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Abstract 

Objective:  Enterotoxigenic Escherichia Coli (ETEC) is the cause of diarrhea and even death in humans and offspring of 
animals. Outer membrane vesicles (OMVs) of the ETEC was prepared and its potential as a vaccine candidate against 
enteric colibacillosis in neonatal mice was evaluated. Dam mice intradermally injected with ETEC-derived OMVs and 
OMVs plus an active form of vitamin D3 (avD3). Mucosal and systemic immune responses in mice and passive immu-
nity protection against ETEC lethality in their offspring was investigated.

Results:  Immunization of adult mice via ETEC-derived OMV alone and in formulation with avD3 protect offspring 
from ETEC-induced lethality. Nevertheless, avD3 did not indicate a positive effect on mucosal and systemic immune 
responses. Only the combination of OMV plus avD3 elicited a significant (P < 0.05) increase in the level of specific IgA 
antibodies in serum.
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Introduction
Outer membrane vesicles (OMVs) are a non-living bac-
terial part that has been used as vaccine candidates [1]. 
They are secreted from the cell surface and possess pro-
teins, lipopolysaccharides, phospholipids, periplasmic 
components, DNA and RNA. Using OMVs for immu-
nization purposes have some advantages over common 
vaccines such as cost–benefit and availability, having par-
tially or whole the virulence factors, and do not require 
an adjuvant [2–5].

Enterotoxigenic E. coli (ETEC) is an important cause of 
lethal diarrhea in neonatal calves (Colibacillosis), piglets 
and sometimes in humans [6–11]. Active immunization 
of neonates against disease is not practicable and passive 
immunity is necessary to protect during the first days 
of life [12]. Despite the massive works done on vaccine 

inoculation design to prevent the infection in moth-
ers and offspring’s, no broadly protective vaccine is now 
available, especially for newborn animals [13–15]. Stud-
ies on ETEC-derived OMVs have shown that immuni-
zation with these particles leads to produce antibodies 
against bacteria [11, 15–18]. These results demonstrate 
the active immune responses against OMVs, but they do 
not show, if the neonate is infected after 24  h of birth, 
whether the maternal derived antibodies could protect 
them from bacteria-induced lethality.

Although there are several whole germ-attenuated, 
killed or recombinant vaccines to prevent the disease 
[14, 19–21], the bacteria may still lead to the infection of 
neonates in the early hours after birth [22, 23]. As OMVs 
stimulates the systemic immune response and avD3 can 
stimulates the mucosal immunity [24–26], we hypoth-
esized that applying avD3 along with OMVs can switch 
systemic immune responses to mucosal response and 
robust mucosal immunity and finally increase protection 
against ETEC in neonatal mice.
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Main text
Materials and methods
OMV isolation and characterization
Bovine ETEC O101: K99 (field strain) were cultured in 
Luria–Bertani (LB) broth (Merck, Germany) with aera-
tion or, if necessary, LB broth agar plate at 37 °C. Isolation 
of OMVs was performed as described previously [27]. 
Bacterial culture was pelleted at 10,000×g for 15  min 
and then the supernatant was transferred to Tangential 
Flow Filtration system (TFF) (Millipore, DUOBLOC TM, 
USA) to concentrate high molecular weight proteins and 
remove low molecular weight proteins (10,000-molec-
ularweight-cutoff). OMVs were prepared with extra 
filtration through 0.45 and 0.22  µm filters. Finally, the 
supernatant was pelleted using a high-speed centrifuge 
(Refrigerated SIGMA 3-16K Centrifuge) at 20,000×g for 
3  h at 4  °C. Isolated OMVs were aliquoted in PBS and 
sorted at − 80 °C.

Transmission electron microscopy [11] was used to 
verify OMV morphology based on Park et al. with some 
modifications [18]. Vesicles were resuspended in 0.01 M 
PBS and then passed through a nickel grade 400 mesh. 
Next10  µl of OMV sample was placed on coated grade 
with the carbon-reinforced formvar film. After 30  min 
at room temperature, the grade was washed with 0.01 M 
PBS solution (0.5 M BSA and %0.1 gelatin). The grid was 
fixed with 0.01  M PBS containing 1% glutaraldehyde 
at 4 °C for 1 h and then washed again with 0.01 M PBS. 
Finally, the grid was stained with 2% phosphotungstic 
acid (negative staining). Finally, images were obtained 
using microscope software ZEN lite from ZEISS EM900 
transmission electron microscopy.

Immunization regime and challenge protocol
The source of animals and experiment procedures were 
approved and monitored by animal care center, Faculty 
of Veterinary Medicine, University of Tehran. The study 
population consists of 30 female mice (BALB/c back-
ground, 6  weeks old) divided into three groups, con-
taining 10 mice in each group (n = 5 mice as sham and 
n = 5 mice as immunized). Each two female mice were 
mated with one age-matched male and immunization 
was started at day 0, 14 and 28 with OMV alone (two 
groups) and OMV plus avD3 (one group) via i.d. route 
following this concentration: for OMV, 100  µg [28, 29] 
and for avD3 (1α,25-Dihydroxycholecalciferol- Sigma-
D1530), 0.1  µg of avD3 in 0.2  µl of 95% of ethanol [19, 
25] was add to each dose of vaccine. After the pregnancy, 
the dam mice were separated and monitored until birth. 
After 24 h of suckling, all neonatal mice were subjected 
to oral challenge with 102 and 103 CFU of ETEC [30] and 
returned to their dams to allow a continuous transferring 

of immunoglobulin from dams to infected offspring. The 
survival rate of neonatal was recorded for 7 days.

Collection of samples
Newborn mice at day 7 after challenge and their mothers 
at week 8 after immunization were euthanized and the 
blood collected by cardiac puncture. Since all neonates 
from sham group died in the first 24  h after challenge, 
another unchallenged group were sampled. To obtain 
intestinal lavage fluids, the intestine samples were washed 
three times with ice-cold PBS containing protease inhibi-
tors. Samples were centrifuged 2500×g for 20 min at 4 °C 
and the supernatants were sorted at − 20 °C.

Measurement of antibodies titer against OMV
Serum and mucosal IgG and IgA titers were determined 
by an enzyme-link immunosorbent assay (ELISA) as 
described by Schild et al. [31].

Immunization effect on ETEC removal
To confirm that recovered bacteria from the intestine 
were the challenge strain, PCR amplification procedure 
was performed according to Franck et al. [32].

Identification of immunogenic proteins
Prepared OMVs and two ETEC strains including field 
isolated strain, O101:K99, and a reference ETEC strain 
510, along with the recombinant K99 were separated by 
sodium dodecyl sulfate–polyacrylamide gel electropho-
resis (SDS-PAGE) and the specificity of OMV-derived 
antibodies were tested by western blot analysis as previ-
ously described [33].

Statistical analysis
Survival curves were analyzed using Log-rank (Mantel-
Cox) test. Student’s t test and the One-way ANOVA 
(Tukey’s multiple comparisons test) were used to assess 
significant differences between groups. All values were 
expressed as mean ± SEM.

Results
ETEC‑derived OMVs immunization and survival rate 
of neonatal
The OMVs, which were obtained from ETEC, have shown 
spherical shape in different size (50–100  nm), without 
cell debris (Fig.  1a). After morphological characteriza-
tion and determination of protein concentration, mice 
were immunized by ETEC-derived OMVs in formulation 
with avD3. All sham-immunized group quickly died at 
first 24 h of post-challenge, while 25.49% of OMV immu-
nized group survived until day 7 (Fig.  1b). In contrast, 
the survival rate of neonatal mice challenged with a low 
dose of ETEC (102 CFU) was significantly improved to 
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91.66% (p < 0.0001) (Fig. 1c). The OMV plus avD3 group 
and sham-immunized group (PBS + avD3) indicated a 
similar pattern with OMV group. Only 21.3% of immu-
nized group survived at day 7 (p < 0.0001) (Fig. 1d, e). As 
a result of bacterial pathogenesis in the sham-immunized 
group, ascites (accumulation of fluid in the abdomen) 
was seen in the neonatal mice (Fig. 1f ). Survived neonate 
from immunized mice did not show any adverse physical 
symptom. Overall, these results demonstrate that immu-
nization of adult mice against ETEC via ETEC-derived 
OMV protects offspring from ETEC-induced lethality, 
even in formulation with avD3.

Systemic versus mucosal antibody response
Sera from immunized group- mother mice (MM) with 
OMV as well as OMV plus avD3 group indicated a sig-
nificant increase in IgG level compared to sham-immu-
nized mice. Group immunized by solely OMVs produced 
more IgG titer than other groups. The levels of IgA titer 
revealed that only the combination of OMV plus avD3 
has the potential to produce IgA antibodies in serum. 
However, in the intestine, there was no significant differ-
ence in IgA level between immunized and sham-immu-
nized group.

In concordance with MM antibodies response, off-
spring had a similar level of IgG in their serum and IgA in 
their intestine. To evaluate whether maternal antibodies 
are transferred to neonate or not, the levels of IgG and 
IgA of MM were compared to those of neonatal mice 
(NM). Interestingly, the results showed that the levels 
of antibodies in NM are directly correlated with MM 
(Fig.  2). However, OMVs had the capability to induce a 
systemic antibody response, while the avD3 had no effect 
on mucosal response.

ETEC removal from intestine
ETEC K99 positive bacteria was detected in all neonates 
from immunized and sham-immunized groups that were 
challenged with 103 CFU. Only the challenged neonates 
with a 102 CFU were negative.

Specificity of antibody response
Western blotting analysis showed specific antibod-
ies that react with multiple bands in OMV extract and 
whole germ bacteria. Our results indicated the presence 
of immune dominant proteins (~ 14, ~ 22 and ~ 30 kDa) 
in OMVs and whole germ bacteria. Comparing to the 
whole germ ETEC O101: K99+and OMVs, no reactivity 
in the serum of immunized mice was found for purified 
K99 peptide (Fig. 3).

Discussion
Although efforts have been performed in the field of 
protective colibacillosis vaccine [6, 17], a broadly effec-
tive vaccine has not been produced yet. In this work, 
the potential of ETEC-derived OMVs plus avD3 in the 
induction of mucosal immunity and increase protection 
against ETEC in the neonate was investigated. ETEC 
vesicles were isolated from concentrated supernatant 
through several steps of filtration. Isolated OMVs in 
terms of morphology such as the range size and purity 
were confirmed with the others reports [11, 15, 16, 18].

To evaluate the immunogenicity of OMVs and the 
effects of avD3, we choosed the i.d. route for stimu-
lating the Langerhans cells and induction a strong 
immune response [34–38]. As expected, OMV immu-
nized group has a higher IgG titer in their sera, unlike 
the IgA level that did not show significant changes, 
neither in the sera nor in the intestine. Although i.d. 
route of immunization can induce mucosal immune 
responses [19, 44–48], in the current study lack of stim-
ulating mucosal immunity could be due to the type of 
immunization [39–43]. In the contrary to increasing 
the IgA level in serum, this trend was not observed in 
MM and NM intestines. Considering the results of sur-
vival rates and bacterial detection in the small intestine, 
it can be concluded that avD3 had no significant effect 
on an immune response induction against ETEC.

Sera from immunized and sham-immunized groups 
reacted with similar protein bands of ETEC and OMV. 
It seems that under natural conditions there are some 

Fig. 1  a Electron micrograph of ETEC O101:K99—derived OMVs. To confirm final product purification of ETEC culture supernatant and vesicles 
morphology, they were negatively stained and visualize by Transmission electron microscopy. Image was obtained by ZEISS EM900. Bar = 100 nm. 
Survival rates of respective offspring from immunized and sham-immunized mice. To evaluated the effect of OMV-and sham (PBS) immunization 
regime on neonatal mice protect against ETEC, b suckling offspring (n = 50–53, each group) after 24 h of birth challenged orally with lethal doses 
of ETEC (103 CFU) and survival was monitored every 12 h for 7 days. c suckling offspring (n = 50–53, each group) after 24 h of birth challenged orally 
with lethal doses of ETEC (102 CFU) and survival was monitored every 12 h for 7 days d Likewise, respective suckling offspring (n = 52–63, each 
group) from OMVs plus avD3-and sham (PBS + avD3) immunization mice, after 24 h of birth challenged orally with 103 CFU. All sham-immunized 
mice died in the first 24 and 48 h after challenged with 103 and 102 CFU of bacteria respectively. e Survival rate comparison between 
OMV-immunized group and OMV plus avD3-immunized group. No significant difference was observed in survival rate due to use avD3. f Ascites 
was seen as post mortem symptom in all neonatal mice that had no ability to resist against disease (black arrow)

(See figure on next page.)
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antibodies against E.coli (as normal gut microbiota), 
which their levels goes up during immunization. We 
further analyzed the presence of anti- K99 specific anti-
bodies in immune sera. Fimbria K99 is a highly protec-
tive antigen against ETEC infection in cattle and mice 
[14, 46]. Comparing purified K99 peptide along with 
ETEC K99+ -derived OMVs and whole germ shows 
that OMVs is not able to induce an antibody response 
against K99 (Fig. 3). This defect in the immune response 

is probably due to the removal of fimbria fractions dur-
ing OMV purification. Nevertheless, our results indi-
cated that anti-K99 antibodies may not be required to 
induce protective immunity.

Survival rates disclosed a partial protection after 
challenging with 103 CFU bacteria, while a complete 
immunity was shown in the challenge with lower dose 
(102 CFU) bacteria. Partial immunity may be due to 
the incomplete transmission of antibody from mother 

Fig. 2  Serum and intestinal anti OMV- IgG and IgA titers. a–c Mother mice (n = 5, each group) serum IgG and IgA titers at week 8 after 
immunization and intestinal IgA titer. (D1–3) Respective offspring (n = 15–18, each group) IgG and IgA titers at day 7 after challenge. (E1–3) 
Comparison of IgG and IgA titers in serum and intestine of mother mice and neonatal mice (NM). Comparison of all groups were performed by 
One-way ANOVA- Tukey’s multiple comparison test. Bars represented pooled results (geometric mean ± SEM)
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to neonates. Since the levels of specific antibodies (IgG 
and IgA) in neonates were similar to dams, it could be 
speculated that maternal derived antibodies are effec-
tive but not adequate for 103 CFU of ETEC. This is 
noteworthy that under natural conditions, non-immu-
nized animals have low levels of antibody to ETEC 
and the protection mainly deals with the specificity 
and adequate level of antibodies. Results of bacterial 
detection in the small intestine can provide a further 
evidence for the above statement. However, the dis-
tinct specificity of antibodies and their protection level 
remains to be elucidated.

Conclusions
In this report ETEC outer membrane vesicles was pre-
pared and tested alone or in formulation with avD3 as 
a new candidate for colibacillosis vaccine. Immuniza-
tion of dam mice induced serum and mucosal antibody 
responses and could elicit protection in neonates. Fur-
thermore, infant mice born to immunized dam had 
higher survival rates at post challenge by lower dose 
bacteria. Vitamin D3 did not indicate a positive effect 
on mucosal and systemic immune responses. Our 
study may also contribute to the development of those 
vaccinology methods, which trigger mucosal immunity 
and result in passive immunity in offspring.

Research limitation
• • Report demonstrated that the use of vitamin D3 

along with ETEC-derived OMVs does not increase 
the IgG and IgA levels production.

• • Vitamin D3 had no significant effect on neonatal 
protection against ETEC lethality.

• • Report highlighted that transferring passive 
immunity to neonate, at sensitive time after the 
birth, needs more investigation on stimulating the 
mucosal immunity.
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