
Zhao et al. BMC Res Notes  (2018) 11:288  
https://doi.org/10.1186/s13104-018-3395-5

RESEARCH NOTE

Characterization of the first complete 
genome sequence of an Impatiens necrotic spot 
orthotospovirus isolate from the United States 
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Abstract 

Objective:  Impatiens necrotic spot orthotospovirus (INSV) can impact economically important ornamental plants and 
vegetables worldwide. Characterization studies on INSV are limited. For most INSV isolates, there are no complete 
genome sequences available. This lack of genomic information has a negative impact on the understanding of the 
INSV genetic diversity and evolution. Here we report the first complete nucleotide sequence of a US INSV isolate.

Results:  INSV-UP01 was isolated from an impatiens in Pennsylvania, US. RT-PCR was used to clone its full-length 
genome and Vector NTI to assemble overlapping sequences. Phylogenetic trees were constructed by using MEGA7 
software to show the phylogenetic relationships with other available INSV sequences worldwide. This US isolate has 
genome and biological features classical of INSV species and clusters in the Western Hemisphere clade, but its origin 
appears to be recent. Furthermore, INSV-UP01 might have been involved in a recombination event with an Italian iso-
late belonging to the Asian clade. Our analyses support that INSV isolates infect a broad plant-host range they group 
by geographic origin and not by host, and are subjected to frequent recombination events. These results justify the 
need to generate and analyze complete genome sequences of orthotospoviruses in general and INSV in particular.
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Introduction
Orthotospoviruses cause high economic losses world-
wide [1, 2]. Most of the information about orthotospovi-
ruses was acquired by studying the type species Tomato 
spotted wilt orthotospovirus (TSWV) [3–16] and their 
molecular features are shared among members of the 
genus. Orthotospoviruses are transmitted by thrips 
(order: Thysanoptera, family: Thripidae) in a circulative 
and propagative manner [17–20]. Four species belonging 
to the genus Frankliniella are INSV vectors [21].

Orthotospoviruses are classified based on nucleocap-
sid (N) amino-acid (aa) sequence identity and serological 
cross reactivity, plant host range and thrips transmis-
sion specificity [22], and are considered as distinct spe-
cies when their nucleocapsid aa identity is less than 90% 
[23]. INSV was first designated as TSWV-I strain [24, 25, 
26, 27]. INSV glycoproteins are serologically related to 
TSWV, while the N proteins are serologically unrelated 
[24, 28].

INSV’s host range includes about 300 plant species 
[22]. Even though INSV can considerably affect veg-
etables, its economic importance for vegetables was less 
than for ornamental plants [29, 30], but in the last few 
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years [21, 31]. INSV importance is increasing in vegeta-
bles in Europe and North America.

Characterization studies on INSV are quite limited. 
Until now, only four complete INSV genomes have 
been sequenced. The type isolate (NL-07) was reported 
by van Poelwijk et  al. in 1997 and consists of an L and 
S segments from the Netherlands [32, 33], and an M 
segment from the US [34] (M74904.1; NC_003625.1, 
NC_003616.1, NC_003624.1). The M segment from the 
US was included in the type isolate because it differed by 
only 4 nucleotides from the M segment of NL-07, whose 
700 (out of 5000) nucleotides were sequenced at that 
time, even though the similarity between the remain-
ing 4300 nucleotides was unknown. Among the three 
remaining INSV full genome sequences, one is from 
Italy (DQ425094.1, DQ425095.1, DQ425096.1) and two 
from China (GQ336989.1, GQ336990.1, GQ336991.1; 
GU112503.1, GU112504.1, GU112505.1). Isolate 
GU112505.1 from China contains a non-functional RdRp 
due to mutation and is missing a portion of the S seg-
ment, lowering the number of complete INSV sequences 
de facto to two. Availability of genomic sequences from 
different geographic origin is pivotal to understand INSV 
genetic diversity and evolution, especially considering 
that orthotospoviruses have a tripartite genome and can 
reassort. Furthermore, while for other orthotospoviruses 
like TSWV, the aa sequence of N is sufficiently diverse to 
confer phylogenetic character, the INSV-N is highly con-
served and it is not phylogenetically informative [35–37]. 
Genetic analysis can be used to characterize the structure 
of a virus population in relation to a location or host, and 
to probe the origin in a population and gene flow across 
time and space. Thus, we suggest that it is important to 
fully sequence a larger number of INSV genomes, and 
information gained by doing so will generate understand-
ing of the etiology and aid management of the disease.

Main text
Methods
INSV isolate UP01 was found in a commercial green-
house in Pennsylvania in July 2014, in an impatiens show-
ing ringspots symptom, acquired complying with Penn 
State institutional guidelines. The plant was initially 
tested for TSWV, INSV, Tobacco mosaic virus (TMV), 
and Cucumber mosaic virus (CMV) by ImmunoStrip® 
assays (Agdia, Elkhart, IN, USA), and found to be infected 
only with INSV. Following four passages by mechanical 
inoculation from single lesions on Nicotiana bentha-
miana, the virus species was confirmed by ELISA assay 

(Agdia, Elkhart, IN, USA). Mechanical inoculations were 
used to assess the partial INSV isolate host range. Inoc-
ulated plants were maintained in growth chambers at 
25 °C with 16 h photoperiod for symptom development. 
All inoculated plants were tested by ELISA for INSV.

This isolate was transmitted from Emilia sonchifolia 
to E. sonchifolia by Frankliniella occidentalis (Western 
flower thrips, WFT) to verify its vector transmissibility. 
Thrips transmission experiments ([21], with modifica-
tions) were conducted with symptomatic leaves from 
infected E. sonchifolia as virus source. First-instar larvae 
(12 h old) of WFT were given a 24 h acquisition access 
period and then reared on virus-free green bean pods 
until adulthood. These adult thrips were given a 48-h 
inoculation access period to 2  weeks old E. sonchifo-
lia seedlings (20 thrips per plant). This experiment was 
repeated twice. Inoculated plants were maintained in a 
growth chamber (25 °C, 16 h photoperiod) for symptom 
development and then were tested by ELISA.

Transient agroinfiltration was used to test the func-
tionality of the INSV NSs protein as silencing suppres-
sor according to previous protocols [12, 38]. Briefly, 
full-length UP01 NSs was cloned into pBin61 vector and 
transiently expressed through agroinfiltration together 
with pBin-GFP in 16C N. benthamiana. Vector only 
(pBin61) and pBin61-p19, both together with pBin-
GFP, were used as negative control and positive control, 
respectively. GFP expression of agroinfiltrated plants was 
checked with UV light 3 days post-agroinfiltration.

Total RNA was extracted from systemically infected 
N. benthamiana leaves using the Spectrum™ Plant-Total 
RNA Kit (Sigma-Aldrich, St. Louis, MO, USA), following 
the manufacturer’s directions. Reverse transcription was 
performed using Superscript IV reverse transcriptase 
(Invitrogen, Grand Island, NY, USA), random prim-
ers and 500–1000  ng of RNA as template. Overlapping 
amplicons were obtained by PCRs with gene-specific 
primers designed on conserved regions of available INSV 
isolates (Additional file 1) and the Q5 High Fidelity PCR 
Kit (NEB, Ipswich, MA, USA), followed by 5  min ade-
nylation at 72  °C using GoTaq DNA Polymerase (Pro-
mega, Madison, WI, USA). PCR products were cloned 
into pGEM-T Easy vector (Promega, Madison, WI, 
USA) and sequenced at the PSU Genomic Core Facil-
ity by Sanger sequencing. Overlapping sequences were 
assembled using Vector NTI software (Invitrogen, Grand 
Island, NY, USA).

Phylogenetic trees were constructed by neighbor-
joining method [39] using MEGA7 software [40], with 
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1000 bootstrap replicates. Percentages of pairwise iden-
tity among the aligned nucleotide and protein sequences 
were calculated using MatGAT v.2.03 [41]. Putative reas-
sortment and recombination events were predicted by 
Recombination Detection Program (RDP4 v.4.80) [42] 
using several algorithms on the MUSCLE alignment file 
of concatenated full-length genome sequences, created 
with MEGA7.

Results
Symptoms, hosts and vector
INSV-UP01 produced typical INSV symptoms of chlo-
rotic blotches and mottling on local leaves of N. bentha-
miana at 4–5 days post-inoculation and curling of newly 
emerged leaves; and chlorotic spots, mosaic and mottling 
on the systemic leaves of E. sonchifolia. On both hosts 
the isolate produced occasional ringspots on the sys-
temic leaves. The isolate was successfully transmitted by 
F. occidentalis. N. benthamiana, N. tabacum, impatiens, 
pepper, Datura stramonium and E. sonchifolia, could be 
infected with UP01, but not Arabidopsis thaliana.

Genome organization
The three genomic INSV RNA segments were 8776, 4975 
and 3010 nt in length, respectively (Additional files 2, 3, 
4, NCBI accession numbers MH171172–MH171174). 
The L segment was predicted to contain an ORF of 8598 
nt in position 8747-150 and to encode a putative RdRp 
protein of 2865 aa, in the negative sense. The M segment 
encoded the putative NSm protein in the viral sense in 
position 86-997 and the putative Gn/Gc protein precur-
sor in the complementary sense in position 4805-1473, 
separated by an intergenic region of 475 nt. The M seg-
ment had 85 and 170 nt in its 5′ and 3′ UTR, respec-
tively. The S segment encoded a putative N protein in 
position 2861-2073, and a putative NSs protein in posi-
tion 80-1429, with an intergenic AU-rich region of 643 
nt. Multifunctional properties of the NSs protein have 
been shown for orthotospoviruses [14]. Since the NSs of 
TSWV has been demonstrated to function as silencing 
suppressor [12, 43–45], we performed in planta transient 
Agrobacterium tumefaciens silencing suppression assays 
[38] to test this activity for UP01 and demonstrated that 
UP01 NSs is a strong silencing suppressor (Additional 
file 5).

Conserved motifs
Several amino acid substitutions distributed along the 
whole RdRp protein sequence were observed between 
UP01 and other INSV isolates (Additional file  6). 

UP01′s RdRp shared 97.6 and 97.2% nt identity, and 
98.8 and 98.4% aa identity with NL-07 (X93216.1) and 
DQ425094.1, respectively (Additional file 7), and showed 
motifs conserved in the RdRp of this genus: motif A 
(DXXKW), motif B (QGXXXXXSS), motif C (SSD), 
motif E (EXXS) [46], motif F2 (KXQRTK) and motif 
F3 (DREIY) [47]. Motif F1 (TDF), [48, 49] absent in all 
sequenced INSVs, was also not present in UP01. UP01 
NSm predicted protein sequence had the ‘D-motif ’ [50], 
which is a conserved region in the majority of viral move-
ment proteins belonging to the ‘30K superfamily’ and ‘the 
P/D-L-X motif ’ [51], ‘DSRK motif ’ and ‘HH motif ’, which 
play essential roles in the subcellular distribution and 
tubule formation of TSWV NSm protein [52].

A recombination event in the L segment is predicted 
among INSV isolates
Analysis of putative reassortment/recombination events 
using INSV concatenated full-length genome sequences 
predicted the occurrence of a recombination event 
involving isolates UP01, NL-07 and the Italian isolate 
(Additional file 8). The event involved the L segment and 
was predicted by different algorithms with significance 
level set at P ≤ 0.05.

Discussion
UP01 is consistently placed into the same Western Hemi-
sphere clade with other US isolates and NL-07, and is 
more distantly related to isolates in the Asian clade, 
where the Italian isolate also belongs (Figs.  1, 2, 3). As 
indicated by Elliott et  al. [36] and Nekoduka et  al. [37], 
our result confirms that INSV isolates do not group phy-
logenetically based on host species (Figs. 1, 2; Additional 
file 9).  

UP01 RdRp ORF is overall more related to NL-07 
than to other isolates (Additional file  8) but it shares 
different degrees of similarities with all isolates based 
on the region of the RdRp examined, suggesting a pos-
sible recombination event for this segment involving the 
region of 2850-8690. The resolution of the RdRp phylog-
eny is penalized by having only 5 sequences available.

Phylogenetic analyses of the M segment and its two 
ORFs (Gn/Gc and NSm) (Fig.  1a–c) and IGR (Fig.  1d) 
show again that INSV isolates are divided into Western 
Hemisphere and Asian clades, with UP01 in the West-
ern Hemisphere clade, and the isolates from Italy and 
Asia in the Asian clade. In the Asian clade are unexpect-
edly grouped also one A. thaliana (NSm JX138532.1, 
Gn/Gc JX138530.1) (Fig.  1a, b) and one lettuce isolates 
(KF745141.1) (Fig. 1b) from the US, suggesting that these 
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isolates might be of European/Asian origin and have 
been introduced recently in the US. While this segment 
is better represented, still not many sequences are avail-
able to resolve some of the phylogenetic relationships for 
members of the two clades.

Phylogenetic analyses using N protein nucleotide 
sequences (Fig.  2a) indicate that UP01 grouped in the 
Western Hemisphere clade. This clade contains isolates 
from the US and the Netherlands, but also one isolate 
from Japan (AB894565.1), again indicating that INSV was 
probably introduced into different regions via import of 

infected plant material. UP01N protein shares very high 
aa identity with other INSV isolates (Additional file 10).

The division into Western Hemisphere and Asian clade 
is also congruent when looking at the phylogenetic analy-
ses of the S segment (Fig. 2c), where UP01 belongs to the 
Western Hemisphere clade and is distantly related to the 
Chinese isolate (GU112504.1). But while for the M seg-
ment UP01 is closely related to the reference sequence 
(M74904.1, NC_003616.1), with whom it shares a more 
recent origin (bootstrap value > 90%), and it is less related 
with USA WA Basil isolate (KX790322.1) (bootstrap 
value > 90%) (Fig.  1c), the phylogenetic study of the S 

Fig. 1  Neighbor-joining phylogenetic tree derived from the alignment of the a Gn/Gc polyprotein coding sequence (cds); b NSm protein cds; c M 
segment nucleotide sequence and d M segment intergenic region nucleotide sequence of different INSV isolates. Bootstrap values were derived 
from 1000 bootstrap replicates. Accession numbers and plant host species of the sequences are shown in the figure. Scale bar represents number 
of substitutions per site
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segment (Fig.  2c) revealed that UP01 is more related to 
the USA WA basil isolate than to the reference sequence. 
This observation, for the first time, questions combining 
in a reference genome sequences that superficially seem 
to belong to the same isolate, but that could belong to 
distinct clades, when analyzed using a larger number of 
sequences. An alternative explanation to our result could 
indicate a reassortment event between isolates from in 
different geographic regions that led to the emergence 
of the reference genome. Interestingly, the USA CA let-
tuce isolate SV-L1 (NSs KF745142.1 and N KF745140.1, 
respectively) that was isolated from an INSV outbreak in 
Coastal California clustered with other US isolates when 
its NSs (Fig.  2b) and N ORFs (Fig.  2a) were analyzed, 
but its NSm (KF745141.1) sequence grouped with the 
Asian clade with high bootstrap support (Fig.  1b), indi-
cating a possible reassortment or recombination event. 

Unfortunately, the Gn/Gc sequences for these isolates are 
not available to support these hypotheses.

The phylogenetic analysis of the N protein (Fig.  2a) 
is the one for which more sequences are available, and 
highlights how having a large number of sequences can 
resolve better the INSV phylogeny and can be epide-
miologically informative. In fact, in the case of the INSV 
sequences reported in a recent outbreak in lettuce in 
Costal California [31], phylogeny shows that all lettuce 
strains responsible for the outbreak were identical or 
highly related, but they differed from isolates found in the 
surrounding weeds and crops.

Result of the analysis of putative reassortment/recom-
bination suggests that a recombination event involving 
UP01 might have happened. As mentioned above, phylo-
genetic analysis also supports the predicted recombina-
tion event (Fig. 3) and further confirms the occurrence of 

Fig. 2  Neighbor-joining phylogenetic tree derived from the alignment of a N protein cds; b NSs protein cds and c S segment nucleotide sequence 
of different INSV isolates. Bootstrap values were derived from 1000 bootstrap replicates. Accession numbers and plant host species of the sequences 
are shown in the figure. Scale bar represents number of substitution per site
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genetic exchanges in the evolution of orthotospoviruses. 
Reassortment is also biologically important because it 
could result in new resistant-breaking strains [45, 53, 54] 
or emergence of new viruses [55].

Limitations
Additional complete genome sequences from the INSV 
outbreak in Coastal California would be needed to con-
firm reassortment and recombination events between 
INSV isolates.
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Fig. 3  Neighbor-joining phylogenetic tree derived from the alignment of breakpoint for recombination different INSV isolates. a Sequences on L 
segment from 1 to 2849 nt and b sequences on L segment from 2850 to 8690 nt. Bootstrap values were derived from 1000 bootstrap replicates. 
Scale bar represents number of substitution per site. Accession numbers and plant host species of the sequences are shown in the figure
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