.

Discussion
Our R-script provides a flexible way to conduct gene 
functional cluster analysis for model and non-model 
organisms with DAVID’s algorithms [5] (Fig.  1). When 
using this program, there is no restriction to input anno-
tated gene identifiers. In addition, users can prepare a flat 

Table 1  Changes in the number of genes shared among different numbers of modules with kappa score

Comparison Number of modules Number of genes shared among modules

K = 0.1 K = 0.2 K = 0.3 K = 0.35 K = 0.4 K = 0.5 K = 0.6 K = 0.7 K = 0.8 K = 0.9

Control_MIH 1 861 1145 985 1128 1539 1443 1229 883 650 548

2 1511 1384 1167 847 486 158 110 2 0 0

3 746 436 415 343 110 23 17 4 0 0

4 146 105 117 131 23 2 0 0 0 0

5 24 20 16 27 16 1 0 0 0 0

6 1 0 4 5 2 0 0 0 0 0

7 0 0 9 2 0 0 0 0 0 0

Control_Fresh 1 431 391 585 704 657 536 444 302 236 197

2 653 439 264 147 83 25 15 0 0 0

3 172 235 91 34 11 4 4 0 0 0

4 22 70 17 9 6 0 0 0 0 0

5 1 14 3 1 0 0 0 0 0 0

6 0 5 1 0 0 0 0 0 0 0

Control_SPH 1 201 282 281 236 184 132 113 71 51 43

2 224 101 39 20 5 1 1 1 0 0

3 72 44 6 0 0 0 0 0 0 0

4 19 9 0 0 0 0 0 0 0 0

5 5 1 0 0 0 0 0 0 0 0
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matrix by using any software or laboratory experiment to 
get desired information from any gene resource.

Clustering of data sets into modules in which the genes 
have a functional relationship is highly dependent on 
the kappa score used in the analysis [5, 15]. In general, 
as the kappa score is increased the number of genes in 
the largest modules decreases. As the number of genes in 
a module decreases, the shared function of those genes 
becomes more specific; however, modules with few genes 
can only provide insight into the interactions of those 
limited numbers of genes. Thus, an investigator must 
choose a stringency or kappa score that is appropriate for 
their data set. Some papers report a kappa score of 0.35 
[17, 27] as suggested in the DAVID program, but many 
papers either don’t mention the kappa score [18, 28–35] 
or report using scores above 0.35; e.g. 0.45 [36], 0.5 [37–
39], 0.80 [40], or even 0.85 [41]. Few publications provide 
information on how or why kappa scores were selected.

In our RNA-seq data analysis, the number of modules 
in the comparison with the greatest number of DEGs 
(Control_MIH) was observed at a much higher kappa 
value than for the comparison with the least number of 
DEGs (Control_SPH) (Fig. 2a). As mentioned, the number 
of modules increases as increasing kappa scores subdi-
vides modules with large gene sets, but then the number 
of modules decreases as more gene pairs fail to meet the 
increasing stringency. As expected, the more DEGs in the 
comparisons the greater the likelihood of more modules 
with large gene sets at low kappa scores (Additional file 2: 
Table S1). Regardless of the number of DEGs in a com-
parison, the percentage of genes harbored in all modules 
decreased as kappa score increased presumably as more 
gene pairs failed to meet stringency (Fig. 2b). Similar pat-
terns were observed in terms of how kappa score affected 
the number of enriched modules and the percentage of 
genes harbored within enriched modules (Fig. 2c, d).

Limitations
Although we used multiple data sets ranging from 555 to 
3340 annotated genes in rainbow trout to test the impact 
of kappa score on functional gene cluster analysis, the 
results only serve as a guide for the impacts of changes 
in data set size. Actual results will likely be impacted by 
differences in the size and diversity of the transcriptome 
among tissues, reference genome annotation, and species.

Additional files

Additional file 1. R_script for clustering.

Additional file 2: Table S1. Changes in the number of genes harbored 
in each module with kappa score. Table S2. The enrichment score for 
the largest module estimated by using three GO categories. Table S3. 
Changes in the enrichment score for the largest module with kappa score, 
estimated for each GO category.
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