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Abstract 

Objectives:  Recent rise of single-cell studies revealed the importance of understanding the role of cell-to-cell vari‑
ability, especially at the transcriptomic level. One of the numerous sources of cell-to-cell variation in gene expression 
is the heterogeneity in cell proliferation state. In order to identify how cell cycle and cell size influences gene expres‑
sion variability at the single-cell level, we provide an universal and automatic toxic-free label method, compatible with 
single-cell high-throughput RT-qPCR. The method consists of isolating cells after a double-stained, analyzing their 
morphological parameters and performing a transcriptomic analysis on the same identified cells.

Results:  This led to an unbiased gene expression analysis and could be also used for improving single-cell tracking 
and imaging when combined with cell isolation. As an application for this technique, we showed that cell-to-cell vari‑
ability in chicken erythroid progenitors was negligibly influenced by cell size nor cell cycle.
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Introduction
It has been known for decades that isogenic cells can 
differ from each other in their molecular composition 
[1, 2]. The refinement of molecular techniques together 
with computational approaches has recently allowed to 
get a quantitative view on this cell-to-cell variability. This 
strongly highlighted the importance of understanding 
the causes in such variations, leading to a recent turning 
point in single-cell studies [3–6].

A leading source of cell-to-cell variability can be attrib-
uted to stochastic gene expression [7–9]. Numerous fac-
tors contribute to cell-to-cell variability such as reactions 
involving a low-copy number of molecules especially 
during transcription processes [5, 7, 10, 11] or differ-
ences in the internal states of a cell population such as 
cellular age or cell cycle stage. In litterature, we can find 

contradictory results regarding the influence of cell cycle 
and cell size on gene expression. Some studies argued 
that both of these morphological parameters affect gene 
expression variation [7, 12–17] whereas, others support 
that this impact is negligible [18–21].

Stochastic gene expression takes various biological 
meaning [22–24]. In a cell fate context, stochastic gene 
expression could drive cells into the differentiation pro-
cess [25]. It has been shown that during the erythroid 
differentiation process, we can observe an increase in 
cell-to-cell variability among genes expression that may 
participate to the decision making process within differ-
entiation [21].

Together, these information highlight the importance 
to precisely identify the sources of gene expression vari-
ability involved in these phenomena in order to under-
stand their role, and to discard potential confounding 
effects.

Cell cycle variability can be identified and suppressed 
by fluorescent-labeling of cell cycle-specific genes, how-
ever this method requires genetical alteration of the 
investigated cells [26]. Other studies, based on compu-
tational approach, deconvolute the cell cycle variables in 

Open Access

BMC Research Notes

*Correspondence:  anissa.guillemin@ens‑lyon.fr 
1 Laboratoire de biologie et modélisation de la cellule. LBMC‑Ecole 
Normale Supérieure‑Lyon, Université Claude Bernard Lyon 1, Institut 
National de la Santé et de la Recherche Médicale: U1210-Ecole Normale 
Supérieure de Lyon, Centre National de la Recherche Scientifique: 
UMR5239, 46 Allée d’Italie, 69007 Lyon, France
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7989-200X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-018-3195-y&domain=pdf


Page 2 of 7Guillemin et al. BMC Res Notes  (2018) 11:92 

order to normalize their single-cell gene expression data. 
Most of them use cell cycle marker genes to train algo-
rithms that can predict cell cycle stage of individual cells 
[14, 27, 28]. However, these genes have different function 
or timing according to cell type, even in a same organism 
[29].

In this article, we propose a more direct approach that 
consists in measuring morphological parameters in a 
high-throughput single-cell RT-qPCR study. Using a non-
cytotoxic double-staining technique we measured auto-
matically cell cycle phase and cell size of every single-cell 
isolated from T2EC, a primary chicken erythroid progen-
itor cells [30]. We demonstrated that the labelling had no 
detectable effects at the single-cell transcriptomic level in 
those primary progenitors, suggesting that this technique 
could be an useful tool for molecular single-cell based 
studies.

We finally showed that in our cellular system neither 
cell size nor cell cycle state could be deemed responsible 
for the cell-to-cell variation we observed, ruling out their 
potential confounding effects.

Main text
Methods
Cell culture
T2EC were extracted from bone marrow of 19 days-old 
SPAFAS white leghorn chickens embryos (INRA, Tours, 
France). The composition of the culture medium has 
been previously described [21].

Double‑staining
Cells were incubated in their initial medium for 30 min 
with CFSE (5-(and 6)-carboxyfluorescein diacetate suc-
cinimidyl ester, Life Tech.) at 5  μM and Hoechst 33342 
(Life Tech.) at 5 μg/mL at 37 °C in a tube protected from 
light. After 2 washings in phosphate-buffered saline (PBS, 
Life Tech.), cells were loaded in the C1 system (Fluidigm).

RT‑qPCR at population level
Cell culture were washed with PBS 4 h after the double-
staining. Total RNA was extracted using RNeasy Mini Kit 
(Qiagen).

Reverse transcription assays were performed using the 
Superscript III First-Strand Synthesis System (Invitrogen) 
for 500 ng of total RNA.

Real-time PCR was performed with SYBR Green PCR 
Kit (ClonTech) in the CFX96 real-time PCR system (Bio-
rad). Specific primers were used to quantify the expres-
sion of genes [21].

RT‑qPCR at single‑cell level
• • From cell isolation to pre-amplification Cells were 

diluted with C1 cell suspension reagent (Fluidigm) at 

a concentration of 4 × 10
5 cells/mL. This step was 

followed by a cell filtration in a cellular sieve (50 μm). 
Cells were loaded in the C1 IFC (5–10 μm trap size, 
Fluidigm). The C1 system performed the cell isolation 
and pictures were taken with 2 different lasers (UV 
laser providing excitation at ∼ 350  nm and another 
at ∼ 488 nm) using a PALM-STORM NIKON Micro-
scope (CIQLE). Then, the microplate was back in the 
C1 system where lysis, reverse-transcription and pre-
amplification was performed. Primers have been pre-
viously described [21]. cDNA were loaded in a classic 
96 well plate and conserved at − 20 °C until the RT-
qPCR.

• • Biomark real-time PCR quantification of cDNA were 
performed using EvaGreen following the Fluidigm 
user guide available on their website. Each condi-
tion was loaded in parallel in the same microfluidic-
based chip to avoid chip-to-chip technical variability. 
An IFC Controller HX performed the load of cDNA 
samples and primers from the inlets into the chip. 
The Biomark HD analyzed the chip according to 
the GE 96 × 96 PCR + Melt v2.pcl program. RNA 
spikes were used as positive control to validate the 
RT-qPCR experiment. From this outlet, the analysis 
software generated cycle of quantification values (Cq) 
for each reaction.

ImageJ analysis
Each image corresponding at each lasers used were ana-
lyzed following a previously described procedure [31]. 
We visually confirmed the capture for each well and 
extracted automatically morphological information using 
ImageJ. After checking that all cells were detected by the 
software, we run the measurement of cell area (CFSE), 
nucleus area and intensity (Hoechst). The cell-volume (2) 
was then calculated from area measurements (1) using 
these following formulae:

with r the radius of cell, S the area and V the cell volume 
in µm3.

Analysis of gene expression
For population RT-qPCR analysis, ratios of gene expres-
sion variation between conditions were calculated fol-
lowing this following formulae [32]. Because of its low 
variability between all conditions, HnRNP was used as 
referential gene in these analyses.

(1)r =

√

S

π

(2)V =

4

3
× π × r3
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For single-cell RT-qPCR, raw Cq data was then com-
puted using R [33] via a specific script that was previously 
described [21]. Some genes were excluded from analyses 
due to the quality control during the RTqPCR. The out-
put file comprising absolute values of mRNA was used 
as a template for all following analysis. Statistical non-
parametric tests were performed: correlations between 
gene expression and cell morphological parameters were 
performed using spearman tests. Wilcoxon tests were 
used to compare gene expression between stained and 
unstained conditions. Each time, Bonferroni correction 
was applied to p-values for the use of multiple tests.

PCA
PCAs were performed using ade4 package [34]. PCA was 
centered (mean substraction) and normalized (dividing 
by the standard deviation). PCA was displayed according 
to PC1 and PC2, which are the first and second axis of 
the PCA respectively.

Results
Cellular morphological automatic measuring
We choose the two low toxic fluorescent dyes, CFSE 
and Hoechst 33342 that stably incorporates into cells. In 
this study, CFSE was used as a cell area marker in tan-
dem with Hoechst 33342 [35] as a nuclear marker. The 
use of two different lasers allowed revealing each stain-
ing (Fig. 1a, b) merged in Fig. 1c. It allowed us to auto-
matically measure morphological cell parameters and 
inferred volumes.

We can observe that the cell volume is very poorly cor-
related with the nucleus volume (Fig. 2a). Therefore cell 
size by itself does not seem to be a good proxy for deter-
mining cell cycle position probably because it integrated 
other unknown parameters. Both cell and nucleus vol-
ume density distributions confirm that cell size spans a 

much larger range than the nucleus size which displays 
the classical 2n/4n distribution (Fig. 2b). Nuclear-volume 
was clearly more correlated with Hoechst fluorescence 
intensity than cell-volume (Fig.  2a, c). The nucleus vol-
ume can therefore be considered as a good indicator for 
the position of the cell in the cell cycle. Furthermore it 
should be noted that volume is a purely geometrical 
object that is not influenced by the laser bleaching, as 
Hoechst fluorescence intensity parameter.

We therefore described a double-staining procedure 
compatible with microscopy associated at the C1 system 
to measure, for each cell, their size and cell cycle state 
independently.

Staining effect
First, we assessed the influence of the double-staining 
procedure on gene expression at the population level by 
performing RT-qPCR on 5 selected genes known to be 
involved in erythroid differentiation or metabolism. The 
relative value of these gene expressions did not change 
significantly compared to unstained cells (Fig. 3a). These 
results suggested that cell and nucleus staining had no 
major influence on T2EC mean gene expression.

We then needed to discard possible modifications vis-
ible only at the individual-cell level. Therefore we per-
formed high-throughput RT-qPCR on single cells using 
77 genes that cover various functions as metabolism, dif-
ferentiation process and proliferation [21]. We compared 
30 single stained cells and 47 single unstained cells in the 
same microchip. Data was analyzed using a PCA-based 
dimensionality reduction algorithm (Fig.  3b) as well as 
Wilcoxon signed-rank tests (see Additional file  1: Table 
S1). The PCA does not show any separation between 
both conditions (PC1 and PC2 explained less than 12% 
of the variability), and the statistical analysis shows 
that no gene was significantly varying between the two 

Fig. 1  CFSE/Hoechst double staining is compatible with C1 technology. Typical labeling of T2EC nucleus (a) and cytoplasm/membrane (b) stained 
by Hoechst 33342 and CFSE respectively. c Merged image of a, b. Cells were isolated with the C1 system and observed using a Nikon microscope 
with 2 different lasers. The scale bar represents 10 μM
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conditions. These results therefore show that the staining 
did not affect the expression of these 77 genes in T2EC 
even when examined at the single-cell level.

Finally as an application example for our double-
staining approach, we investigated the influence of cell 
cycle and cell size on cell-to-cell variability among our 
gene expressions using the coupling of labeling and gene 
expression measurements at the single-cell level.

Cell morphological impact on T2EC gene expression
For each single cell, we measured the size, the posi-
tion in the cell cycle and the mRNA amount. Among 
69 genes analyzed (retained in this study for technical 
quality control), none presented a significant spearman 
correlation between its expression level among single 
cell volumes or cell cycle: all p-values were above the 
5% threshold. These results confirmed that neither cell 
size nor the position in cell cycle were relevant param-
eters in explaining the cell-to-cell variations observed 
for 69 genes examined. This information is important 
for stochastic single-cell-based gene expression analy-
sis, for which these morphological parameters can be 
excluded of the potential sources of variability between 
cells.

Conclusion
We performed a non-cytotoxic CFSE/Hoechst double-
staining compatible with the C1 system. This approach 
allowed automatic identification and measure of mor-
phological parameters. It can be used to measure the 
influence of cell cycle and cell size on single-cell gene 
expression analysis without any potential mislead-
ing cell state effects induced by cell cycle synchroniza-
tion methods. It could be also represent an alternative 
method to avoid artificial cell sorting according to their 
size or their cell cycle phase, which could be interesting 
for low amount of cells. This is equivalent to the recently 
described technique using flow cytometry [36], but appli-
cable in the C1 system. As an alternative, it has recently 
been described that predefined gene combination could 
be used a posteriori [37]. Unfortunately, the best combi-
nations seems to be cell type dependent, making it poten-
tially limited [38].

We then used the Biomark system to perform gene 
expression quantification. We showed that the dou-
ble staining did not impact gene expression in our cells. 
Moreover, by measuring the influence of cell cycle and 
cell size on the expression level of 69 genes, our results 
support our previous claim that cell cycle and cell size 
have a negligible influence on gene expression variabil-
ity in certain settings [21]. This is in line with the recent 
demonstration that the cell cycle explains only a very 
small amount (5–17%) of gene expression variability [18, 
20].

Limitations
In this study, the main limitation was the optimiza-
tion of cell capture in the C1 microchip. We obtained a 
maximum of 65% of capture whereas with other cells, 
this percent raise up to 95%. Numerous parameters were 
involved and have to be optimized in order to obtain 
more individual cells per microchip.
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Fig. 2  Analysis of cell and nucleus size measurements. a Scatter plot 
showing the relation between cell volume and nucleus volume. Each 
point represents a cell. Spearman correlation test was performed, the 
result of which is displayed in the left upper corner. b Distribution of 
cell volumes (red curve) and nucleus volumes (blue curve). c Scatter 
plot showing the relation between Hoechst fluorescence intensity 
and nucleus volume. Each point represents a cell. Spearman correla‑
tion test was performed, the result of which is displayed in the left 
upper corner
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Fig. 3  Analysis of the influence of the staining procedure on gene expression. a Real-time PCR gene expression analysis of stained and unstained 
cells. Total RNA was extracted from T2EC cells stained or not. Reverse transcription and real-time PCR analyses, with specific primers [21], were per‑
formed to quantify the amount of GLOBIN (β-GLOBIN), SLC (SLC25A37), HSP (HSP90AA1), CRIP2 and LDHA mRNA (Cq for cycle of quantification). The 
fold variations represented here correspond to the ratio of mRNA of staining cells compared to unstained cells. The black line corresponds to the 
null variation between the two conditions. The vertical bars represent the standard error of the mean value (n = 3). b Principal Component Analysis 
of single cell expression data acquired on stained or unstained cells. Projection of 77 T2EC single-cell stained or not onto PC1 and PC2 results in a 
cloud of points without any clear separation. Percentages shown are the percentage of variance explained by each component
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