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Comparative genomics reveals 
a widespread distribution of an 
exopolysaccharide biosynthesis gene cluster 
among Vibrionaceae
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Abstract 

Objectives:  The eps locus in Vibrio diabolicus is involved in the production of the biotechnologically valuable HE800 
EPS. In this study, the distribution and diversity of similar eps gene clusters across Vibrionaceae and its variability in 
relation to phylogenetic relationship were investigated. The aim was to provide a better knowledge of the eps gene 
cluster importance and to facilitate discovery of new EPS with potent interesting bioactivities.

Results:  Seventy percent of the 103 genome sequences examined display such an eps locus with a high level of syn‑
teny. However, genetic divergence was found inside some monophyletic clades or even between some strains of the 
same species. It includes gene insertions, truncations, and deletions. Comparative analysis also reveals some variations 
in glycosyltransferase and export systems genes. Phylogenetic analysis of the Vibrionaceae eps gene clusters within 
Vibrionaceae suggests a vertical transfer by speciation but also pinpoints rearrangement events independent of the 
speciation.
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Introduction
The animal glycosaminoglycans are glycopolymers with 
key roles in cell physiology and pathologies [1]. The 
marine bacterium Vibrio diabolicus synthesizes the 
HE800 EPS, which shares some structure and bioactiv-
ity features with the glycosaminoglycan hyaluronan (HA) 
[2–4]. Thanks to its visco-elastic properties and biologi-
cal properties on the cartilage and skin, HA is used in 
osteoarthritis treatment, ophthalmology, wound healing 
and in cosmetics. HE800 EPS has demonstrated its effi-
ciency in bone and skin regeneration [5–7]. Its biosyn-
thesis eps gene cluster has been identified (Fig. 1) [8] and 
appears as a good model to investigate eps loci in marine 
bacteria and find innovative glycosaminoglycan-mimet-
ics for human health.

In this study, we investigated the distribution of orthol-
ogous eps gene clusters across Vibrionaceae and gene 
variations in relation to phylogenetic relationship.

Main text
Methods
Assembly collection
One hundred and three publicly available genome 
sequences of Vibrionaceae members, that cover several 
clades, were selected (Additional file 1).

Assemblies were obtained from NCBI [9] and three 
files were used: rna_from_genomic.fna for 16rDNA 
based phylogeny, protein.faa for homology search and 
cds_from_genomic.fna for genomic context evaluation.

Identification of the eps orthologous clusters
Proteins orthologous to V. diabolicus HE800 biosynthetic 
cluster were searched in the downloaded genomes by 
blastp comparisons using the standalone BLAST+2.2.30 
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package [10]. A local database gathering the 103 genomes 
was formatted with the makeblastdb program; a mul-
tifasta file containing the 16 V. diabolicus eps genes was 
used as the blastp query.

Alignment length ratios were calculated as fol-
lows: MinLrap  =  Lmatch/min(Lprot1, Lprot2) and 
MaxLrap  =  Lmatch/max(Lprot1, Lprot2) where 
Lmatch  =  match length, Lprot1 (or Lprot2)  =  protein 
1 (or 2) length and min (or max) = minimum (or maxi-
mum) of the two values [11]. These values indicate, when 
both are equal to 1, that both whole proteins align. Align-
ment length ratios (close to 1), similar protein sizes, low 
expectation value (< 10−25) and identity percentage (above 
40%) were taken into account to identify the first protein 
(usually A); genomic context was further inspected to 
evaluate if neighboring genes encode proteins which also 
share homology with V. diabolicus cluster.

In silico analyses of the protein coding sequence sets
Proteins encoded by the genes inserted between D and F 
were identified by Blast search against the NCBI database 
[12]. A phylogenetic tree was constructed using a concat-
enate of proteins; sequences were aligned with COBALT 
(https://www.ncbi.nlm.nih.gov/tools/cobalt/) and phylo-
genetic analyses were conducted with MEGA software v7 
using the Neighbor-Joining method [13, 14].

Multilocus sequence analysis (MLSA)
Five housekeeping genes were used for strains MLSA 
phylogeny [15] (Additional file  2). Genes were aligned 
with MAFFT version 7. Because not all gene sequences 
are full length, positions 1–562, 227–893, 391–892, 442–
1027, and 448–1073 (V. diabolicus numbering) of pyrH, 
gapA, mreB, gyrB, and topA genes, respectively, were 
concatenated. Phylogenetic tree was constructed with 
MEGA 7 using the Neighbor-Joining method [13, 14].

Results and discussion
Distribution of the eps gene cluster in Vibrionaceae
Seventy-two orthologous eps clusters were discovered, 
while none could be found in the remaining 31 genomes, 

which include Grimontia and Salinivibrio members 
(Fig. 2a, Additional files 3, 4). V. ichthyoenteri was found 
to possess an eps gene cluster but it was not further ana-
lyzed because the cluster is split at the ends of two dis-
tinct contigs.

Variability of the eps gene cluster
The organization of the gene clusters was highly con-
served, particularly in two syntenic blocks: the 5′ end 
of the cluster (A, B and C genes) and the 3′ end which 
always encompasses gene R. The species possessing the 
eps cluster the most similar to the V. diabolicus one, are 
V. antiquarius Ex25, V. alginolyticus and V. parahaemo-
lyticus (Fig.  2a). The most conserved proteins are A, B, 
C and G, which are involved in regulation, O which is 
responsible for chain length regulation and R, which ini-
tiates polymerization; they shared more than 70% iden-
tity with V. diabolicus orthologs (Fig. 2b). The A protein 
is an anti-sigma factor antagonist and a key regulator of 
biofilm formation; the deletion of A gene in V. fischeri 
(sypA) inhibits biofilm formation and thus squid colo-
nization [16]. The good conservation of both B and C 
proteins suggests they are important for the EPS biosyn-
thesis, although their functions remain undetermined. D 
protein which functions as a chain length regulator [17] 
is conserved; an identity of about 50% with that encoded 
by V. diabolicus eps cluster suggests that its activity can 
be variable (Fig. 2b, Additional file 3).

The G gene, that codes for a σ54-dependent activator 
of syp locus transcription in A. fischeri, is also conserved 
[18–22] (Fig. 2b, Additional file 3). F, the other regulatory 
protein, is a hybrid sensor kinase which phosphorylates 
SypE and SypG in order to regulate biofilm formation in 
V. fischeri [20, 23]. F protein seems to be particularly sub-
jected to variation (Fig. 2b), as it appears truncated in V. 
diabolicus eps cluster, whereas some other species carry a 
full copy [8, 17].

The V. diabolicus eps cluster encompasses 6 glycosyl-
transferases (GT), which biosynthesize the EPS repeat-
ing unit, and one priming GT (R), which initiates the 
EPS biosynthesis. Among the considered Vibrionaceae 

Fig. 1  Genomic structure of eps cluster of V. diabolicus. Scale: base pairs. Genes are labeled after the Aliivibrio fischeri orthologous genes [16]. 
Encoded proteins are: A: anti-sigma factor antagonist; B: regulatory protein; C: export protein (Wza); D: chain length regulator (Wzc); F: sensor kinase; 
G: response regulator, transcriptional activator; H, I, J, N, P, and Q: glycosyltransferases; K: flippase (Wzx); L: polymerase (Wzy); O: chain length deter‑
minant (Wzz domain); R: undecaprenyl phosphate sugar phosphotransferase (priming GT)

https://www.ncbi.nlm.nih.gov/tools/cobalt/
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strains, 16 are lacking at least one of the V. diabolicus 
GTs. The most often observed difference is the absence 
of both I and J in 12 eps clusters (Fig.  2a). I protein 
has only a weak role in the EPS production, adding a 
branch on the polysaccharide backbone late in the bio-
synthesis process [17]. In addition, several GT genes 
are fragmented or annotated as pseudogenes. In V. 
breoganii FF50 and V. halioticoli, the P, Q and R gene 
group is separated from the rest of the eps cluster by, 
respectively, a 60  kb-long and a 5  kb-long sequence. 
Therefore, these genes may not be transcribed together 
with other eps genes. However, the PQR segment might 
be sufficient to synthesize some oligosaccharides, as in 

A. fischeri, the syp PQR segment constitutes an operon 
[24]. When present, H, I and J proteins display about 
50% identity with the corresponding V. diabolicus 
ones. N, P and Q are slightly more conserved (about 
60% identity) suggesting only slight putative differ-
ences in substrate and acceptor specificities. P, Q and 
R proteins exhibit an overall very high conservation 
across Vibrionaceae. They have been hypothesized to 
be related to the repeating unit biosynthesis [8], which 
could thus likely be predicted to be rather similar in 
Vibrionaceae EPS.

The HE800 EPS export system involves the periplasmic 
protein Wza (C protein), the oligosaccharide translocase 

a b

Fig. 2  Biodiversity of the eps cluster among Vibrionaceae. a Protein components of the orthologous clusters with the identity % to V. diabolicus 
protein. Color legend is located at the top right portion, red level shows increasing identity by from light red to black. Dotted position are absent 
proteins, grey ones are proteins that do not exist in the HE800 cluster. b Boxplots showing distribution of data set from identity %, MaxLrap and 
MinLrap of A, B, C, D, F, G, H, I, J, K, L, N, O, P, Q and R proteins in comparison with V. diabolicus proteins. In the boxes, the 25th, 50th and 75th percen‑
tiles are indicated by the bottom, middle and top lines respectively. Whiskers show the 10th and 90th percentiles. Individual dots are the outliers. 
Absent genes were withdrawn from the min and maxLrap diagrams
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Wzx (K protein), the polymerase Wzy (L protein) and 
the putative polysaccharide biosynthesis chain length 
regulator Wzc (O protein). It has been previously estab-
lished that K protein is essential for EPS repeating unit 
translocation across the inner membrane [8, 17]. But 15 
of the Vibrionaceae studied species are devoid of this 
protein, suggesting that they are not able to produce, or 
at least export, an EPS molecule [17]. L gene is absent 
in Enterovibrio calviensis, and classified as pseudogene 
in V. coralliilyticus. Both genes K and L are absent in V. 
nigripulchritudo (Fig. 2a). In all these strains, if the bio-
synthesis of the repeating unit occurs, it may accumulate 
most likely in the cytosol. Indeed, the proteins encoded 
by their eps cluster do not enable the repeating unit to be 
translocated across the membrane nor polymerized [8, 
25].

Between D and F genes, additional individual genes or 
a group of three genes were found in several of the stud-
ied Vibrionaceae (Fig.  2a). One of these proteins (E) is 
homologous to A. fischeri SypE which is a two-compo-
nent response regulator protein inhibiting SypG-medi-
ated phenotypes and biofilm formation [19]. Another 
individual gene codes for a periplasmic component of 
an ABC type phosphate/phosphonate transport sys-
tem (PABC). Phosphonates can be found as side groups 
on several macromolecules including polysaccharides 
[26]. On the other hand, EPS are known to form a slime 
around cells to sequester several compounds and could 
therefore be involved in bioremediation. But it is not 
clear why only the PABC periplasmic component is pre-
sent while some Gram-negative bacteria possess a full 
copy of the phosphonate biosynthetic operon beside EPS 
biosynthesis genes [26]. For eight of the strains studied, 
three genes, coding for a glycine betaine/l-proline ABC 
transporter substrate-binding protein, a permease and an 
ATP-binding protein, are located between the genes D 
and F. As these proteins are homologous to the ProVWX 
components of the ProU transporter in Escherichia coli 
K12 [27], they may contribute to the uptake of glycine 
betaine which participates in bacterial osmoregulation, 
cryoprotection and protection against desiccation [28]. 
Betaine containing molecules can also constitute a source 
of phosphorus [29]. Several polysaccharides, especially 
the anionic ones, have been described to interact with 
glycine betaine compounds [30]. The presence of such 
transporter within EPS biosynthetic clusters could sug-
gest adaptation of the bacterial strain to specific environ-
mental conditions.

Enterovibrio coralii carries a glutamine-fructose-
6-phosphate aminotransferase between H and N genes. 
It catalyzes the rate-limiting step in the synthesis of UDP-
N-acetylglucosamine [31, 32] which is a precursor for 

both polysaccharide synthesis and cell growth in E. coli 
[33].

Several transposase and integrase genes have been 
identified in V. breoganii and in V. scophthalmi VS-12. 
These proteins allow insertion of mobile elements and 
thus recombination events [34, 35].

The syp locus of A. fischeri encodes the additional 
SypM, an O-acetyltransferase [17]. It has also been iden-
tified in 52 strains over the 103 studied ones (M, Fig. 2a). 
This could suggest the presence of O-acetyl groups in the 
final putative molecule.

Phylogenetic relationships
The MLSA phylogenetic tree (Fig. 3b) shows congruence 
in the clustering of the large majority of strains with trees 
previously described [15]. Concatenated proteins are 
generally clustered in the monophyletic clades (Fig.  3a). 
However some exceptions are noticed. V. natriegens spe-
cies and V. sp. EJY3 are the sole strains of the Harveyi 
clade which possess the PABC protein. PABC protein 
was found in 17 strains belonging to 6 different clades 
(Harveyi, Orientalis, Nereis, Mediterranei, Coralliilyti-
cus and Vulnificus); these clades also encompass other 
members possessing eps cluster that does not encode this 
protein. V. mytili is the only Harveyi clade member (over 
25) that does not share the eps cluster. The concatenated 
proteins of V. nigripulchritudo (Nigripulchritudo clade) 
appear isolated as they miss K and L proteins. V. nigrip-
ulchritudo is also the sole Vibrio to have E protein which 
is also found in Fischeri, Enterovibrio and Phosphoreum 
species. V. vulnificus and V. mimicus are the only repre-
sentatives of the Vulnificus and Cholerae clades, respec-
tively, sharing the eps cluster. Nevertheless, V. mimicus 
seems to be an atypical species of Cholerae clade [36, 37]. 
All the 11 Splendidus clade species possess the eps clus-
ter. Moreover, all studied species of seven clades exam-
ined (Coralliilyticus, Enterovibrio, Fischeri, Mediterranei, 
Nigripulchritudo, Scophthalmi, Splendidus) share the 
eps cluster. On the other hand, betaine ABC transporter 
genes were found only in the Splendidus clade with the 
exception of V. kanaloae and V. toranzoniae.

Blast search on the NCBI genome sequence data-
base [12] excluding all Vibrionaceae species was used to 
infer the overall occurrence of the eps cluster. Only a few 
genomes contained homologs to the eps genes (Addi-
tional file 5). However, in these strains, the gene order is 
different, some gene blocks are inverted and differentially 
located on (+) and (−) DNA strands. In addition, several 
deletions/insertions are observed. The eps cluster exam-
ined in this paper thus appears as specific to Vibrion-
aceae and has likely been acquired by horizontal gene 
transfer in the few other bacteria sharing it.
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Fig. 3  Evolutionary relationships of concatenated proteins encoded by eps gene clusters (a) and MLSA phylogenetic relationships between strains 
(b). Main monophyletic clades are also indicated in both trees. Concatenated proteins were aligned with COBALT and MLSA five-gene dataset was 
aligned with MAFFT. Phylogenetic trees were constructed with MEGA version7 using the Neighbor-Joining method [13, 14] with the Poisson cor‑
rection method for proteins [38] and the Jukes Cantor substitution model for MLSA [39]. Bootstrap values (1000 replicates) are shown next to the 
branches when higher than 70 [40]



Limitations
This identification of a large number of orthologous eps 
clusters within the Vibrionaceae is interesting to obtain 
EPS glycosaminoglycan-like molecules with distinct 
structural features. But it necessitates further studies by 
isolating and characterizing the putative EPS produced 
to gain insight into the EPS structural features. This is a 
challenge because EPS production conditions and regu-
lation mechanisms are not fully understood. The charac-
terization of a large number of EPS molecules together 
with the biosynthesis gene cluster structure would pro-
vide a relevant basis to identify the genetic mechanisms 
of the biosynthesis and open the field of synthetic biology 
to produce glycosaminoglycan-mimetics.
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