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Abstract 

Objectives:  The aetiology of several human diarrhoeas has been increasingly associated with the presence of 
virulence factors rather than with the bacterial species hosting the virulence genes, exemplified by the sporadic emer-
gence of new bacterial hosts. Two important virulence factors are the Shiga toxin (Stx) and the E. coli outer membrane 
protein (Eae) or intimin, encoded by the stx and eae genes, respectively. Although several polymerase chain reaction 
(PCR) protocols target these virulence genes, few aim at detecting all variants or have an internal amplification control 
(IAC) included in a multiplex assay. The objective of this work was to develop a simple multiplex PCR assay in order to 
detect all stx and eae variants, as well as to detect bacteria belonging to the Enterobacteriaceae, also used as an IAC.

Results:  The wecA gene coding for the production of the Enterobacterial Common Antigen was used to develop an 
Enterobacteriaceae specific qPCR. Universal primers for the detection of stx and eae were developed and linked to a 
wecA primer pair in a robust triplex PCR. In addition, subtyping of the stx genes was achieved by subjecting the PCR 
products to restriction digestion and semi-nested duplex PCR, providing a simple screening assay for human diar-
rhoea diagnostic.

Keywords:  eae, Enterobacteriaceae, Enterobacterial Common Antigen (ECA), Multiplex PCR, stx, Diagnostic, Faecal 
indicator bacteria (FIB), Indicator organisms
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Introduction
According to WHO diarrhoeal disease is the second 
cause of death of children less than 5  years old, kill-
ing around half a million every year [1]. Hence, easy 
to implement diagnostic tests are highly relevant for 
patient care as well as for food and water monitoring. 
Once associated only with specific bacterial strains 
or serotypes, some diseases have been caused by new 
strains that were not previously identified as food/
water-borne pathogens. A major mechanism asso-
ciated with the emergence of pathogens is horizon-
tal gene transfer enabling the sudden acquisition of 

virulence factors [2, 3] also between phylogenetically 
distant bacterial genera [4]. Among the numerous 
known virulence genes, stx and eae play a major role in 
the virulence of various enteric pathogens members of 
the Enterobacteriaceae [5–7]. Detecting the presence 
of these virulence genes is now a common procedure 
for tracking the associated aetiologic agents although 
other markers have also recently been used to moni-
tor diarrhoeic E. coli [8]. The Shiga toxin producing E. 
coli (STEC) comprises the enterohaemorrhagic E. coli 
(EHEC) pathotype and is defined by the presence of the 
stx gene. Two main types of this virulence factor have 
been defined, stx1 (quasi identical to Stx produced by 
Shigella dysenteriae) and stx2, both of which are further 
divided in several subtypes [9]. Most STEC detection 
methods rely on the identification of serotype O157H7. 
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As more than 50% of STEC infections may be caused by 
non-O157H7 strains, the need for diagnostic methods 
detecting all types of STEC has been emphasized [10, 
11]. The gene eae coding for intimin has been found in 
enteropathogenic E. coli (EPEC), EHEC, E. albertii and 
Citrobacter rodentium [12].

Several multiplex polymerase chain reaction (PCR) 
methods for the detection of virulence factors and sero-
group markers associated with human gastrointestinal 
diseases have been previously developed which include 
the presence of an internal amplification control (IAC) 
[13–16], or of an indicator organism such as E. coli to 
provide a positive control [17–21] (see Additional file 1). 
E. coli belongs to the Enterobacteriaceae, a group which 
includes the total coliforms (TC) and most enteric path-
ogens and is described as a “general (process) microbial 
indicator” [22] used for assessing the efficiency of food 
and water treatment. Therefore, in the present method, 
the Enterobacteriaceae was chosen to serve both as a 
general microbial indicator of sample contamination, and 
as a positive control for the multiplex PCR when tracking 
the presence of stx and eae genes. The “universal” primer 
design for the detection of stx and eae virulence genetic 
elements aims at detecting all variants of the gene regard-
less of the bacterial host species whereas other “univer-
sal” stx and eae primers, aim at E. coli (Additional file 1). 
In addition, sequence variability within the stx PCR prod-
uct was exploited in order to develop a nested PCR and 
a restriction digestion protocol for typing of the genes. 
To our knowledge it is the first time such screening 

“universal” stx and eae primers are used in a multiplex 
PCR with an Enterobacteriaceae IAC.

Main Text
Materials and methods
Bacterial strains and culture media
For testing the multiplex protocol, the 23 bacterial iso-
lates used are listed in Additional file  2. The bacterial 
strains were provided by The Norwegian National Insti-
tute for Health (Folkehelsa) and the Rikshospitalet Uni-
versity Hospital. Pure cultures were grown in 10 ml Luria 
Broth over night at 37  °C with shaking. Grown cultures 
were boiled for 10  min, and serially diluted in water 
before being used for PCR analysis. Alternatively, sin-
gle colonies were picked from agar plates, suspended in 
water and used directly for the PCR.

Software and primers
Sequence alignments were performed using the Mul-
talin web site http://multa​lin.toulo​use.inra.fr/multa​lin/ 
accessed 1 February 2018 [23]. Primer design as well as 
restriction enzyme analyses were performed with Oligo 
6.0 (Molecular Biology Insights, Inc., USA) software or 
performed manually using the alignments results and 
guidelines [24–27]. Amplicon product sizes and primer 
sequence are shown in Table 1.

PCR amplification
Samples (10  μl) were amplified in 50  μl final reaction 
mixtures using a BioTest Biometra or a TGRADIENT 

Table 1  Primer sequences, product sizes and conditions used in the triplex and simplex PCRs

Triplex PCR (A) semi-nested duplex PCR for stx1 and stx2 typing (B) and simplex PCR for Enterobacteriaceae (C)
a  R = A or G, M = A or C, K = G or T

Primer sets Target genes Primers MgCl2 (mM) Product size (bp)

Names Sequences (5′–3′)a μM

A wecA Meca202U GGG​TTG​TCC​TGC​GTC​TCG​TT 0.05 3 452

Meca633L TAT​TCT​GCC​AGC​ACG​CCA​ATG​

stx1 and stx2 UstxU1 TRT​TGA​RCR​AAA​TAA​TTT​ATA​TGT​ 0.5 526 (stx1)

UstxL1 MTGA​TGA​TGR​CAA​TTC​AGT​AT 523 (stx2)

stxA2f UstxU3 AAT​GGA​ACG​GAA​TAA​CTT​ATA​TGT​ 0.05 523

UstxL3 GGT​TGA​GTG​GCA​ATT​AAG​GAT​

eae intimin Ueae28U ACC​CGG​CAC​AAG​CAT​AAG​ 0.1 741

Ueae748L CGT​AAA​GCG​RGA​GTC​AAT​RTA​

B stx1 and stx2 UstxL1 MTGA​TGA​TGR​CAA​TTC​AGT​AT 0.1 3

stx1 Nestx1 GTA​CAA​CACTKGAT​GAT​CTC​ 0.3 200

stx2 Nestx2 TGA​CRA​CGG​ACA​GCAGT​ 0.05 410

C wecA Meca480UU21 GGA​TAT​GGT​GGC​GAT​TAT​GTA​ 0.2 2 226

Meca685LU21 GAA​TGC​TAG​CAA​AAA​GAG​CAC​

Meca479UU21 TGG​ATA​TGG​TGG​CGA​TTA​TGT​ 0.2 2 261

Meca722LU18 TCC​AGG​CMCGC​TTA​ATGC​

http://multalin.toulouse.inra.fr/multalin/


Page 3 of 7Anglès d’Auriac and Sirevåg ﻿BMC Res Notes  (2018) 11:360 

(Whatman-BiometraR) PCR thermocycler. For the semi-
nested duplex PCR, a 1000-fold dilution of the triplex 
reaction was used. The buffered (1×) mixtures con-
tained 0.1  mM nucleotides and 0.2  U of DyNazyme II 
(Finnzymes) DNA polymerase. The concentration of 
primers and MgCl2 for the triplex PCR and the semi-
nested duplex PCR were as indicated in Table 1. For the 
simplex stx PCR, 0.1 μM of primers UstxU1 and UstxL1 
and 0.01  μM UstxU3 and UstxL3 were used. Thermo-
cycling conditions were as follows: 2  min preheating at 
94  °C followed by 40 (triplex and simplex), or 25 (semi-
nested duplex PCR) cycles of 94 °C for 15 s, 57 °C for 30 s 
and 72 °C for 60 s. PCR products were separated by elec-
trophoresis on a 1.7% 0.5 × Tris–borate–EDTA agarose 
gel stained with ethidium bromide, visualized using 75 V 
and 25 mA for 1 h 30 min and then photographed under 
UV illumination.

Restriction endonuclease
The reaction mixture contained 16  μl PCR products, 
10 U BsrI restriction endonuclease (New England Biolab) 
with the provided NEB3 buffer in a total volume of 20 μl. 
Digestion was performed in PCR tubes at 65  °C for 2 h 
30 min in the thermocycler after which 10 μl of the sam-
ple was analysed by electrophoresis as described for PCR 
amplification.

Results
Virulence factors
A total of 45 different stxA gene sequences and 21 dif-
ferent eaeA gene sequences were aligned (see A1 and 
A2, respectively in [28]). The primers were aimed at 
detecting all variants of stx and eae, and thus were 
designed on the basis of the most conserved area of the 

DNA sequence alignment. An alignment of the uni-
versal degenerate Ustx primers with the most relevant 
primer pairs used in other PCR protocols is shown in 
Additional file 3.

Triplex PCR
The triplex PCR was developed to simultaneously 
detect Enterobacteriaceae, used as an IAC, and the 
presence or absence of any variants of stx and eae 
genes. The triplex PCR was optimized varying anneal-
ing temperature, primer concentration and by test-
ing additives or facilitators such as DMSO, glycerol, 
bovine serum albumin, formamide and MgCl2 which 
are reported to improve multiplex PCR [24, 29, 30]. 
Only increasing the concentration of MgCl2 from 2 to 
3 mM improved results as shown in Fig. 1. The results 
from testing 19 pathogenic E. coli, 3 S. dysenteriae and 
1 non-pathogenic E. coli, for specificity of the assay are 
shown in Fig. 2a and Additional file 2.

Semi‑nested duplex PCR for differentiating stx1 and stx2
The semi-nested duplex PCR consisted of UstxL1, used 
as the reverse primer in the triplex PCR, and two new 
forward primers, Nestx1 and Nestx2. These two forward 
primers are complementary to stx1 and stx2 respectively 
and are located within the amplicon produced in the tri-
plex. The products of the amplification consist of 200 bp 
and 410 bp for stx1 and stx2, respectively. The assay was 
tested on 14 strains containing stx1 or stx2, or both, and 
the results are shown in Fig. 2b. These results were cor-
roborated by those produced by the restriction enzymatic 
digestion assay shown in Additional files 4 and 5.

stx (526-523 bp)
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Fig. 1  Triplex PCR optimization for MgCl2 concentration. Lanes 2–4 2 mM MgCl2, Lanes 5–7 3 mM MgCl2, Lanes 8–10 4 mM MgCl2, Lane 1 DNA size 
ladder, Lanes 2, 5 and 8 E. coli O157:H7, Lanes 3, 6 and 9 E. coli O157:H7 and S. dysenteriae, Lanes 4, 7 and 10 S. dysenteriae, Lane 11 negative control
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Enzymatic restriction digestion for typing
The result obtained after digestion with BsrI of the stx 
simplex PCR product is shown in Additional file 4. The 
fragment pattern enables the distinction of four different 
groups of stx variants, stx1c, stx1, stx2 + stx2c + stx2d, and 
stx2e +  stx2f as shown in Additional file  5. The smallest 
fragment, of 39  bp, could not be visualised on the aga-
rose gel, but this does not affect the interpretation of 
the results. Similarly, the 62 bp fragment produced from 
stx1 was not always visible. However, this fragment was 
not required for positive identification of stx1, which 
was specifically identified by the presence of the 334 bp 
fragment.

Discussion
Enterobacterial Common Antigen
The Enterobacterial Common Antigen (ECA) was first 
described in 1963 by Kunin [31] and is defined as a cross-
reactive antigen that is detectable in all genera of Entero-
bacteriaceae by several methods including using antisera 
to E. coli [32]. ECA was later found to be strictly family 
specific with diagnostic potential because of its universal 

presence in the family (see reviews [32]). Two of the 
genes implicated in the ECA synthesis are the rfe and 
rff genes [33, 34] later renamed wec [35]. Immunology-
based diagnostic tests have been developed to detect the 
presence of ECA for clinical applications [36] and later 
to monitor the quality of drinking water by probing for 
bacteria belonging to the Enterobacteriaceae family [37]. 
In the PCR based protocols used here, the wecA primers 
detected all tested 23 strains of E. coli and S. dysenteriae.

Virulence genes
Eighteen varieties of intimin have been described [38] 
among which: α (alpha), β (beta), γ (gamma), δ (delta) 
[39] and ε (epsilon) [40]. The eae gene is found in the 
locus of enterocyte effacement (LEE) pathogenicity island 
of both EPEC and EHEC [41, 42]. In the present study, all 
6 tested EPEC were eae-positive as well as 11 EHEC out 
of 13 tested. Of the two negatives, EHEC O113:H21 has 
also been reported eae-negative in a previous study [43].

Among the two stx groups, the second, stx2 and its 
five variants, is the most diverse and includes the most 
potent Shiga toxins for humans. Both stx2 and stx2c are 
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Fig. 2  Multiplex PCR products gel electrophoresis results. a Triplex PCR performed on 23 bacterial strains of E. coli and S. dysenteriae showing the 
amplicon products for eae, stx and wecA genes. Lane A DNA size ladder, Lanes 1–23 bacteria as listed in Additional file 2, Lane B negative control. b 
Semi-nested duplex PCR using as template the stx universal PCR amplicon (526–523 bp). Lane A DNA size ladder, Lanes 1–14 stx positive strains as 
listed in Additional file 2 and shown in a Lanes 1–14, Lane B negative control
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mainly hosted by STEC associated with the aetiology of 
severe human diarrhoea whereas stx2d has been isolated 
in STEC from human as well as cattle origin [44]. Finally, 
stx2e is found in porcine STEC [45] while stx2f is found 
in STEC hosted by birds [46, 47]. Although the toxins 
Stx2e and Stx2f seem to be adapted to their respective 
hosts, both have been associated with human disease 
[45, 48]. Swine was also shown to harbour STEC carry-
ing stx1 and stx2d associated with human infections [49], 
a finding which further underlines the importance of 
establishing screening methods designed for detecting all 
variants. The results obtained for stx in the present study 
were in agreement with expectations. All three S. dysen-
teriae were positive for stx by triplex PCR and further 
confirmed to harbour stx1 by both semi-nested duplex 
PCR and enzymatic restriction. Among the 13 EHEC 
strains, 11 were found stx positive by triplex PCR. Strain 
ATCC 43888 was stx-negative as expected whereas strain 
3005/00 was unexpectedly stx-negative although eae-
positive. This could be the result of loss of the virulence 
factor as it has been previously demonstrated for stx both 
in vivo [50] and in vitro [51].

Three EHEC strains were shown to have both stx1 and 
stx2, confirmed by both the semi-nested duplex PCR and 
the enzymatic restriction typing method. In particular, 
strain BE97-2317 was shown by enzymatic restriction to 
harbour stx1c, a gene coding for a toxin type also previ-
ously found associated with EHEC O128:H2 and negative 
for eae [43].

Various universal primer pairs for the detection of 
stx have been described in [52–59] some which overlap 
with the Ustx primers employed in this study (Addi-
tional file  3). However, few primers are able to detect 
all variants and are used in a multiplex assay [60–62] or 
also have integrated an IAC such as E. coli detection [19]. 
Integrating the detection of an indicator group, expected 
to be co-detected along with the targeted virulence mark-
ers, has the advantages over using a traditional IAC that 
it will also be able to detect, not only PCR inhibition or 
failure, but also absence of DNA. Finally, the Enterobac-
teriaceae family has been described as a possible alterna-
tive to faecal indicator bacteria, as it can better reflect the 
hygienic status of food products [63], hence Enterobac-
teriaceae PCR assays should find several areas of appli-
cations. Overall, this simple molecular screening assay 
including its further typing possibility for stx, should help 
food and health authorities to increase their monitoring 
efforts to improve water and food microbiological quality 
as well as patient diagnostic capabilities.

Limitations
A limited number of strains were used for detection 
capability of the assay, and specificity testing for Entero-
bacteriaceae was not performed. Limit of detection has 
not been evaluated.
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