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Abstract 

Objectives:  The arrival of free oxygen on the globe, aerobic life is becoming possible. However, it has become very 
clear that the oxygen binding proteins are widespread in the biosphere and are found in all groups of organisms, 
including prokaryotes, eukaryotes as well as in fungi, plants, and animals. The exponential growth and availability of 
fresh annotated protein sequences in the databases motivated us to develop an improved version of “Oxypred” for 
identifying oxygen-binding proteins.

Results:  In this study, we have proposed a method for identifying oxy-proteins with two different sequence similar-
ity cutoffs 50 and 90%. A different amino acid composition based Support Vector Machines models was developed, 
including the evolutionary profiles in the form position-specific scoring matrix (PSSM). The fivefold cross-validation 
techniques were applied to evaluate the prediction performance. Also, we compared with existing methods, which 
shows nearly 97% recognition, but, our newly developed models were able to recognize almost 99.99 and 100% in 
both oxy-50 and 90% similarity models respectively. Our result shows that our approaches are faster and achieve a 
better prediction performance over the existing methods. The web-server Oxypred2 was developed for an alternative 
method for identifying oxy-proteins with more additional modules including PSSM, available at http://bioin​fo.imtec​
h.res.in/serve​rs/muthu​/oxypr​ed2/home.html.
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Introduction
Oxygen is an essential part of the atmosphere and is nec-
essary to sustain the most terrestrial life of living organ-
isms as it used in respiration and regulation of a variety 
of cellular functions. The oxygen binding proteins (oxy-
proteins) of various organisms considerably differ from 
one another and classified mainly on their structure and 
physiochemical properties as hemoglobin, hemocyanin, 
hemerythrin, myoglobin, leghemoglobin, and eryth-
rocruorin. Each oxy-proteins have its own functional 

characteristics and structure with unique oxygen-binding 
capacity [1–11].

A number of computational methods have been pro-
posed for identifying functional proteins on their pri-
mary sequences using machine learning approaches 
[12–14]. These methods are always needful to improve 
or to find new features for identifying protein family and 
their classes, sub-classes to avoid negative prediction or 
to reduce false positive rates.

In 2007, Muthukrishnan et  al. developed Oxypred 
method for predicting oxygen-binding proteins using the 
simple amino (AC) and dipeptide composition (DC). The 
growing of protein sequence databases and availability of 
newly annotated sequences of oxy-proteins in the post 
genomic era, retrospectively encouraged us to introduce 
a new improved version of forged oxypred method. An 
attempt was made to include a recently generated highly 
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non-redundant dataset in the development of Oxypred2 
with a different protein features [15]. Recently, it has 
observed that the use of evolutionary profile in the form 
of a position-specific scoring matrix (PSSM) predicted 
various functional proteins with a higher accuracy [16, 
17]. Hence, we applied many approaches, including the 
PSSM based evolutionary profile to improve prediction 
quality of oxy-proteins.

In this study, recently generated two different cut-
off non-redundant datasets 50 and 90% were applied to 
develop Oxypred2. The difference between current and 
previous study reflected that PSSM and Hybrid approach, 
confusion matrix analysis, prediction score graphs, and 
ROC analysis has been added as extra features.

The many different prediction features are always 
important to understand their functional behavior 
aspects [18–21]. Here, we compared prediction perfor-
mance of 50 and 90% similarity datasets in all modules 
to find the best identification of oxy-proteins. The pre-
diction results and their complete analysis show that the 
developed method Oxypred2 is an improved version and 
alternative method for identifying oxy-proteins.

Main text
Methods
Datasets
The two different datasets sequences (90 and 50%) 
were extracted from UniProt databases by searching 
the individual keyword of oxy-proteins [22]. The final 
dataset contains 2498 and 5474 sequences as in 50 and 
90% respectively. In sub-class, 47–114 erythrocruorin, 
42–154 hemocyanin, 1378–2585 hemerythrin, 957–2462 
hemoglobin, 34–34 leghemoglobin and 40–125 myo-
globin as in both 50 and 90% datasets respectively. Due 
to less availability, 90% leghemoglobin dataset used for 
50% dataset. The independent non-oxy protein datasets 
were constructed according to the size of oxy-proteins by 
selecting randomly as 2565 and 5499 on 50 and 90% cut-
off datasets respectively.

Support Vector Machines
In this study, free downloadable package of SVM-light 
was used to generate modules [23, 24]. It has been suc-
cessfully applied to numerous classification and pattern 
recognition problems such as classification of protein 
secondary structure, subcellular localization, DNA-bind-
ing, ATP-binding and transporter family protein predic-
tions [25–33].

PSSM‑profile
The PSSM profile provides the evolutionary informa-
tion about residues conservation at a given position in 
a protein sequence. The construction of PSSM profile 

was generated using GPSR package available at http://
www.imtec​h.res.in/ragha​va/gpsr/. We applied GPSR 
programs for PSI-BLAST searches against the non-
redundant (nr) database using different iterations with 
a cutoff E value 0.001 [34, 35]. Further, each value has 
been normalized the range between 0 and 1 by the fol-
lowing equation, 

In 0–1 value, minimum scores consider as “0,” and the 
maximum scores become “1”.

Evaluation models
We applied fivefold cross-validation techniques, as it was 
done by many investigators with SVM as the prediction 
engine. In this technique, the dataset was divided into 
five sets consisting of nearly equal number of sequences, 
where four sets used for training and remaining set for 
testing. The training and testing set was carried out five 
times in such a way that each part was used once for test-
ing, and the whole process was repeated 20 times.

The objectives of our classifieds are to discriminate the 
oxy-protein from those of negative discipline, and the fol-
lowing terminology used to evaluate of our classifier as,

• • True positive (TP)—a protein is identified as an oxy-
protein by both classifier and oxy-proteins model.

• • True negative (TN)—a protein is not identified as a 
oxy-protein by either the classifier or oxy-protein 
model.

• • False positive (FP)—a protein is identified as posi-
tively as oxy-protein by the classifier, but not by the 
oxy-protein model.

• • False negative (FN)—a protein is identified as oxy-
protein by the oxy-protein model but not by the clas-
sifier.

In order to assess the prediction performances, accu-
racy (ACC), Mathew’s correlation coefficient (MCC), 
sensitivity (Sen) and specificity (Sep) were calculated 
using standard Eqs. (2–5) [36–38], 

(1)Normalized value =
(Value −Minimum)

(Maximum−Minimum)

(2)Accuracy (ACC) =
TP + TN

TP + TN + FP + FN

(3)Sensitivity (SN ) =
TP

TP + FN

http://www.imtech.res.in/raghava/gpsr/
http://www.imtech.res.in/raghava/gpsr/
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Results
Determining the relative amino acid composition will 
give a characteristic profile for protein [39]. Here, we cal-
culated average AC composition of oxy-proteins accord-
ing to their median scores. We observed that the residues 
Ala and Phe are present > 0.5% in oxy-50 sequences, 
which compared to non-oxy-50% sequences. In oxy-90 
residues Ala, Phe, His and Lys are more 0.5% than non-90 
sequences. In the oxy-50 classification dataset, residues 
Ala, Lys and Val are > 2, 3, 2% in Leg, hemo, and myo. 

(4)Specificity (SP) =
TN

TN + FP

(5)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

Ala and Arg residues are very less (− 3%) in Hcy-50 and 
Leg-50 sequences respectively. In 90% oxy-datasets, Ala 
residue is 2% more in Ery-90 and leg-90, Glu, Lys, and 
Val are present 3% more in heme, myo, and leg proteins 
respectively. Ala, Glu, and Arg are less 2% in hcy, ery and 
leg proteins, results shown in Fig.  1, Additional file  1: 
Figure S1 and Additional file 2: Figure S2. In sub-classes, 
sequence length profile of oxy-50 and 90 were compared, 
found most of the sequences of heme and hemo proteins 
belong to the range between 101 and 200. The other pro-
teins are distributed in different length ranges (Addi-
tional file 3: Figure S3).

In AC approach prediction, we achieved the maxi-
mum accuracy was 82.05, and 87.79% in oxy-50 and 
oxy-90 datasets. DC-method, maximum accuracy was 
80.42 and 84.81% in oxy-50 and oxy-90 respectively. 
The complete prediction results are shown in Addi-
tional file  4: Table  S1, and the classification approach 

Fig. 1  Amino acid distribution difference between oxy and non-oxy sequences: It has been calculated based on median scores. a Difference 
between oxy-50 and non-50. b Difference between oxy-90 and non-90. c Differences within the oxy-sub-classes of oxy-50 datasets. d Differences 
within the oxy-sub-classes of oxy-90 datasets
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results shown in Table 1. The evolutionary profile based 
PSSM method have been applied to many functional 
protein predictions [40, 41]. In PSSM methods achieved 
the maximum accuracy was 85.10 and 81.81% in oxy-
50 and oxy-90 datasets respectively. We observed that, 
in classification the PSSM method prediction accuracy 
was slightly increased in Ery, Hcy, Heme, Leg, and Myo 
in oxy-50 than the oxy-90 datasets.

Further, to improve the prediction accuracy, a Hybrid 
approach based modules were developed [42]. The pre-
diction accuracy was 81.73 and 83.51% in oxy-50 and 
oxy-90 respectively. In classification, Hcy, Heme, Hemo 
accuracy were slightly increased in oxy-90 than oxy-50. 
Overall, DC and Hybrid method prediction results are 

shows similar in oxy-50 and oxy-90, and it doesn’t show 
any significance differences (Table 1).

In order to verify the prediction performance of their 
developed models, we also did the ROC analysis with 
our original data, and achieved area under the curve 
(AUC) 0.894 and 0.959 in oxy-50 and oxy-90 (Addi-
tional file  5: Figure S4), in classification AUC’s shown 
in Additional file 4: Table S2 and Fig. 2. In addition, a 
confusion matrix based prediction scores graphs were 
generated [43], to cross-check the developed model’s 
performance on original data. According to our results, 
no miss-classifications occurred in the proposed mod-
els; it means no positive sequence identified as negative 
and no negative sequence defined as positive. So that, 

Table 1  The performance of  oxy-proteins sub-class SVM-models (Ery, Hcy, Heme, Hemo, Leg and  Myo) in  different 
approach and comparison between oxy-50 and oxy-90 output data

AC Amino acid composition, DC dipeptide composition, PSSM position specific scoring matrix, AC–DC hybrid profile, ACC​ accuracy, Sen sensitivity, Sep specificity, MCC 
Matthews correlation coefficient

ACC​ Sen Sep MCC

50% 90% 50% 90% 50% 90% 50% 90%

Ery

 AC 95.65 97.14 34.03 67.33 96.79 97.75 0.53 0.80

 DC 90.29 93.26 55.56 94.32 90.93 93.24 0.65 0.93

 PSSM 94.15 93.56 64.58 90.91 94.69 93.61 0.76 0.92

 AC–DC 90.43 89.17 61.11 94.03 90.97 89.07 0.70 0.91

Hcy

 AC 97.18 98.06 100.00 92.92 97.14 98.20 0.99 0.95

 DC 93.36 95.09 98.44 94.17 93.28 95.12 0.96 0.94

 PSSM 94.40 90.41 100.00 95.63 94.31 90.27 0.97 0.92

 AC–DC 93.19 94.02 100.00 94.38 93.08 94.01 0.97 0.94

Heme

 AC 86.25 91.73 92.57 94.90 78.49 88.89 0.79 0.90

 DC 89.57 93.21 98.98 99.26 78.01 87.79 0.87 0.93

 PSSM 90.09 89.00 99.07 99.55 79.07 79.56 0.88 0.89

 AC–DC 87.41 90.55 98.82 99.31 73.41 82.69 0.84 0.90

Hemo

 AC 82.99 87.43 87.80 94.87 80.01 81.34 0.77 0.85

 DC 84.95 89.85 93.65 98.64 79.55 82.67 0.89 0.89

 PSSM 87.26 88.17 97.78 99.24 80.74 79.12 0.88 0.88

 AC–DC 83.49 87.08 96.92 99.09 75.16 77.26 0.84 0.87

Leg

 AC 98.76 99.13 97.92 100.00 98.77 99.12 0.99 0.99

 DC 94.50 93.78 100.00 100.00 94.44 93.75 0.97 0.97

 PSSM 98.25 97.43 100.00 100.00 98.23 97.42 0.99 0.99

 AC–DC 96.84 94.53 100 100.00 96.81 94.50 0.98 0.97

Myo

 AC 92.92 96.62 59.38 86.50 93.47 96.86 0.71 0.91

 DC 89.60 92.19 62.50 92.25 90.05 92.19 0.70 0.92

 PSSM 93.06 91.02 76.56 90.75 93.33 91.03 0.83 0.90

 AC–DC 86.60 85.95 67.19 91.50 86.91 85.82 0.71 0.87
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our developed models are good in recognizing the posi-
tive and negative sequences.

At the same time, classification based models also 
doing the best performance recognizing positive and 
negative sequences. Eventhough, some sequence 
couldn’t identified by their own class models, rather 
identified by other class models. In oxy-50 datasets 
3-Ery, 10-Hemo and 5-Myo sequences are not recog-
nized by their models in all approaches. Rather, it rec-
ognized by other sub-class models. In oxy-90 datasets, 
2, 4, 2 sequences of Ery, Hemo and Myo are confused 
and not recognized by their models, but identified by 
other models. Interestingly, some sequences of Ery, 
Hemo, and Myo are not identified by their models 
and other models too. The complete confusion matrix 
results of both oxy-50 and oxy-90 shown in Additional 
file 4: Table S3. The prediction score graphs are mainly 
developed to show the performance of models in sepa-
ration of positive and negative sequences. According to 
the graphs, separation with maximum margins shown 
in DC, PSSM and Hybrid approaches. However, the 

confusion matrix result shows that some sequences 
are very similar between Ery, Hemo, Myo, and these 
sequences may be evolutionary important (Additional 
file 6: Figure S5 and Additional file 7: Figure S6).

Also, we compared prediction profile performance of 
accuracy, sensitivity, and specificity on threshold level. 
We found that most of the classes are showing better 
performance in the 0–1.5 thresholds, mostly the ACC, 
Sen and Sep scores are associated with a particular 
point threshold, but few of them doesn’t show any con-
nections over the thresholds. Ery-50 and 90 AC data’s 
are not showing association with ACC, Sen, and Sep, 
but in DC and PSSM approaches, both Ery-50 and Ery-
90 data’s are having connections in negative thresholds. 
Interestingly, in hybrid approach, Ery-50 data shown 
in negative threshold, but Ery-90 appeared at positive 
threshold. In Hcy Class, AC-90 data shown at nega-
tive threshold, rest all approaches appears in positive 
threshold (0–1.5). However, all Heme and Hemo class 
data’s are joining in positive threshold in all approaches. 
In Leg class, only AC-50 shown in negative and rest all 

Fig. 2  ROC curve oxy-classification in all approaches. The performance of oxypred2 developed models by ROC plots in all oxy sub-classes. The area 
under curve was measured for all approached models
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approaches in positive threshold. In Myo class, AC-50 
does not shown cross, but DC-90 and PSSM-50 at “0” 
threshold. Hybrid-90 shown in positive threshold and 
all other approaches in negative thresholds. Moreover, 
in most cases, accuracy and specificity data’s are similar 
(Additional file 8: Figure S7).

In Oxypred2 study, average ACC, Sen, and Sep from 
− 1.5 to +1.5 thresholds and compared the perfor-
mance of both oxy-50 and oxy-90 sub-classes in all 
approaches. We observed that, Ery and Myo sensi-
tivity data increased in oxy-90 than oxy-50. Moreo-
ver, all sub-classes showing more than 80% ACC, Sen 
and Sep in oxy-90. In oxy-90 classification, heme and 
hemo’s specificity is less 80% in PSSM and Hybrid, 
but it slightly better than oxy-50 average data. In all 
approaches, Ery class sensitivity data improved in oxy-
90 than oxy-50 (Additional file 9: Figure S8). In PSSM 
method, prediction accuracy was increased than AC 
and DC methods.

In order to have comparison with our new and exist-
ing method (oxypred) using blind data contains 502 
oxy-proteins, which were not present in our datasets. 
According to oxypred AC and DC methods identi-
fied 96.61% (485) and 97.81% (491) respectively. But 
oxypred-2 of oxy-50 models identified as 98, 99, 99, 
and 99% and oxy-90 models recognized as 99.20, 100, 
100 and 100% in AC, DC, PSSM and Hybrid methods 
respectively.

Discussion
Here, we presented an improved version of Oxypred for 
identifying oxy-proteins using various features [44, 45]. 
Here we applied two different similarity cutoff data-
sets. All methods recognize 100% positive and negative 
sequences. Hemocyanin, Hemerythrin, and Leghemo-
globin classes recognizing 100% in all approaches. Oxy-
50 models recognizing individual sequences as 89, 98.9 
and 87.5%, and in oxy-90 models as 98, 99.8 and 98.4% 
identified positively as erythrocruorin, hemoglobin, and 
myoglobin respectively.

Further, compared with existing methods, performance 
based on the newly retrieved dataset, which shows nearly 
97% recognition. However, our newly developed mod-
els were able to identify almost 99.99% and 100% in the 
oxy-50 and 90 models respectively. According to our pre-
diction results, oxy-90 models are making a better predic-
tion than oxy-50. However, PSSM based approaches are 
showing better performance in identifying oxy-proteins 
in both cases. Also, we found less error rate, according to 
confusion matrix analysis. The present oxypred2 method 
is able to achieve better prediction in comparison to pre-
vious method in identifying oxy-proteins. This study is an 

alternative method for identifying oxy-proteins and hope 
it will be useful to the scientific community.

Limitations
• • The exponential growth and availability of fresh 

annotated protein sequences in databases motivated 
us to develop an improved version.

• • Two different sequence similarities cutoff 90 and 50% 
were used with various features for predicting oxy-
proteins.

• • The oxy-90 models are making a better prediction 
than oxy-50 models, and our approaches are faster 
and achieve a better prediction performance over the 
existing method.

• • Finally, a web-server Oxypred2 has been developed 
for identifying oxygen-binding proteins.

Additional files

Additional file 1: Figure S1. Amino acid distribution chart of oxy-pro-
teins along with non-oxy, difference between 50 and 90 data.

Additional file 2: Figure S2. Amino acid distribution chart of oxy-
proteins sub-classes (Ery, Hcy, Heme, Hemo, Leg and Myo), difference 
between oxy-50 and oxy-90.

Additional file 3: Figure S3. Sequence length profile oxy-classes. 
Sequence length range in histogram based on oxy-subclass organizations. 
X-axis for sequence length range and Y-axis for number of sequences.

Additional file 4: Table S1. Performance of the developed various SVM 
modules of oxy-proteins; amino acids (AC), dipeptides (DC), PSSM and 
Hybrid (AC-DC) profiles. AC- Amino acid composition, DC-dipeptide com-
position, PSSM position specific scoring matrix, MM- Max to Min profile. 
AC-DC - Hybrid is a combination of AC and DC profile. ACC-accuracy, 
Sen- Sensitivity, Sep-specificity, MCC- Matthews correlation coefficient. 
Table S2. Performance of various SVM modules by ROC analysis. The area 
under curve (AUC) for different approach for the classification of oxy-
proteins. Table S3. Confusion Matrix. Oxypred2 developed best models 
performance by confusion matrix, cross checked the original oxy-class 
sequences, predicted by own and other models.

Additional file 5: Figure S4. ROC curve oxy-non-oxy in all approaches. 
The performance of oxypred2 models by receiver operating characteristic 
(ROC) plots in all approaches. The area under curve (AUC) was measured 
for all developed models. It is mainly to show the relationship between 
sensitivity and 1-specificity for each thresholds of the real value out-puts.

Additional file 6: Figure S5. Prediction performance of oxy-50 models. 
Prediction performance of the developed models on oxy-class of protein 
sequences. A-1, A-2, A-3, A-4, A-5 and A-6 of Ery, Hcy, Heme, Hemo, Leg 
and Myo models performance in AC approach. B-1, B2, B-3, B-4, B-5 and 
B-6 of Ery, Hcy, Heme, Hemo, Leg and Myo models performance in DC 
approach. C-1, C-2, C-3, C-4, C-5 and C-6 of Ery, Hcy, Heme, Hemo, Leg 
and Myo models performance in PSSM approach. D-1, D-2, D-3, D-4, D-5 
and D-6 of Ery, Hcy, Heme, Hemo, Leg and Myo models performance in 
the hybrid approach. The X-axis is indexed on oxy-class proteins (Ery, Hcy, 
Heme, Hemo, Leg and Myo) and the Y-axis is the SVM model prediction 
scores.

Additional file 7: Figure S6. Prediction performance of oxy-90 models. 
Prediction performance of the developed models on oxy-class of protein 
sequences. E-1, E-2, E-3, E-4, E-5 and E-6 of Ery, Hcy, Heme, Hemo, Leg and 
Myo models performance in AC approach. F-1, F-2, F-3, F-4, F-5 and F-6 of 
Ery, Hcy, Heme, Hemo, Leg and Myo models performance in DC approach. 
G-1, G-2, G-3, G-4, G-5 and G-6 of Ery, Hcy, Heme, Hemo, Leg and Myo 
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